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An electron colliding with an atom in the presence 
of an intense laser field can efficiently convert the com-
bined energy of a large number of laser photons into 
the energy of a spontaneously emitted photon [1]. This 
process occurs, in particular, in laser-assisted radia-
tive attachment (LARA) or recombination (LARR), in 
which the emission of a spontaneous photon is accom-
panied by absorption of n laser photons and the for-
mation of a negative ion or neutral atom. Although ex-
perimental studies of these processes have only begun 
recently [2], theoretical studies began more than a de-
cade ago. The first theoretical investigations employed 
the strong field approximation (SFA) [3–5], in which 
the effects of the atomic potential U(r) on the scattering 
state of the incident electron are neglected. These stud-
ies show that (even in lowest order in the potential U(r)) 
the LARR cross sections as a function of n (or the energy 
of the spontaneous photon) exhibit a plateau structure, 
whose shape and extent can be described by treating 
the LARR process classically [6]. The first-order correc-
tion in the potential U(r) to the SFA LARR amplitude 
was introduced in [7] (see also [1, 8]) taking into account 
U(r) perturbatively, using the Born approximation. In-
clusion of higher-order corrections in U(r) (or rescatter-
ing effects) into the LARA/LARR amplitudes results in 
a second, high-energy (or rescattering) plateau in the 

LARA/LARR spectra [7, 9]. However, as for laser-in-
duced processes, such as high-order harmonic genera-
tion (HHG) and above-threshold ionization (cf [1]), the 
cross sections for the high energy rescattering plateau 
are orders ofmagnitude smaller than those for the low-
energy plateau. Hence, mechanisms for increasing the 
high-energy plateau cross sections are of great interest. 
For laser-assisted collisions, one way to achieve such an 
increase is to tune the incoming electron energy so that 
it can be temporarily captured (by stimulated emission 
of μ laser photons) to a bound state of the potential U(r). 
Obviously, such a resonance phenomenon cannot be 
described in the Born approximation and requires an ac-
curate account of the potential U(r). Significant enhance-
ment of plateau structures in resonant laser-assisted 
electron–atom scattering (LAES) was predicted recently 
[10]. However, resonant phenomena in LARA/LARR 
processes remain unexplored. 

In the present communication, we extend the study 
of laser-induced resonant phenomena in collision prob-
lems to the case of LARA/LARR. We present a gen-
eral parametrization for the resonant LARA/LARR 
cross sections and show the following at resonant elec-
tron energies: (i) the shape of LARA/LARR spectra as 
a function of n coincides  with that for HHG; (ii) the 
electron energy dependence of the n-photon LARA/
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Abstract 
Resonant enhancements are predicted in cross sections σn for laser-assisted radiative attachment or electron–ion 
recombination accompanied by absorption of n laser photons. These enhancements occur for incoming electron 
energies at which the electron can be attached or recombined by emitting μ laser photons followed by emission 
of a spontaneous photon upon absorbing n + μ laser photons. The close similarity between rescattering plateaus 
in spectra of resonant attachment/recombination and of high-order harmonic generation is shown based on a 
general parametrization for σn and on numerical results for e−H attachment.  
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LARR cross section exhibits an asymmetric profile sim-
ilar to the Fano profile in photoionization cross sec-
tions [11]; and (iii) LARA cross sections can be enhanced 
by more than two orders of magnitude. To describe 
LARA analytically, we use time-dependent effective 
range (TDER) theory, which provides a means to ac-
count for the short-range atomic potential U(r) in LARA 
non-perturbatively. 

To describe electron–atom collisions in a monochro-
matic field with electric vector F(t) = ezF cos ωt (where F 
and ω are the field amplitude and frequency) using the 
electric dipole approximation, the quasienergy (or Flo-
quet) approach [12] is most appropriate. Within this ap-
proach, the laser-dressed scattering state of an electron 
with momentum p and energy E = p2/(2m) in the poten-
tial U(r) has the form 

(1)

where ε is the quasienergy, ε = E + up, where up = e2F2/
(4mω2) is the mean quiver energy of an electron in the 
field F(t). For F(t) = 0, the quasienergy state Φε,p(r, t) re-
duces to the scattering state ψp(r) of the recombining 
electron in the potential U(r). In the field F(t), the bound 
(final) state ψ0(r) with energy E0 evolves to the quasista-
tionary quasienergy state (QQES), Ψε (r, t), which also 
has the form (1), but with the complex quasienergy ε = 
E0 + ΔE0 − iΓ/2, where ΔE0 and Γ are the field-induced 
Stark-shift and width (or total decay rate Γ/) of the state 
ψ0(r) [13]. 

We consider the LARA/LARR process as a dipole 
transition between initial and final states Ψε,p(r, t) and 
Ψε (r, t) with emission of a spontaneous photon, whose 
energy differs from the field-free energy Ω0 = E − E0. 
Within the QQES approach, the LARA/LARR cross sec-
tion σ (Ω), integrated over the directions of emission and 
summed over polarizations of the spontaneous photon, 
can be written as (cf [7]) 

(2) 

(3)

where d = er (e = −|e|) and Ω is the frequency of the 
spontaneously emitted photon: 

The function Ψ̃ε (r, t) in (3) is the so-called dual func-
tion to Ψε (r, t). If F(t) is linearly polarized and ψ0(r) is a 
bound s-state, then Ψ̃ε (r, t) is defined as [14–16] 

(4)

Since the QQES wavefunctions Φε (r, t) diverge asymp-
totically as r → ∞ (since they describe the ionization of a 
bound state ψ0(r) in the field F(t)), the use of dual func-
tions as bra-vectors in the QQES approach is necessary 
to ensure proper normalization of the wavefunctions Φε 
(r, t) and the regularization of matrix elements involving 
these functions (cf [14–16] for further details). 

To describe resonant LARR or LARA processes, we 
note first that the wavefunction Ψε (r, t) can be obtained 
as a residue of the scattering state Ψε,p(r, t) in the com-
plex plane of ε at ε = ε + μω = Re ε + μω – iΓ/2 [17]: 

where μ is an integer. Therefore, for ε ≈ εμ = Re ε + μω, 
the scattering state Φε,p(r, t) can be approximated by a 
sum of potential (non-resonant) and resonant parts [17]: 

(5) 

where Eμ = p2
 μ/(2m) = Re ε + μω − up is the resonant 

electron energy and the coefficient B(pμ) is proportional 
to the amplitude for stimulated μ-photon recombination 
or attachment (cf (30)). Substituting (5) into (3), the am-
plitude d(Ω) can also be presented as a sum of potential 
and resonant terms: 

(6)

where the potential term d(p)(Ω) is given by (3) (upon 
substituting there Φ(p)

μ,pμ (r, t) for Φε,p(r, t)), while the res-
onant term involves the dual dipole moment, d̃ (Ω) = 
d̃(Ω)ez, which determines the rate R(Ω) for the genera-
tion of a harmonic of the field F(t) with frequency Ω = (n 
+ μ)ω by a bound electron in the s-state ψ0(r) [16]: 

(7)

Since the problem involves only two vectors, ez and p̂ 
(mutually oriented at an angle θ), the vector d(p)(Ω) lies 
in the plane (ez, p̂ ) and can be presented as 

(8)

where e⊥ = [ez × [ p̂  × ez]]. Using (6) and (8), we obtain 
the general parametrization for the LARA/LARR cross 
section (2) near a μ-photon resonance 

(9)

where δ = 2(E − Eμ)/Γ, q = −2i(pμ) d̃(Ω)/(Γd║
(p)(Ω), and 

σ (p)(Ω) and σ║
(p)(Ω) are given by (2) upon substituting 

there d(Ω) → d(p)(Ω) or d(Ω) → d║
(p)(Ω)ez. The parame-

trization (9) simplifies for parallel geometry, p ║ ez, in 
which case σ║

(p) = σ (p) :

(10)

Results (9) and (10) showthat (for a given n) σ (Ω) as a 
function of E is asymmetric with respect to the reso-
nance energy Eμ. For small Γ (i.e. taking into account 
only terms ~1/Γ2), the result for the cross section σ (Ω) at 
the resonance, δ = 0, is 

(11)

Since B(pμ) does not depend on the number of absorbed 
photons, the shapes of resonant LARA/LARR spectra as 
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functions of n replicate the shapes of the corresponding 
bound state HHG spectra. 

To present quantitative results for laser-induced res-
onance phenomena in LARA, we use TDER theory to 
describe both the incident continuum (Φε,p) [18] and fi-
nal bound (Φε) [19] field-dressed states of the active elec-
tron. This theory assumes that the interaction of an elec-
tron with a short-range potentialU(r) (having only a 
single bound state ψE0lm(r) with angular momentum l) is 
described by the l-wave scattering phase δl (E) that is pa-
rameterized by the scattering length al and the effective 
range rl , which are parameters of the problem. For sim-
plicity, we consider the case of a bound s-state ψ0(r) of 
energy E0 = −(κ)2/(2m). For this case, the TDER wave-
functions Φε,p(r, t) and Φε (r, t) are expressed in terms of 
one-dimensional integrals [18, 19]: 

(12)

(13)

where G(r, t, r′, t′) is the retarded Green function and S(p, 
t) is the classical action of an electron in the field F(t), 

P(t) is the canonical momentum, 

and fε (p, t) and gε (t) are dimensionless periodic 
functions, 

The Fourier-coefficients fk(p) and gk as well as the com-
plex quasienergy ε can be found from a system of inho-
mogeneous (for fk(p)) or homogeneous (for gk and ε) lin-
ear equations: 

(14)

(15)

(16)

(17)

(18)

where a0 and r0 are the scattering length and the effec-
tive range, p

║ =  (ez · p) = p cos θ, and Jn(x) is a Bessel 
function. The matrix elements Mk,k′ (E) are nonzero only 
if the difference k − k′ is even and have the form 

(19)

where 

From the explicit form of Mk,k′ (E) follow the symmetry 
relations 

(20)

As shown in [19], the function gε (t) (as well as the 
system of equations (15)) includes only coefficients gk 
with even k. The complex quasienergy ε is given by that 
root of the transcendental equation, Det ║Mk′,k(ε) ║ = 0, 
which becomes E0 when F → 0. For F(t) = 0, the matrix 
elements Mk,k′ (E) are zero and coefficients fk(p) and gk re-
duce to 

(21)

whereCκ is a dimensionless coefficient in the asymptotic 
form of ψ0(r) for r  κ–1 :

With the use of (12) and (13), the analytic evalua-
tion of d(Ω) in (3) involves the spatial integration of two 
Green functions and a threefold integration over time. 
The spatial integration and two of the temporal integra-
tions can be performed analytically (as done in [16]) and 
the final result for d(Ω) can be presented as 

(22)

(23)

(24)

(25)

where the matrix elements Wn
 k,k′ are non-zero only if the 

difference n − k is odd : 

(26)

 

Result (22) for d(Ω) is exact within the TDER the-
ory and valid for both resonant and non-resonant elec-
tron energies E. The term dpw(Ω) originates from the first 
term in (12) and corresponds to the first-Born (or plane 
wave) approximation in the potential U(r) for the scat-
tering state. This term is smooth at the resonant energy 
E = Eμ and contributes only to the potential part of the 
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LARA amplitude (6). Moreover, for an intense low-fre-
quency (ω   |E0) field F(t), the coefficients gk with k 
= 0 are small compared to g0 (cf [19]). Approximating in 
(24) gk = g0δk,0 and g0 ≈ Cκ (cf (21)), dpw(Ω) yields an exact 
(i.e. without using saddle-point methods for its evalua-
tion) TDER result for the LARA amplitude in the SFA 
[3, 4]. Resonant phenomena are described by the second 
(rescattering) term, dresc(Ω), in (22). This term originates 
from the integral term in (12) and, within the TDER the-
ory, ensures an exact account of the effects of the poten-
tial U(r) on the field-dressed initial and final states of the 
attaching electron (through the coefficients fk(p) and gk 
in (25)).  
  To extract from (25) the resonant part of the ampli-
tude (6) in an explicit form, we solve the system (14) for 
fk(p) near the resonance, i.e. for ε ~ (ε + μω). Expand-
ing matrix elements in (14) up to the linear term  
in Δε = ε − ε − μω = E − Eμ + iΓ/2, approximating 
ck(p) ≈ ck(pμ) and employing the symmetry relations 
(20), we obtain 

(27)

where M′ k,k′ (ε) = ∂M′ k,k′ (ε)/∂ε. In the lowest resonant ap-
proximation (Δε → 0), the coefficients fk′−μ(p) in (27) are 
proportional to gk′ :  fk′−μ = α(p)gk′ . To find α(p), we mul-
tiply the system (27) by gk and then sum over k. Taking 
into account the symmetry relations (20) and the equal-
ity Σk gkMk,k′ (ε) = 0 (cf (15)), the system (27) reduces to a 
single equation 

(28)

from which α(p) is easily obtained upon substituting 
fk′−μ(p) = α(p)gk′ . The resulting resonant approximation 
for fk−μ(p) is 

(29)

Changing in (25) the summation index k to k − μ and 
substituting there the result (29) for fk−μ(p), the resonant 

term in dresc(Ω) can be presented in the same form as in 
(6), where the explicit form for the dual dipolemoment d̃ 
(Ω) in the TDER theory (in terms of gk, gk′ and the matrix 
elements Wn k−μ,k′) is given in [20]. The coefficient B(pμ) 
in (6) is related to the amplitude Aμ(pμ) for μ-photon la-
ser-stimulated attachment: 

(30)

The potential part d(p)(Ω) of d(Ω) in (6) is given within 
TDER theory by (22)–(25) in which we set p = pμ and re-
place fk(pμ) in (25) by fk(pμ) − f (r)

k (pμ). 
Key features of resonant LARA cross sections are 

shown in figure 1. (Qualitatively, resonant LARR fea-
tures are similar.) Results for e − H attachment with the 
formation of the H−

 ion are shown for both non-resonant 
(E) and resonant (Eμ) incident electron energies for the 
cases of odd μ in (a) and even μ in (b). (TDER parameters 
for this case are (cf, e.g., [19]) |E0| = 0.755 eV, Cκ = 2.304, 
a0 = 6.16 aB and r0 = 2.64 aB, where aB is the Bohr radius.) 
In Figure 1(a), the laser parameters and energy E are the 
same as in a recent analysis of nonresonant LARA pro-
cesses [9]. Resonant effects are more pronounced in fig-
ure 1(b) for I = 1.35 × 1011

 W cm−2
 and ω = 0.0453 eV. 

Figure 1 exhibits several qualitative features: (i) a two or-
ders of magnitude resonant increase of σ (Ω); (ii) perfect 
coincidence of the resonant attachment spectrum shape 
with that for high harmonics generated by the H−

 ion for 
the same laser parameters; (iii) the extent of the high-
energy plateau in the resonant process (≈ |E0| + 3.17up 
as in HHG) exceeds that for the non-resonant case; and 
(iv) enhancements occur only for those numbers n of ab-
sorbed photons whose parity is opposite to that of μ (cf 
also Figure 2). This last result is a simple consequence of 
the fact that the resonant cross section (11) involves the 
rate for emission of the (n + μ)th harmonic of the field 
F(t). As is well known, an atom can emit only odd har-
monics of a monochromatic field (owing to electric di-
pole selection rules), so that n + μ must be odd. 

Figure 2 shows the energy dependence of the partial 
(n-photon) LARA cross sections in the resonance region 
(as well as our general parametrization for σn(E)) for the 

Figure 1. LARA spectra for e − H attachment in a linearly polarized field F(t) (with ez ║ p) having (a) intensity I = 3.75 × 1011 W 
cm−2, ω = 0.098|E0| = 0.074 eV or (b) I = 1.35 × 1011 W cm−2, ω = 0.06|E0| = 0.0453 eV. Thick (blue) and thin (red) solid lines: 
exact TDER results for the resonant (Eμ) and non-resonant (E) electron energies shown in each panel. Dashed (green) lines: HHG 
spectra of the H− ion (in arbitrary units) for the same field parameters I, ω as in (a) and (b). Vertical lines in (b) mark photon num-
bers n = 403, 417 (cf figure 2). 
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laser parameters of Figure 1(b), giving a Stark-shift and 
width of the H−

 ground state ψ0(r) of E0 = Re ε − E0 = 
−6.250 × 10−3

 eV and Γ = 8.335 × 10−4
 eV. Owing to the 

complexity of the parameter q (i.e. the ratio of the reso-
nant and potential parts of the amplitude (6) at E = Eμ), 
the asymmetric resonance profile shape as well as the 
positions of the maxima and minima in σn(E) (for given 
n and laser parameters) are sensitive to both the abso-
lute value of q and the relation between Re q and Im q. 
Figure 2 shows examples of resonance profiles for both 
odd (μ = 236) and even (μ = 237) values of n. In terms 
of δ, the positions of the maxima (δ+) and minima (δ−) 
of σn(E) can be obtained from (9) or (10) by equating to 
zero the derivative of σ (Ω) with respect to δ: 

 
(31)

Since δ± are the roots of a quadratic equation, the follow-
ing relations are valid: 

(32)

Relations (32) show that for Imq < 0 (or Imq > 0) the 
maximum occurs at E > Eμ (or E < Eμ), while the loca-
tion of the minimum has the opposite behavior. These 
results agree with those in Figures 2(a) and (d) (in which 
Imq < 0) and 2(b) and (c) (in which Imq > 0). The “win-
dow resonance” behavior of σn(E) (as in Figure 2(d)) oc-
curs whenever |δ−| → 0 or, equivalently, the parameter 
Δ → 1, where 

(33)

The parameter  is positive when |q + 1| < 1, and this 
latter inequality is fulfilled for negative Re q (with (Re q)
min → −2 when |Im q| → 0). The limiting case Δ = 1, i.e. 
|q(q+2)| = 1−|q+1|2, is realized when Im q = 0. There-
fore, a “window resonance” in σn(E) appears for nega-
tive Re q when (i) |Im q|  |Re q| and (ii) |q + 1| < 1. 
(For example, Re q = −0.612, Im q = −0.207 and Δ = 1.124 
for the results in figure 2(d).) 

As is clear from our general considerations, the con-
tinuum resonance phenomena shown in Figures 1 and 

2 disappear in any theory that does not account for the 
influence of the atomic potential U(r) on the scattering 
states (such as, e.g., the Born approximation or even an 
improved SFA [1, 7]). However, an accurate non-pertur-
bative account of the interaction of a recombining elec-
tron with both a laser field and an atomic potential leads 
to complicated results even for a potential U(r) support-
ing only a single bound state, as in the TDER theory (cf 
the result (25)). Nevertheless, the results simplify for a 
low-frequency (ω  |E0|) field F(t), in which case 
the system (14) can be solved iteratively, taking 
into account nondiagonal matrix elements Mk,k′(ε) 
perturbatively [21]. In the lowest approximation, 
neglecting nondiagonal matrix elements, the coef-
ficients fk(p) take the following form: 

(34)

Also, as noted above, the coefficients gk≠0 are small for 
low frequencies, so that we can make the approximation 
gk ≈ Cκδk,0. As is seen in figure 2, the approximations (34) 
and gk = Cκδk,0 reasonably describe the resonant phenom-
ena. The resonant structures originate from the matrix el-
ement in the denominator of (34), which has zeros in the 
complex plane of ε at ε = ε̃  − kω, where ε̃  is the complex 
quasienergy ε in the low-frequency approximation [19]. 

Finally, we note that resonant phenomena in LARA/
LARR processes cannot be described in the low-fre-
quency Kroll–Watson approximation (KWA) for the 
scattering state wavefunction [22]. Within the TDER the-
ory, the KWA is formulated in terms of the function fε 
(p, t) in (12) [23]: 

(35)

where R(E) (cf (17)) is related to the partial s-wave am-
plitude f0(E) of elastic electron scattering from the poten-
tial U(r) in the TDER theory at F(t) = 0: f0(E) = [κR(E)]−1

 
[19]. The shortcoming of the KWA is that in this semi-
classical approximation, the quantization of the pho-
ton energy is completely neglected so that both S(p, t) 

Figure 2. Dependence of LARA cross sections on electron energy for fixed n and the same laser parameters as in Figure 1(b). Thick 
solid lines: exact TDER results; thin solid lines: parametrization (10); dashed lines: results with coefficients fk given by (34) and gk = 
Cκ δk,0; dotted lines: results with Fourier-coefficients of the KWA function (35). Vertical lines mark the resonance energies Eμ (δ = 0).  
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and R(E(t)) in (35) depend only on the classical energy 
E(t) of an electron in a laser field, which is always posi-
tive. Therefore, although the amplitude f0(E) has a pole 
at negative energy E = E0 (since R(E0) = 0 [19]), the func-
tion R(E(t)) in (35) has no zeros, i.e. the KWA result (35) 
fails to describe resonant effects (cf Figure 2). (For this 
reason, the resonant effects disappear also in the KWA 
for LAES [10]). 

In conclusion, we have analyzed the key features of 
resonant phenomena in LARA/LARR processes that oc-
cur for electron energies corresponding to μ-photon la-
ser-stimulated attachment/recombination. For such 
energies, we find that the spectra of spontaneously 
emitted photons in the high-energy parts of the LARA/
LARR plateaus coincide with the harmonic generation 
spectra of the bound systems. Owing to the significant 
enhancement of resonant cross sections versus non-res-
onant ones, we expect that our findings should facilitate 
experimental observation of the resonant modification 
of radiative electron attachment/recombination in a la-
ser field and the emission of high-order harmonics in la-
ser-assisted collision processes. 
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