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Organic grain cropping systems typically depend on intensive mechanical 

cultivation for weed control and manure or compost applications to meet plant nutrient 

demands. However, cover crops may contribute to weed suppression and soil fertility, 

potentially increasing crop yield and sustainability of the system. The utility of individual 

cover crop species have been well documented, but the agronomic benefits of diverse 

cover crop mixtures have received less attention. Cover crop mixtures are an appealing 

option for farmers, as increasing species diversity has been shown to increase resource-

use efficiency, stability, resiliency, and productivity of plant communities. Despite the 

growing interest in cover crop mixtures, little is known about the effect of increasing 

cover crop diversity on cropping system performance. Moreover, organic farmers have 

questions about the most effective method for cover crop mixture termination.  

In an effort to increase knowledge about cover crop mixtures and management for 

the western Corn Belt, an organic cropping systems trial was initiated in 2009 at the UNL 

ARDC near Mead, NE. Spring-sown mixtures of cover crops, ranging from two to eight 

species, were included in a sunflower – soybean – corn crop rotation. Cover crops were 
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planted in late-March and terminated mechanically with either a field disk or sweep plow 

undercutter in late-May. Changes in cover crop mixture influenced cover crop 

productivity and early-season weed biomass, while termination method drove differences 

in weed community composition, soil microbial community structure, soil moisture and 

nitrogen, and crop yield. Interestingly, the management of ambient weed communities as 

a cover crop led to unique shifts in soil microbial community structure, but did not alter 

soil nitrogen or crop yield when compared to cover crop mixtures. When considering 

cropping system performance in combination with potential environmental benefits, 

diverse cover crop mixtures paired with a sweep plow undercutter for termination seems 

to be a profitable and sustainable management option for organic grain farmers in the 

western Corn Belt. 
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PROLOGUE 

Cover crops are most often planted for conservation purposes providing soil 

coverage between cash crop cycles to reduce soil erosion (Pimentel et al., 1995). 

Depending on what species are planted, cover crops may provide additional benefits to 

crops and surrounding ecosystems. Some of these benefits may help farmers to increase 

grain yield and profitability, while others are less tangible. For example, cover crops can 

help to build long-term soil quality that contributes value to farmers, the environment, 

and society as a whole (Dabney et al., 2001). 

Cover Crops Options for the Western Corn Belt 

Cover crop plantings in the western Corn Belt are often limited by the length of 

the growing season. As defined by the average last and first freeze, the growing season in 

east-central Nebraska begins 27 April and ends 6 October. Corn and soybeans are 

typically planted prior to the second week of May and harvested in mid- to late-October 

which leaves only a narrow window, if any, for growing cover crops. In grain-based 

rotations, the best opportunity for cover crop growth is following a winter annual crop 

like wheat, which is harvested in July and provides a large window for establishment and 

growth of a productive cover crop. However, for many agronomic, social, and especially 

economic reasons the widespread adoption of a corn – soybean – winter wheat crop 

rotation throughout the Midwest US seems unlikely. Therefore, our challenge as 

researchers is to work with farmers to create a window for cover crop growth where one 

does not currently exist in corn – soybean cropping systems.   

The most common option for cover crop establishment within the corn – soybean 

rotation is to plant a winter annual cover crop (e.g., rye or hairy vetch) immediately 
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following soybean harvest. Soybeans are typically harvested sooner than corn and 

soybean is a low-residue crop; thus, the soil surface following soybean is far more 

susceptible to erosion (Kessavalou and Walters, 1997). Therefore, planting cover crops 

following soybean in a two-year rotation is often the highest priority for farmers. 

However, planting a cover crop in the fall can become challenging. Soybean harvest 

could be delayed or corn harvest may need to be expedited, and typically activities to get 

crops out of the field will take priority over cover crop planting. Unfortunately, the result 

is often a late-planted cover crop, resulting in poor establishment and minimal growth 

prior to corn planting the following spring. Another possibility for cover crop 

establishment is to broadcast the seed via airplane prior to summer crop harvest. If 

successful, this option certainly creates a longer period for cover crop growth, but may be 

a relatively expensive option potentially resulting in a spatially heterogeneous cover crop 

stand. A similar option attracting recent interest is attaching a broadcast spreader to a 

“high-boy” spray tractor and spreading cover crop seed after leaf drop in soybean but 

before harvest.  

If none of these fall seeding options is viable for a farmer, the only other 

possibility for cover crop establishment is in early spring. This option has promise but is 

often viewed as a less desirable option because of the opportunity to reduce late-fall and 

early-spring soil erosion with fall-planted winter annual cover crops. Despite the short-

comings of a spring-sown cover crop, this is the most practical cover crop option for 

many farmers. For example, farmers with integrated crop – livestock operations will 

graze livestock on crop residue in the winter months, which may damage the cover crop 

stand and reduce the benefits of fall-sown cover crops. Indeed, spring-sown cover crops 
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provide farmers the opportunity to receive at least a portion of the ecological and 

economic benefits of cover crops in rotation while maintaining the flexibility to graze 

livestock on crop residue post-harvest. Regardless of the desired strategy, inclusion of 

cover crops in a corn – soybean cropping system will require management changes and 

potential sacrifices to ensure maximum benefit of the cover crop. For example, traditional 

corn and soybean planting dates may need to be delayed or harvest may need to occur 

earlier to allow sufficient growth of cover crops, which may mean that shorter-season 

corn hybrids and soybean varieties need to be considered. However, this option may 

cause a reduction in corn and soybean yields. In short, diversification of the corn – 

soybean rotation with cover crops is possible, but it will present unique management 

challenges that require further research.  

Benefits of Cover Crop Mixtures 

Traditionally, cover crop use and management have followed the conventional 

single species paradigm. Monoculture systems were developed to facilitate ease of 

mechanical cultural practices including planting, fertilization, weed control, and harvest. 

However, with the exception of planting, farmers do not have to consider these 

management factors when growing a cover crop. Realizing this has prompted many 

farmers to consider using multiple species cover crop mixtures.  

Cover crop species are generally chosen to meet specific farmer goals. Not 

surprisingly, the specific benefits associated with a cover crop vary by species and 

management method. For example, species in the Fabaceae (legume) family are typically 

chosen due to their capacity to utilize atmospheric nitrogen through a mutualistic 

relationship with nitrogen-fixing bacteria. Properly managed legume cover crops can 
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reduce or eliminate the need for synthetic nitrogen additions for the subsequent cash crop 

(Biederbeck et al., 1996; Burket et al., 1997). Another benefit often sought in a cover 

crop species is the capacity for reducing soil compaction. Species with long tap roots, 

typical of cover crops in the Brassicaceae (mustard) family, can often penetrate 

compacted soil layers up to six feet deep (Williams and Weil, 2004). The potential for 

specific cover crop species to suppress weeds is another area of increasing interest, 

especially in organic cropping systems where the use of synthetic herbicides is 

prohibited. While many species offer specific benefits, many of the biological advantages 

associated with a healthy cover crop are not unique to individual species. The potential 

benefits of most cover crops include reduced topsoil erosion, increased nutrient cycling 

and reduced nitrate leaching, improved soil aggregation and water retention, increased 

organic matter content and soil carbon sequestration, and a reduction in the incidence of 

disease and insect pests (Hartwig and Ammon, 2002).  

Given that many cover crop benefits are species- or family-specific, there may be 

an advantage for farmers to grow multiple species in cover crop mixtures. Moreover, 

growing mixtures of cover crops should increase resource-use efficiency of the entire 

community (Tilman et al., 1997). Species with a variety of canopy and root structures, 

along with variable demands for water and nutrients, will ensure that the entire plant 

community maximizes productivity given the available resources. The positive 

relationship between plant community diversity and productivity has been well 

documented in grassland ecosystems (Tilman et al., 2001). However, certain species may 

be extremely competitive or antagonistic toward other species when grown in mixed 

species communities, so cover crop mixtures should not be chosen carelessly. In addition 
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to the specific benefits of individual species in a mixture and the potential for increased 

resource-use efficiency and productivity, a multi-species mixture will drastically increase 

biodiversity within the corn – soybean rotation. The immediate increase in vegetative 

diversity during cover crop growth will likely lead to increased diversity of other species 

in associated trophic levels such as beneficial insects, birds, and microorganisms that may 

use the cover crop community as a source of food, habitat, or refuge (Altieri, 1999). 

While the benefits of biodiversity are not always immediately realized by the farmer, 

most agree that conservation of biodiversity is intrinsically valuable (Ghilarov, 2000).  

Economic Advantages of Cover Crop Mixtures 

There are both immediate and long-term economic incentives for using cover 

crops. In general, the immediate economic advantages of cover crop use include the cost 

savings associated with replacing off-farm inputs such as synthetic nitrogen, fuel, 

herbicides, and labor, as well as any associated yield increases. Cover crop mixtures 

provide further economic advantage to farmers by reducing economic risk. Depending on 

annual weather patterns, certain cover crop species perform better than others in a given 

year and this outcome is somewhat unpredictable. Therefore, a mixture of cover crop 

species may reduce the economic risk of choosing an unsuccessful single cover crop 

species and losing the investment of seed and labor associated with establishment. For 

example, seed of many legume cover crops can be expensive and also more difficult to 

establish compared to other cover crops. Therefore, combining legumes in mixture with 

other broadleaf and grass species could reduce the initial cost of seeding the cover crops 

and also ensure the farmer gains some biological and economic benefit, even if growth of 

the legume is unsuccessful in a given year. In some cases, competition among species 
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may increase the productivity of each individual species compared to growth in 

monoculture. For example, if nitrogen fixation per legume plant can be maximized in a 

multi-species mixture, the economic return per seed in the form of replaced nitrogen cost 

would increase. While not directly related to the biology of cover crops, another 

economic incentive is through USDA Natural Resource Conservation Service (NRCS) 

conservation programs. Several options provide payments to farmers for individual cover 

crop use, and there is currently one provision in the Conservation Stewardship Program 

that provides economic incentive for planting cover crop mixtures (USDA-NRCS, 2012). 

In addition to short-term economic incentives associated with cover crop use, 

there are recognized long-term benefits. The long-term economic advantages are related 

to reductions in soil erosion and improved soil organic matter. Reducing soil erosion 

long-term is in the best interest of the farmer, local communities, and society. It has been 

estimated that soil erosion costs farmers in the US over 27 billion dollars annually. Most 

of this cost is due to the nutrients lost in eroded topsoil, but this estimate also includes the 

cost of lost water and thickness of topsoil (Pimentel et al., 1995). Equally troubling is the 

cost of soil erosion to society, which is estimated at 17 billion dollars per year in the US. 

The off-farm societal impacts of erosion include costs associated with the siltation of 

navigable waterways, sewers, and roadways, and the associated clean-up costs (Pimentel 

et al., 1995). Including cover crop mixtures in the corn – soybean rotation will not 

eliminate the economic burden of soil erosion, but it would certainly be a step in the right 

direction. The second long-term economic advantage of cover crop use may be more 

easily observed by farmers. Cover crop use over time has been shown to increase organic 

matter content (stable carbon) in soils (Lotter et al., 2003). For the farmer, increasing 
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organic matter is generally a sign of improved soil quality and productivity, and has also 

been shown to lead to greater yield stability. Increased organic matter in soils increases 

soil water retention, which improves the likelihood of yield stability in exceptionally dry 

years (Lotter et al., 2003). This is an important economic consequence in a climate and 

society where water for agriculture is increasingly scarce and there is competition from 

other sectors of the economy.  

Conclusions 

When considering cover crop use in the western Corn Belt, there is certainly a 

gradient of environmentally and economically sound options. Adding winter wheat to our 

current crop rotation would provide the largest window for cover crop growth and 

environmental benefits, but the threat of short-term economic risk associated with an 

alternative cash crop will likely limit widespread adoption of this practice. While this 

option may be part of a long-term vision for our agricultural landscape, in the short-term 

researchers and policy makers should be developing evidence and incentives to 

encourage the use of cover crops and cover crop mixtures within the current corn – 

soybean rotation. Indeed, the demand for science-based evidence regarding the 

agronomic and economic benefits of cover crop mixtures was the inspiration for this 

dissertation. Until now, many of the perceived benefits of mixed-species cover crop 

communities were based on theoretical considerations (Tilman et al., 1997). The goal for 

this research project was to take the theoretical principles regarding ecological diversity, 

and integrate them into an intensive crop production system in an effort to boost the 

stability, resiliency, productivity, profitability, and sustainability of the corn – soybean 

cropping system.     
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Chapter 1 

Cover Crop Mixtures for the Western Corn Belt: Opportunities for Increased Productivity 

and Stability 

Abstract 

Achieving agronomic and environmental benefits associated with cover crops 

often depends on reliable establishment of a highly productive cover crop community. 

The objective of this study was to determine if cover crop mixtures can increase 

productivity and stability compared to single species cover crops, and to identify those 

components most active in contributing to or detracting from mixture productivity. A 

rainfed field experiment was conducted near Mead, NE in 2010 and 2011. Eight 

individual cover crop species (in either the Brassicaceae [mustard] or Fabaceae [legume] 

family) and four mixtures of these species (2, 4, 6, and 8 species combinations) were 

broadcast planted and incorporated in late March and sampled in late May. Shoot dry 

weights were recorded for sole crops and individual species within all mixtures. Sole 

crops in the mustard family were twice as productive (2428 kg ha
-1

) as sole crops in the 

legume family (1216 kg ha
-1

), averaged across two years. The land equivalent ratios 

(LERs) for all mixtures in 2011 were greater than 1.0, indicating mixtures were more 

productive than the individual components grown as sole crops. Improved performance in 

mixture may be related to the ecological resilience of mixed species communities in 

response to extreme weather events, such as hail. Partial LERs of species in the mustard 

family were consistently greater than those in the legume family, indicating that mustards 

dominated the mixtures. Results provide the basis for yield-stability rankings of spring-

sown cover crop species and mixtures for the western Corn Belt. 
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Introduction 

Cover crops have been shown to provide a variety of benefits within 

agroecosystems. These include reduced soil erosion, increased biological diversity (e.g., 

microbes, insects, and birds), increased nutrient cycling and biological nitrogen fixation, 

increased soil organic matter, improved weed control, and increased crop yields 

(Pimentel et al., 1992; Pimentel et al., 1995; Sainju and Singh, 1997; Williams II et al., 

1998; Altieri, 1999; Reddy et al., 2003; Teasdale et al., 2007). While cover crops may 

provide a number of agronomic and environmental benefits, achieving these benefits 

(e.g., weed suppression) often depends on establishing a highly productive cover crop 

community (Teasdale et al., 1991). Planting multi-species cover crop mixtures may be a 

viable solution for increasing the ecological stability and resilience of cover crop 

communities, which can contribute to higher and more consistent productivity.  

 Production benefits of multi-species plant communities include the potential for 

increased resource-use efficiency and crop yields (Francis, 1986). Intercropping systems 

typically include the production of two crop species (e.g., one cereal grain and one 

legume species) within a given field in the same season, most commonly oriented in 

alternating rows or strips of rows (e.g., Chen et al., 2004). While there are logistical 

challenges related to planting and harvesting intercrop systems, the potential for 

increased yield of the entire system makes these potentially attractive cropping systems 

when labor and appropriate equipment are available. Indeed, there are many examples of 

intercropping systems that have demonstrated greater grain or forage yield compared to 

monoculture systems on an equivalent land area basis (Ikeorgu et al., 1989; Chen et al., 

2004; Agegnehu et al., 2006; Ghosh et al., 2006). There are several potential mechanisms 
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contributing to the increased yield observed in intercropping systems, including increased 

resource-use efficiency (light and soil resources) and increased ecological stability and 

resilience (Reddy and Willey, 1981; Tilman, 1996; Trenbath, 1999; Szumigalski and Van 

Acker, 2008). While two-species intercropping systems are most common, there are 

potential benefits associated with further increases in plant community diversity 

including increased productivity, community stability, and nutrient-use efficiency 

(Tilman, 1996; Tilman et al., 1997; Tilman et al., 2001).  

 Multi-species cover cropping systems have been tested in previous studies, but 

most research was not designed to quantify the benefits of increasing cover crop 

diversity. Typically, cover crop mixture studies compare monoculture species with 

biculture combinations of those species (Akemo et al., 2000; Creamer and Baldwin, 

2000; Odhiambo and Bomke, 2001; Kuo and Jellum, 2002). While there has been some 

focus on more diverse mixtures of cover crops (Creamer et al., 1997; Teasdale and 

Abdul-Baki, 1998; Madden et al., 2004), characterization of the benefits associated with 

increasing diversity are often limited to simple dry weight comparisons.  

Many studies have demonstrated increased productivity of cover crop mixtures 

relative to monoculture cover crops, but the differences were likely due in part to higher 

seeding rates in the mixtures (Teasdale and Abdul-Baki, 1998; Odhiambo and Bomke, 

2001; Kuo and Jellum, 2002). To accurately evaluate benefits of mixtures and the 

contributions of individual species to the mixtures, seeding rates of the mixtures should 

be proportional to the monocultures via a substitutive approach to avoid the confounding 

effects of variable seeding densities (e.g., seeding rate for a component of the mixture 

should be equal to its monoculture seeding rate divided by the number of species in the 
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mixture; Joliffe, 2000). It is possible that some other optimum seeding density or mixture 

proportion exists for cover crop mixtures, but addressing this question requires an 

additive seeding approach which would limit the utility of intercropping indices like the 

land equivalent ratio (Joliffe, 2000). Moreover, a fully additive seeding approach to 

mixture seeding rates (combining 1x rates of each species) would be impractical and 

cost-prohibitive for farmers.  

Many cover crop mixture studies fail to include monoculture control treatments 

necessary to evaluate the potential benefits or antagonisms of the different mixtures 

(Creamer et al., 1997; Madden et al., 2004). Similarly, many of these studies do not 

quantify the productivity of the mixtures, or the individual components of the mixture, 

relative to sole cropped cover crops on an equivalent land area basis as calculated in 

traditional intercropping studies (Teasdale and Abdul-Baki, 1998; Creamer and Baldwin, 

2000; Odhiambo and Bomke, 2001; Kuo and Jellum, 2002). Instead, the dry weights of 

each mixture and sole crop are typically reported; such methods provide limited 

information about the relative contribution or aggressiveness of each species in a cover 

crop mixture.  

 The aim of this study was to quantify the productivity and stability of spring-sown 

cover crop mixtures relative to sole cropped cover crops in the western Corn Belt, and to 

identify those species contributing to or detracting most from mixture productivity. With 

respect to this objective, we hypothesized that increasing cover crop diversity will 

increase cover crop productivity and stability. 
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Materials and Methods 

To accomplish this objective, a rainfed field experiment was conducted at the 

University of Nebraska – Lincoln Agricultural Research and Development Center near 

Mead, NE in 2010 and 2011. Dominant soil type at the site is a Sharpsburg silty clay 

loam (fine, smectitic, mesic typic Argiudoll; pH = 6.3, organic matter content = 3.6%) 

with 0 to 5% slopes. The experimental layout was a randomized complete block design 

with four replications and twelve cover crop treatments. Experimental units were 3 x 3 m 

and randomized to treatment within each replication. Cover crop treatments included 

eight individual cover crop species and four mixtures of these species (Table 1.1). Cover 

crops used belong to either the Fabaceae (legume) or Brassicaceae (mustard) plant 

families. Mixtures were a 1:1 ratio of legume and mustard species where, for example, 

the eight species mixture included four legume species and four mustard species. The 

four cover crop mixtures ranged from two to eight species with an objective to quantify 

the effects of increasing plant diversity. The seeding rates for individual species in a 

mixture were determined by dividing the recommended seeding rate for that species by 

the number of species in mixture (Table 1.1), previously described as the substitutive 

approach. Recommended seeding rates for individual species were obtained from a 

combination of USDA Natural Resource Conservation Service, Cooperative Extension, 

cover crop seed distributor, and farmer recommendations. If recommendations among 

sources differed, values were averaged to determine the most appropriate seeding rate. 

Most recommendations were based on an assumption of drilled seeding methods. 

However, cover crops in this study were broadcast seeded; therefore, drilled seeding 
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recommendations were increased by approximately 20% to compensate for reduced plant 

stands when using broadcast seeding methods (Clark et al., 1978).  

Cover crops were broadcast planted by hand and surface incorporated with a John 

Deere “cultipacker” (Deere and Company, Moline, IL, USA) on March 30, 2010 and 

March 21, 2011. Plants received no supplemental irrigation or nutrition throughout the 

growing period, but large weeds were removed by hand from experimental units on a bi-

weekly basis to limit competitive effects from non-cover crop species. Plants were 

harvested on May 25, 2010 and May 31, 2011 from two randomly placed quadrats (0.19 

m
2
) in each experimental unit. This harvest time was intended to simulate the termination 

period for a cover crop grown prior to summer annual crop species (e.g., Glycine max 

[soybean], Sorghum bicolor [sorghum], Helianthus annuus [sunflower], or possibly Zea 

mays [maize]). Shortly following cover crop harvest and sampling, shoot dry weights 

were determined for sole crops and individual species within all mixtures by drying 

samples at 54
o
 C to constant mass and weighing each sample. 

The land equivalent ratio (LER) was used to compare the productivity of sole 

cropped cover crops to those cover crops planted in mixture. The LER indicates the 

relative amount of land required when growing sole crops to achieve the productivity 

observed in the mixture (Willey and Osiru, 1972). LER is widely considered a robust and 

useful indicator of mixture productivity relative to sole crops (Bedoussac and Justes, 

2011). LER is typically utilized to evaluate marketable yield in intercropping systems, 

but to our knowledge has not been previously applied in the evaluation of diverse cover 

crop mixtures. Total LER is calculated as: 

LER = LERi + LERj …. + LERn 
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where LERi is the partial LER of species i, LERj is the partial LER of species j, and so 

forth for n number of species. Partial LER is calculated as:  

LERi = YMIi / YSCi 

where YMIi is the yield of species i planted in mixture and YSCi  is the yield of species i 

planted as a sole crop. A total LER value greater than 1.0 indicates the mixture was more 

productive than the component sole crops, whereas a value less than 1.0 suggests sole 

crops were more productive (e.g., antagonistic effects).  For example, a total LER value 

of 1.5 suggests that 15 hectares of sole cropped cover crops (the components of the 

mixture) would need to be planted to achieve an equivalent level of productivity (yield) 

achievable on 10 hectares when all species are grown together in a mixture. The partial 

LER values for individual species in a mixture were also used to compare the relative 

contribution or competitive ability of each species (Bedoussac and Justes, 2011). 

To accomplish all objectives, shoot dry weight data, LER, and partial LER values 

were analyzed with ANOVA implemented using the MIXED procedure in SAS (SAS 

Institute, Inc., NC, USA). Fixed effects in the model included cover crop treatment, year, 

and the interaction of treatment*year, while the random effect was the interaction of 

block*year. Least-squares means and standard errors were reported for all cover species 

and mixtures for statistical comparisons. Ecological stability of cover crop communities 

was compared using the coefficient of variation (C.V.) for each cover crop treatment 

pooled across replications (n=4) and years (n=2). A lower coefficient of variation implies 

less variation about the mean and greater ecological stability (Tilman et al., 1998). Lastly, 

mean contrasts were used to compare the productivity (shoot dry weights) and stability 

(C.V.’s) of mixtures versus sole crops (legumes and/or mustards). 
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Results and Discussion 

Productivity and Stability of Sole Crops and Mixtures 

Shoot dry weight of sole cropped cover crop species in 2010 ranged from 397 kg 

ha
-1 

± 252 kg ha
-1

 (mean ± one standard error) for Lathyrus sativus (chickling vetch) to 

3175 kg ha
-1

 ± 252 kg ha
-1

 for Sinapus alba (Idagold mustard; Figure 1.1). Shoot dry 

weight of mustard cover crop species (2757 kg ha
-1 

± 126 kg ha
-1

) was consistently 

greater than legumes (1127 kg ha
-1 

± 126 kg ha
-1

) in 2010. However, a contrast of 

mixtures vs. mustard sole crops indicated that shoot dry weight of mustard sole crops was 

not different from the average shoot dry weight of mixtures (2709 kg ha
-1 

± 126 kg ha
-1

). 

Shoot dry weight of sole cropped cover crop species in 2011 ranged from 1076 kg ha
-1 

± 

252 kg ha
-1

 for chickling vetch to 2556 kg ha
-1

 ± 252 kg ha
-1

 for Raphanus sativus 

(oilseed radish; Figure 1.1). Consistent with 2010, shoot dry weight of mustard cover 

crop species (2099 kg ha
-1 

± 126 kg ha
-1

) was consistently greater than legumes (1305 kg 

ha
-1 

± 126 kg ha
-1

) but not different from the average shoot dry weight of the mixtures 

(2062 kg ha
-1 

± 126 kg ha
-1

). Within the cover crop mixtures, productivity did not 

increase with diversity as there was no difference in shoot dry weight among any of the 

four possible mixtures in 2010 or 2011 (Figure 1.1). Overall, the productivity of all cover 

crops in this study was far greater than the previously reported dry matter yields of 

spring-sown cover crops in eastern Nebraska (Power and Koerner, 1994). The greater 

productivity observed in this study may be related to the earlier cover crop planting date 

used in this study (late-March) compared to the delayed plantings (late-April and early-

May) tested by Power and Koerner (1994).    
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The coefficient of variation, accounting for spatial (replication) and temporal 

(year) variation differed among individual cover crop treatments. Among legume species, 

C.V. values ranged from 16.9 to 55.2% (mean = 33.5%) for Trifolium incarnatum 

(crimson clover) and chickling vetch, respectively. Among mustard species, values 

ranged from 20.6 to 46.6% (mean = 31.6%) for oilseed radish and Idagold mustard, 

respectively (Figure 1.2). The variability of Idagold mustard was related to its 

susceptibility to hail damage. While Idagold mustard was the most productive cover crop 

in 2010, a May 12, 2011 hail storm limited its productivity in 2011. The hail storm was 

damaging to all cover crop treatments, but Idagold mustard seemed to recover much more 

slowly than the other species and mixtures. The coefficient of variation for cover crop 

mixtures only ranged from 19.8 to 30.7% (mean = 25.9%), but a contrast of mixtures vs. 

monocultures indicated no difference (p = 0.35) in the stability of the two cover cropping 

strategies. Similarly, the coefficient of variation was relatively uninfluenced by 

increasing diversity within the mixtures (Figure 1.2). It is possible that the number of 

replications (n=4) and years (n=2) was insufficient to detect differences in the stability of 

different monoculture and mixture cover crop strategies. A more robust measure of 

stability would require data from a long-term or multi-site experiment. Nonetheless, 

knowledge of the spatial and temporal variability (though limited) may be useful in 

selecting an appropriate cover crop species or mixture.  

Land Equivalent Ratios (LER) for Mixtures and Mixture Components 

 The land equivalent ratio (LER) was not affected by cover crop mixture or the 

interaction of mixture by year. However, LER was influenced by year and was greater in 

2011 (LER = 1.38 ± 0.09) than in 2010 (LER = 1.05 ± 0.09) for all mixtures (Figure 1.3). 
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All mixtures across both years were equal to or greater than 1.0, while all mixtures in 

2011 were greater than 1.0. A value greater than 1.0 suggests the mixture resulted in 

more efficient use of land than the alternative of growing the individual mixture 

components as sole crops. The primary difference between 2010 and 2011 was the May 

12, 2011 hail storm that severely damaged all cover crop treatments. Cover crops were 

not harvested until May 31, 2011 (approximately one week later than the harvest date in 

2010), in an effort to allow the cover crops to recover and regrow after the substantial 

hail damage. While the objective of this study was not to measure the ecological 

resilience of cover crop mixtures, the 2011 hail storm did provide anecdotal information 

about the ability of these species and mixtures to recover after extreme perturbation. 

Given our observations, we hypothesize that the increased LER in 2011 from 2010 is 

directly related to the potential for increased resilience in mixtures relative to sole crops. 

Indeed, the ability to quickly recover from disturbance (resiliency) can contribute to 

productivity and is often a characteristic of diverse plant communities (Lavorel, 1999; 

Hooper et al., 2005). 

The over-yielding potential of plant species grown in mixture for agricultural use 

is consistent with many previous studies (e.g., Ikeorgu et al., 1989; Chen et al., 2004; 

Agegnehu et al., 2006; Ghosh et al., 2006). Undoubtedly, over-yielding characteristics 

have been observed for decades in cover crop mixtures, but the documentation of this 

phenomenon requires appropriate data collection and indices like the LER. To our 

knowledge, this is the first reported evidence of over-yielding properties in a mixture of 

plant species specifically designed for cover crop use.  Contrary to our expectations, LER 

did not increase with diversity of the mixture (from 2 to 8 species). Increasing 
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community diversity has been shown to increase resource-use efficiency, primary 

productivity (Tilman et al., 1997; Tilman et al., 2001), and presumably the efficiency of 

land use (LER), but this was not observed here.  

 Partial land equivalent ratios were consistently greater for mustards in mixture 

compared to legumes (Table 1.2). Idagold mustard was the most competitive cover crop 

species in all mixtures as indicated by the highest (or among the highest) partial LER 

pooled across both years (0.98, 0.43, 0.48, and 0.33 in the 2CC, 4CC, 6CC, and 8CC 

mixtures, respectively). In contrast, all legume species were least competitive in all 

mixtures pooled across both years (0.33, 0.14, 0.10, and 0.07 in the 2CC, 4CC, 6CC, and 

8CC mixtures, respectively; Table 1.2). If all species were contributing equally to the 

productivity of a mixture, we would expect the partial LER of a given species to be 0.5, 

0.25, 0.167, and 0.125 in the 2, 4, 6, and 8 species mixtures, respectively. A partial LER 

greater than these expected values for species i within a given mixture suggests species i 

was benefiting from the increased interspecific and reduced intraspecific competitive 

environment of the multi-species mixture. Conversely, a partial LER less than these 

expected values would suggest that species i is inhibited more by the interspecific 

competitive interactions in the mixture. Partial LER values for the mustards were always 

greater than or equal to these expected values, suggesting all mustard species used in this 

experiment benefited from the mustard-legume mixture combinations. In contrast, the 

legumes were always less than or equal to these expected values suggesting the legume 

species used in this experiment tended to be negatively influenced by the competitive 

interactions in the mustard-legume mixture combinations. 
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 While these results suggest mustards benefited most from the mixture 

combinations, it is important to note that total LER was always greater than or equal to 

1.0. Despite the negative competitive effects on most legume species, the substantial gain 

in mustard productivity in mixture (relative to monoculture) led consistently to LER 

values greater than or equal to 1.0. These results are congruent with the results of 

Szumigalski and Van Acker (2008) who found that canola (a mustard species) was quite 

competitive and tended to over-yield in mixture with field pea and wheat. The over-

yielding effect of the mustards when grown in mixture with legumes may have at least 

two possible explanations. First, the canopy architecture of mustards compared to 

legumes may give the mustards a competitive advantage in these mixtures (Tremmel and 

Bazzaz, 1993). The shoot and canopy architecture of the mustard species used in this 

experiment is generally erect with large leaves, whereas the legume species are low 

growing (vine, rosette, or prostrate growth habit) with relatively small leaves. The 

morphology of mustard species creates a very competitive environment for light 

resources (Szumigalski and Van Acker, 2008); thus, when the mustard densities were 

reduced and replaced with a less light competitive species the mustards were released 

from this strong intraspecific competitive interaction. A second explanation may be that 

the monoculture seeding densities for the mustard species were too high, and reducing the 

proportional seeding densities in the mixtures created an over-yielding environment. 

Many plant species exhibit a quadratic yield response to increasing plant density; 

therefore, it is possible the seeding densities in this study were beyond optimum (Cox, 

1996). However, the recommended seeding rates for the mustard species were consistent 
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across many information resources, and it is reasonable to assume that the densities used 

in this study were sufficiently close to optimum.   

Cover Crop Choice 

 When making decisions about which cover crop or mixture of cover crops to 

plant, one must consider both the potential productivity and ecological stability of all 

available options. To aid in a simple and effective cover crop selection process, rankings 

of each cover crop species and mixture were determined for shoot yield in 2010 and 

2011, yield stability, and for a combined measure of yield and stability with varying 

weights distributed between the two variables (1:1, 2:1, and 4:1 for yield:stability). This 

method and similar ranking methods have been used in the selection of high yielding and 

stable maize hybrids (Kang, 1988; Kang and Pham, 1991). The ranking system proposed 

by Kang and Pham (1991), which combines yield and stability ranks, provides an 

example of how the “best” or highest ranked option can vary depending on the relative 

importance placed on yield and stability. Consistent with the results of Kang and Pham 

(1991), the relative ranking of cover crop options in this experiment varied depending on 

the importance (weight) placed on yield or stability (Table 1.3). Kang and Pham (1991) 

found that placing more than a 2x weight on yield (relative to stability) results in a 

ranking that tends to reflect solely the yield ranks. In this study, the 4:1 yield-stability 

rankings were only slightly different from the yield rankings; however, the 1:1 and 2:1 

yield-stability rankings were substantially different from both the 4:1 yield-stability 

rankings and yield rankings. Therefore, in order to choose a cover crop option that is 

most likely to demonstrate stability over time, in addition to high productivity, one 
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should choose a combined yield-stability ranking with a 1:1 or 2:1 relative weight 

assigned to yield and stability ranks, respectively (Kang, 1988). 

When considering productivity and stability, regardless of the relative weight of 

each, oilseed radish seems to be the most promising cover crop option observed in this 

study, followed by the six-species mixture (6CC; Table 1.3). In contrast, chickling vetch 

and Vicia villosa (hairy vetch) grown alone seem to be the two least promising cover crop 

options when considering both yield and stability (Table 1.3). These rather simple 

categorical rankings do not account for the over-yielding characteristics of cover crop 

mixtures identified by the LER or the potential for biological nitrogen fixation of 

legumes. However, depending on the management objective of the farmer, these rankings 

could be expanded to include additional factors.  Thus, the rankings presented here 

should instead be used as a starting point for recommendations. It is also interesting to 

note that cover crop mixtures were never ranked higher than second, but never lower than 

eighth (of twelve). While mixtures may not provide the greatest potential for maximum 

productivity in a given year, they do seem to buffer against unacceptably low 

productivity.  

 

Conclusions 

The mustard species (Idagold mustard, Brassica juncea [Pacific Gold mustard], 

oilseed radish, and Brassica napus [dwarf essex rape]) tested here proved to be fast 

growing, competitive, and productive cover crops well suited for early spring growth in 

the western Corn Belt. Conversely, the legume species tested (hairy vetch, Pisum sativum 

[field pea], crimson clover, and chickling vetch) were far less competitive and almost half 



24 

 

as productive as the mustards. While the legume species were generally less impressive, 

the potential for biological nitrogen fixation and utility as a green manure may 

compensate for the limited productivity. Though generally lower, yield variability of 

mixtures was not significantly different from monocultures. Instead, the primary benefit 

of cover crop mixtures seemed to be the potential for over-yielding (LER values greater 

than 1.0) that was observed in one year of this research. 

This study provides specific recommendations about productive and stable spring-

sown cover crop options for the western Corn Belt, but also offers broad evidence and 

insight regarding the ecological benefits of cover crop mixtures that should be applicable 

to a variety of cover crop species, mixture combinations, planting dates, seasonal 

weather, and agroecoregions. Ultimately, cover crop species or mixture choice will 

depend on the specific management objective and the available threshold for risk. These 

results provide an example of the information necessary for making these decisions as 

part of a production package.  
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Tables and Figures 

Table 1.1. Common name, scientific name, and seeding rates for eight cover crop species planted as sole crops (SC) or mixtures 

(2CC, 4CC, 6CC, and 8CC) in 2010 and 2011 near Mead, NE. 

 

    Cover Crop Seeding Rate 

Common Name Scientific Name SC 2CC 4CC 6CC 8CC 

  

________
 kg ha

-1 ________
 

Hairy Vetch Vicia villosa  44.8 22.4 11.2 7.5 5.6 

Idagold Mustard  Sinapus alba  13.4 6.7 3.4 2.2 1.7 

Field Pea  Pisum sativum  112.0 

 

28.0 18.7 14.0 

Pacific Gold Mustard  Brassica juncea  8.8 

 

2.2 1.7 1.1 

Crimson Clover  Trifolium incarnatum  28.2 

  

4.7 3.5 

Oilseed Radish  Raphanus sativus  16.8 

  

2.8 2.1 

Chickling Vetch  Lathyrus sativus  67.2 

   

8.4 

Dwarf Essex Rape  Brassica napus  13.6       1.7 

 

 

2
8
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Table 1.2. Partial land equivalent ratios (LERi) for eight cover crop species in the four possible mixtures (2CC, 4CC, 6CC, and 8CC) 

pooled across 2010 and 2011. Numbers in parentheses indicate the standard error of the least squares mean. Different letters indicate 

differences among means within a mixture.    

 

  Cover Crop Mixture 

Cover Crop Species 2CC 4CC 6CC 8CC 

Hairy Vetch 0.33 (0.14) b 0.15 (0.06) b 0.08 (0.05) d 0.07 (0.03) c 

Idagold Mustard 0.98 (0.14) a 0.43 (0.06) a 0.48 (0.05) a 0.33 (0.03) a 

Field Pea 

 

0.13 (0.06) b 0.15 (0.05) cd 0.10 (0.03) c 

Pacific Gold Mustard 

 

0.39 (0.06) a 0.33 (0.05) b 0.19 (0.03) b 

Crimson Clover 

  

0.07 (0.05) d 0.04 (0.03) c 

Oilseed Radish 

  

0.17 (0.05) c 0.21 (0.03) b 

Chickling Vetch 

   

0.06 (0.03) c 

Dwarf Essex Rape       0.19 (0.03) b 

Total LER 1.31 (0.11) 1.10 (0.11) 1.27 (0.11) 1.19 (0.11) 

 

 

2
9
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Table 1.3. Rankings for each cover crop option considering shoot yield (2010 and 2011), yield stability (C.V.), and a combination of 

yield and stability with varying weights (1:1, 2:1, and 4:1) attributed to each.  

  Shoot Yield   C.V.     Proportion of  Yield to C.V. 

  2010 2011       1:1 2:1 4:1 

Legumes 

        Crimson Clover 9 8 

 

1 

 

3 7 8 

Field Pea 11 11 

 

5 

 

9 10 11 

Hairy Vetch 10 9 

 

10 

 

11 11 10 

Chickling Vetch 12 12 

 

12 

 

12 12 12 

Mustards 

        Oilseed Radish 2 1 

 

3 

 

1 1 1 

Dwarf Essex Rape 8 2 

 

6 

 

5 3 5 

Pacific Gold Mustard 4 4 

 

9 

 

7 6 4 

Idagold Mustard 1 10 

 

11 

 

10 9 7 

Mixtures 

        2CC 6 6 

 

4 

 

4 3 6 

4CC 7 7 

 

7 

 

8 8 8 

6CC 3 4 

 

2 

 

2 2 2 

8CC 5 3   8   6 3 3 

 

3
0
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Figure 1.1. Shoot dry weights (kg ha
-1

) of eight cover crop species and four possible 

mixtures of the eight species in 2010 and 2011 (see Table 1.1 for species and mixture 

components and seeding rates). Pooled means of monoculture treatments vs. mixture 

treatments is presented for each year. Error bars represent the standard error of the mean.
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Figure 1.2. Coefficient of variation (C.V. %) for each cover crop monoculture and 

mixture combination (2, 4, 6, and 8 species) pooled across replications (n=4) and years 

(n=2). The mean and standard error of C.V.’s pooled within monoculture treatments 

(n=8) and within mixture treatments (n=4) is also presented. 
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Figure 1.3. Total land equivalent ratios (LER) for the four cover crop mixtures 

(combinations of 2, 4, 6, and 8 species) in 2010 and 2011. Error bars represent the 

standard error of the mean. A LER value greater than 1.0 suggests a given mixture is 

more productive than its component sole crops.  
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Chapter 2 

Weed Biomass, Density, and Community Response to Cover Crop Mixtures and 

Mechanical Termination Method 

 

Abstract 

Cover crops can provide many benefits in agroecosystems, including the 

opportunity for improved weed control. However, the weed suppressive potential of 

cover crops may depend on the species (or mixture of species) chosen, and the method of 

cover crop termination and residue management. The objective of this study was to 

determine the effects of increasing cover crop species diversity and mechanical 

termination method on weed biomass, density, and community composition, and relative 

crop yield in an organic cropping system. A field experiment was conducted from 2009 

through 2011 near Mead, NE where spring-sown mixtures of 2, 4, 6, and 8 cover crop 

species were included in a sunflower – soybean – corn crop rotation. Cover crops were 

planted in late-March, terminated in late-May using a field disk or sweep plow 

undercutter and main crops were planted within one week of termination. Terminating 

cover crops with the undercutter consistently reduced early-season grass weed biomass 

and late-season broadleaf weed cover, whereas termination with the field disk typically 

stimulated grass weed biomass and total weed cover. The effects of cover crop mixture 

were not evident in 2009, but the combination of the undercutter and the most diverse 

mixture reduced early-season weed biomass by 48% relative to the no cover crop control 

in 2010. Cover crops provided less weed control in 2011, where only the combination of 

the undercutter and the two-species mixture reduced weed biomass (by 31%) relative to 

the control. Weed community composition and species diversity were not influenced by 
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cover crop mixture. However, termination with the undercutter reduced abundance of 

later-emerging summer annual weeds (velvetleaf and redroot pigweed) and promoted the 

presence of common lambsquarters – an earlier-emerging summer annual weed. 

Termination with the undercutter resulted in relative yield increases of 16.6 and 22.7% in 

corn and soybean, respectively. In contrast, termination with the field disk resulted in a 

relative yield reduction of 13.6% in soybean. The strong influence of termination method 

highlights the importance of appropriate cover crop residue management in maximizing 

potential agronomic benefits associated with cover crops. 
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Introduction 

Cover crops can provide many benefits to agroecosystems, and there is growing 

interest in cover crop use among a diverse range of agricultural stakeholders. The 

potential for weed suppression is one benefit of cover crops of particular interest to 

farmers in the Corn – Soybean Belt of the USA (Corn and Soybean Digest, 2010). Cover 

crops have been shown to suppress weeds through physical interference (Teasdale et al., 

1991), light interception (Teasdale et al., 2007), buffered soil temperatures (Teasdale and 

Mohler, 1993), increased habitat for weed seed predators (Gallandt et al., 2005), delayed 

release of plant available nitrogen (Dyck et al., 1995; Moonen and Barberi, 2004), and 

release of allelopathic phytotoxins (Blackshaw et al., 2001; Sarrantonio and Gallandt, 

2003). The capacity for cover crops as a long-term weed management tool will depend on 

a combination of these factors, but the mechanisms of physical interference and 

allelopathy are often viewed as near-term weed management solutions.  

Regardless of the mechanism, the success of cover crops as a weed management 

tool will depend on the high-level production of biomass and resulting soil coverage 

(Teasdale et al., 2007). Relative to light interception, it may be necessary to achieve 97% 

soil coverage with cover crop residue to reduce weed density by 75% (Teasdale et al., 

1991). However, many cover crops are not grown to full maturity, so achieving 

maximum biomass and soil coverage is difficult. Therefore, it is necessary to choose 

cover crop species that provide additional mechanisms of weed control through 

allelopathic activity or effects on germination cues (Teasdale et al., 2007). When cover 

crop residue is decomposed in the soil, phytotoxins may be released that can inhibit the 

emergence and growth of many weed species (Blackshaw et al., 2001; Dabney et al., 
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1996; Davis and Liebman, 2003; Sarrantonio and Gallandt, 2003). There are many cover 

crop species with demonstrated phytotoxicity such as rye (Secale cereale), crimson 

clover (Trifolium incarnatum), hairy vetch (Vicia villosa), and members of the 

Brassicaceae family (Putnam and Barnes, 1986; White et al., 1989; Norsworthy et al., 

2007).  

All Brassicaceae spp. contain glucosinolates (Rosa et al., 1997), which are 

hydrolyzed upon decomposition releasing biologically active compounds, such as 

isothiocyanates, that inhibit weed seed germination (Petersen et al., 2001; Teasdale and 

Taylorson, 1986, Norsworthy et al., 2007). The potential of glucosinolates to suppress 

weed emergence and growth has been widely demonstrated in the greenhouse; thus, 

Brassicaceae spp. are increasingly popular cover crops (Bialy et al., 1990; Boydston and 

Hang, 1995; Al-Khatib et al., 1997; Eberlein et al., 1998; Krishnan et al., 1998; Petersen 

et al., 2001; Norsworthy, 2003). Phytotoxin composition differs among and within 

species and total production may depend on a variety of biotic and abiotic stresses (Ju et 

al., 1980; Louda and Rodman, 1983; Branca et al., 2002). Moreover, the specific 

allelopathic effects of individual phytotoxic compounds may be weed species specific 

(Norsworthy et al., 2007). Therefore, a diverse mixture of allelopathic cover crop species 

may be effective in targeting a broad range of weed species. Moreover, mixed species 

communities may help to ensure stable, resilient, and productive cover crop yields that 

will contribute to improved soil coverage and physical mechanisms of weed suppression 

(Tilman et al., 2001; Teasdale et al., 2007; Wortman et al., 2012). 

Cover crop choice is important, but appropriate cover crop termination method 

and residue management may be the most critical factors in successfully using cover 
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crops for weed suppression. Cover crops can be terminated climatically (e.g., winterkill), 

chemically, or through various mechanical measures (e.g., plowing, disking, mowing, 

roller-crimping, or undercutting). The most appropriate termination method will depend 

on the farm management objective. When managing for improved weed control, previous 

studies have shown that termination methods resulting in maximum surface residue and 

minimal soil disturbance have the greatest potential to inhibit weed germination and 

growth (Teasdale et al., 1991; Teasdale et al., 2007). To this end, a sweep plow 

undercutter may have great potential, especially in organic cropping systems where 

chemical termination is prohibited. Creamer et al. (1995) demonstrated that cover crop 

termination with a sweep plow undercutter created a thick and uniform cover crop mulch 

and subsequent weed suppression was greater than when cover crops were terminated via 

mowing (which finely shredded the cover crop). While other mechanical termination 

methods such as the roller-crimper have shown great promise for weed control (Davis, 

2010; Mischler et al., 2010), the sweep plow undercutter may be more effective in killing 

cover crops at less mature growth stages (Creamer et al., 1995; Mirsky et al., 2009). 

Moreover, the sweep plow undercutter is a traditional tillage implement in the US Great 

Plains that may be more easily accessible compared to newer implements such as the 

roller-crimper not yet widely distributed. 

A three-year field experiment was conducted to determine the capacity of cover 

crop mixtures to contribute to weed management in organic cropping systems. More 

specifically, the objectives of this study were to (1) quantify the weed suppressive 

potential of four cover crop mixtures of different levels of species diversity and two cover 

crop termination methods; (2) determine the effects of cover crop mixture and 
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termination method on weed community composition and species diversity; and (3) 

quantify the effects of cover crop mixture and termination method on crop yields relative 

to a traditional organic cropping system with no cover crops. With respect to these 

objectives, we hypothesized that increasing cover crop mixture diversity coupled with 

termination via the undercutter would suppress a broad range of weed species leading to 

distinct shifts in weed community composition and increased crop yield.  

 

Materials and Methods 

Experimental Site and Treatment Design 

A field experiment was conducted in 2009, 2010 and 2011 at the University of 

Nebraska-Lincoln Agricultural Research and Development Center (ARDC) near Mead, 

Nebraska. Dominant soil type at the site is a Sharpsburg silty clay loam (fine, smectitic, 

mesic typic Argiudoll) with 0 to 5% slopes. The experimental 2.8 ha field is certified for 

organic production (OCIA International, Lincoln, NE), and is managed without irrigation. 

This field was in organic alfalfa hay production for the five seasons prior to 2009. In the 

fall of 2008 the experimental area was amended with 50 Mg ha
-1

 of liquid beef feedlot 

manure that was incorporated via field disk. On March 15, 2009, the entire field 

(excluding a weed-free control treatment) was seeded with 8.1 kg ha
-1

 of velvetleaf 

(Abutilon theophrasti; ABUTH) seed, 2.6 kg ha
-1

 of common lambsquarters 

(Chenopodium album; CHEAL) seed, 1.2 kg ha
-1

 of redroot pigweed (Amaranthus 

retroflexus; AMARE) seed, and 3.7 kg ha
-1

 of green foxtail (Setaria viridis; SETVI) seed 

to establish a common weed seedbank throughout the field.  
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The experiment was designed as a split-plot randomized complete block design 

within 4 replications of a 3-year crop rotation. The rotation sequence consisted of 

confectionery sunflower (Helianthus annuus L. ‘Seeds 2000 Jaguar’) – soybean (Glycine 

max L. Merr. ‘Blue River Hybrids 2A71’) – corn (Zea mays L. var. ‘Blue River Hybrids 

57H36’). Within each crop species, whole-plots (9.1 x 21.3 m; 12 crop rows spaced 0.76 

m apart) were defined by cover crop mixture, while split-plots (4.6 x 21.3 m; 6 crop rows 

spaced 0.76 m apart) were defined by cover crop termination method. Each “crop x cover 

crop mixture x termination method” treatment combination was replicated within each 

block so that each phase of the 3-year crop sequence was present each year within each 

block. There were six whole-plot cover crop treatments: 1) two-species cover crop 

mixture (2CC), 2) four-species cover crop mixture (4CC), 3) six-species cover crop 

mixture (6CC), 4) eight-species cover crop mixture (8CC), 5) weedy but cover crop-free 

(prior to main crop planting) control (WD), and 6) weed-free and cover crop-free (prior 

to main crop planting) control (NC). The NC whole-plots were field disked and hand-

hoed twice prior to main crop planting, while the WD whole-plots were left unmanaged 

until cover crop termination. Details on the individual species and seeding rates included 

in each cover crop treatment whole-plot are included in Table 2.1.  

Split-plot cover crop termination methods included either disking or undercutting. 

Termination method was randomized within the first replication (southernmost) and 

duplicated in the remaining three replications (north of the first replication) to facilitate 

adequate speed for effective tillage operations driving north-south through the field. 

Disking was conducted with a 4.6 m wide Sunflower 3300 (Sunflower Mfg., Beloit, KS, 

USA) disk to an approximate depth of 15 cm. Undercutting was conducted with either a 
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Buffalo 6000 (Buffalo Equipment, Columbus, NE, USA) cultivator (modified for 

undercutting) with seven overlapping 0.75 m wide sweep blades (2009) or a Miller Flex-

Blade sweep plow undercutter (2010 and 2011) with three overlapping 1.5 m sweep 

blades. The undercutter sweeps are designed to cut a level plane through the soil at an 

approximate depth of 10 cm, severing plant roots and minimizing soil inversion, resulting 

in a layer of intact surface residue. Details on the design of the undercutter can be found 

in Creamer et al. (1995).   

Cover crop mixtures were planted via hand-crank broadcast seeding followed by 

light incorporation with a John Deere 950 cultipacker (Deere and Company, Moline, IL, 

USA). Generally, cover crops were planted in late-March, terminated in late-May, and 

the main crop was planted within one week of termination. Specific dates for field 

operations across all years are detailed in Table 2.2. Seeding rates for confectionery 

sunflower, soybean, and corn were 62,000, 556,000, and 86,000 seeds ha
-1

, respectively. 

All crops were inter-row cultivated once (2009) or twice (2010 and 2011) approximately 

30 days after planting the main crop. Seeds of all legume cover crop and crop species 

were inoculated with appropriate rhizobia bacterial species prior to planting in 2009 and 

2010.   

Data Collection 

Three (2009) or four (2010 and 2011) aboveground plant samples were taken 

from each whole-plot experimental unit prior to cover crop termination to determine 

productivity of the cover crop mixtures and weed communities. Samples were combined 

within each experimental unit, dried at 60° C to constant mass and weighed. Three (2009) 

or four (2010 and 2011) aboveground plant samples were taken from each split-plot 
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experimental unit approximately 30 days after planting the main crop (DAP) to quantify 

weed species density and aboveground biomass. Samples were combined within each 

split-plot experimental unit, sorted by species, and each component counted. In 2010 and 

2011, the samples were then divided by broadleaf and grass weeds, dried at 60° C to 

constant mass and weighed. The 2009 samples were divided by broadleaf and grass 

weeds, fresh weights were recorded, and one composite sample (containing all weeds) 

was dried to constant mass and weighed. A second sampling interval was conducted in 

2010 at 50 DAP to quantify mid-season grass and broadleaf weed suppression.  

The sampling quadrat area in 2009 consisted of three 0.3 x 0.3 m samples per 

experimental unit. The sampling quadrat area in 2010 and 2011 was increased to four 0.3 

x 0.6 m samples per experimental unit. Quadrats were placed at random locations 

between (2009 and 2010) or within (2010 sampling at 50 DAP and 2011) crop rows of 

each split-plot. Sample quadrats were placed within crop rows at the 2010 50 DAP 

interval and in 2011 to avoid the inter-row area that was previously cultivated. The 

second plant sampling interval (at 50 DAP in 2010) was replaced with a mid-season 

visual rating of weed cover in 2009 and 2011. Ratings were determined by walking 

through three rows of each split-plot experimental unit and assessing the proportion of 

the plant canopy occupied by each of the four weed species planted prior to the 2009 

growing season (ABUTH, ALBUM, AMARE, and all grass species combined including 

SETVI). The visual rating was conducted in each experimental unit by three (2009) or 

four (2011) individuals, and the mean of all ratings was used to estimate weed cover for 

each species.  
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Grain yield was determined for each main crop by harvesting the middle 4 rows 

of each split-plot experimental unit. Contents were weighed using a Weigh-Tronix 400 

combine scale (Avery Weigh-Tronix, Fairmont, MN, USA) and adjusted for moisture 

content in the lab. Corn grain yields were adjusted to 0.155, soybean to 0.130, and 

sunflower to 0.10 g kg
-1

 moisture. Relative yield for each experimental unit was 

calculated as: 

Relative Yield = ((CCE - NC) / (NC)) * 100%     

where CCE is the grain yield from one split-plot cover crop experimental unit and NC is 

the grain yield from the no cover crop control (NC) experimental units averaged across 

all replications within a given year. 

Data Analysis 

 Weed biomass and weed cover data were either log- or root-transformed prior to 

statistical analysis to improve normality and homogeneity of variances when necessary. 

Least square means obtained from these analyses were back-transformed for presentation 

in all tables and figures. After transformation (if necessary), values for weed biomass, 

weed cover, and relative yield were compared among treatments using a linear mixed 

model analysis of variance in the GLIMMIX procedure of SAS 9.2 (SAS Institute Inc., 

Cary, NC, USA). Weed species density data were compared among treatments using a 

generalized Poisson mixed model for overdispersed count data, also using the GLIMMIX 

procedure (SAS 9.2 User’s Guide, 2
nd

 ed.). Fixed effects in both models included main 

crop, cover crop mixture, termination method and all possible interactions of these 

effects. The random effects were block and the interaction of block by current crop by 

cover crop mixture. Effects were tested within individual years due to experimental 
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changes in the cover crop mixture (buckwheat was replaced in all mixtures with Idagold 

mustard after 2009) and interactions with year when initially included as a fixed effect. 

Least square means and standard errors were calculated for all significant fixed effects at 

an alpha level of 0.05. Lastly, a simple linear regression of cover crop biomass and weed 

biomass at the first sampling interval between 2009 and 2011 was conducted using the 

REG procedure in SAS 9.2 to quantify the potential role of physical interference in the 

weed suppressive capacity of cover crop residue. 

To aid in the visualization of statistical interactions, data were often plotted as 

lines with cover crop mixture on the x-axis (Sosnoskie, 2006). The cover crop treatments 

were arranged in order (left-to-right) of increasing species diversity (from zero in the NC 

treatment to eight species in the 8CC treatment) along the x-axis, similar to the figures 

presented by Tilman et al. (2001). However, we recognize that these data are not truly 

continuous as is traditionally expected in line plots.  

 To further characterize weed species community composition, broadleaf weed 

species density data were used to calculate indices of weed species diversity, evenness, 

and richness for each split-plot experimental unit. Diversity (H’) was calculated using the 

Shannon diversity index:   

H’ =  - ∑ Pi(Ln Pi), where Pi = Ni / Ntotal      

where Ni = number of individuals of species i (plants m
-2

) and Ntotal = total number of 

individuals (plants m
-2

). Evenness (J) was then calculated as:  

J = H’ /Ln (S)       

where S = species richness calculated as the total number of species per plot (Sosnoskie 

et al. 2006; Wortman et al. 2010). Estimates of H’, J, and S for broadleaf weeds were 
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compared among management treatments using the GLIMMIX procedure in SAS 9.2 as 

described previously. 

 

Results and Discussion 

Early-Season Weed Suppression 

Grass weed biomass (fresh shoot weight) was influenced by the effects of main 

crop and termination method at 32 DAP in 2009 (Table 2.3). Grass biomass was lowest 

following termination with the undercutter (1137 g m
-2

) compared to both disk 

incorporation and the NC control (1254 g m
-2

 and 1279 g m
-2

, respectively). In addition, 

grass weed biomass was lowest in sunflower (1115 g m
-2

) and greatest in corn (1288 g m
-

2
). Indeed, sunflower may be a competitive crop choice, especially in organic systems, 

due to its capacity for early light interception (Geier et al., 1996) and allelopathic effects 

on weed seed germination and growth (Leather, 1983). In 2010 (at 23 DAP), grass weed 

biomass was influenced by the interaction of mixture and termination method (Table 2.3). 

Termination with the undercutter in the 4CC and 8CC mixtures reduced biomass by 39 

and 45%, respectively, relative to the NC control (Figure 2.1a). In contrast, termination 

with the disk in the 6CC and 8CC mixtures stimulated grass weed biomass by 56 and 

32%, respectively, relative to the NC control (Figure 2.1a). While grass weed biomass 

was generally not influenced by the effect of increasing cover crop diversity, the 

differences among mixtures within termination methods suggests there may be unique 

characteristics associated with each mixture (e.g., biomass quantity, quality, biochemical 

composition, or phytotoxins) driving this variable response.  
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Grass weed biomass was influenced by the effects of mixture and the interaction 

of termination method by crop at 36 DAP in 2011 (Table 2.3). In general, grass weed 

biomass was stimulated by the presence of cover crops (not weeds) regardless of 

termination method (data not shown). However, the termination method by crop 

interaction indicated that disk termination stimulated grass weed biomass in all crops 

while termination with the undercutter reduced grass weed biomass only in soybean (data 

not shown). The results in 2011 highlight the challenges of using high quality (low C:N 

ratio) residue to suppress weeds regardless of termination strategy. As cover crops 

increase nutrient availability, both crops and weeds are likely to respond with greater 

growth if the weeds are not managed properly (Liebman and Davis, 2000). Moreover, 

low quantities of legume cover crop residue (perhaps similar to levels found in a diverse 

mixture) have been shown to stimulate weed seed germination and radicle elongation 

(Teasdale and Pillai, 2005; Hill et al., 2006).  

Broadleaf weed biomass was not affected by any of the fixed effects or 

interactions at 32 DAP in 2009 (Table 2.3). Similarly, only the effect of main crop 

influenced broadleaf weeds at 23 DAP in 2010, where weed biomass in sunflower was 

reduced by 53 and 44% relative to weeds in corn and soybean. This is consistent with 

grass weed response, and provides further support for the alleged competitiveness of the 

sunflower crop. In 2011 (at 36 DAP), broadleaf weed biomass was again influenced by 

the effect of crop, but also by the interaction of mixture by termination method (Table 

2.3). In contrast to the 2010 results, broadleaf weed biomass was lowest in soybean (13.5 

g m
-2

) and greatest in corn and sunflower (26.2 and 22.2 g m
-2

, respectively). This may be 

related to the low level of weed biomass seen in the 2010 sunflower crop, which precedes 
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soybean in the rotation. This conclusion is based on the assumption that lower biomass at 

23 DAP resulted in lower fecundity of broadleaf weeds and reduced emergence the 

following year (Aarssen and Taylor, 1992). Managing weed populations for reduced 

biomass and seed production is an essential component of integrated weed management 

strategies in low-external-input cropping systems, especially when growing less 

competitive crops like soybean (Kegode et al., 1999).  

The interaction of mixture by termination method in 2011 was the result of 

exceptionally high broadleaf weed biomass (51.8 g m
-2

) in the WD/undercutter treatment 

combination, relative to all other treatments combined (18.8 g m
-2

). The large amount of 

broadleaf weed biomass in the WD/undercutter treatment combination was related to the 

ineffectiveness of the undercutter in terminating small weed seedlings. Creamer et al. 

(1995) also found that plants were difficult to terminate with the undercutter if they had 

not yet reached the mid- to late-bloom stage of maturity. The continuous and unmanaged 

emergence of weed seedlings throughout the spring in the WD treatment resulted in a 

weed community representing various growth stages. The undercutter sweeps travel at a 

depth of 10 cm beneath the soil surface; thus, recently emerged weed seedlings with 

shallow root systems may not have been effectively killed by the undercutting operation. 

Presumably, this was not an issue in the cover crop mixtures as there were fewer weeds 

growing in the mixtures, and those that were established were likely mature enough to 

compete with the mixtures; thus, the root systems would be mature enough to be 

effectively terminated by the undercutter.  

Broadleaf weed density during the first sampling interval was influenced by crop 

and termination method (2010 and 2011) or the interaction of termination by crop (2009; 
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Table 2.4). With regard to termination method, broadleaf weed density following 

termination with the undercutter was always at least 36% less than the densities observed 

following termination with the disk or the NC control (Table 2.5). Broadleaf weed 

density spiked upward in 2010, where 115.2 plants m
-2

 were observed in the NC control 

compared to 38.6 and 24.7 plants m
-2

 following termination with disk and undercutter, 

respectively (Table 2.5). The interaction effect in 2009 was due to the lack of a 

termination effect in sunflower, whereas trends in corn and soybean were consistent with 

those observed across all other years and crops. It is possible that the competitive effects 

of sunflower masked any additional weed suppressive potential of termination with the 

undercutter. With regard to the influence of crop, broadleaf weed density was always 

greatest in corn and lowest in either sunflower (2010) or soybean (2011; Table 2.5). 

Consistent with the response of broadleaf biomass, reduced broadleaf weed density in 

2011 soybean may be related to the strong competitive effects and reduced weed pressure 

observed in sunflower in 2010. Indeed, sunflower is typically a more competitive crop 

species than soybean (Geier et al., 1996).  

 When pooling grass and broadleaf weed biomass into a measure of total weed 

biomass, results were similar to those for grass weed biomass in 2009 and 2010, as these 

weeds dominated the community (Table 2.3; Figure 2.1b). However, a more even 

distribution of grass and broadleaf weeds led to unique results for total weed biomass in 

2011. Total weed biomass was influenced by the interactions of termination by main crop 

and also termination by cover crop mixture at 36 DAP in 2011. Undercutting cover crop 

mixtures for weed suppression was most effective in soybean, which led to the 

termination by crop interaction. Overall, the undercutter was less effective in suppressing 
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weeds in 2011 as only the 2CC/undercutter treatment combination successfully reduced 

total weed biomass relative to the NC control (Figure 2.2). While the undercutter was less 

beneficial in 2011, using the field disk for termination was largely detrimental as total 

weed biomass was stimulated by 58, 52, and 51% in the 2CC, 6CC, and 8CC mixtures, 

respectively (Figure 2.2). Consistent with the results for broadleaf weed biomass, total 

weed biomass in the WD/undercutter treatment combination was greater than that in the 

WD/disk treatment combination. As observed in 2010, total weed biomass was greater in 

the 6CC mixture regardless of termination method. Given the consistency of this result 

across two consecutive years, it appears likely that the composition of species in the 6CC 

mixture (Table 2.1) is uniquely beneficial to weed growth. Whereas increasing cover crop 

diversity did not predictably decrease weed biomass and density as we hypothesized, we 

did observe variable levels of weed suppression or stimulation across the four mixtures of 

cover crops. The consistency of these trends (i.e., weed stimulation following the 6CC 

mixture) suggests there is something unique to each mixture driving these differences. 

There may be species interactions between/among cover crops in mixtures or 

between/among cover crop mixtures and main crops that we could not detect in this 

experimental design. 

 Variability in the weed suppressive capacity of cover crops is most often related 

to cover crop biomass and productivity, especially when the residue is managed on the 

soil surface to promote physical interference with weed seed emergence and growth 

(Teasdale et al., 1991; Teasdale et al., 2007; Mirsky et al., 2011). Therefore, using 

regression analysis we tested the hypothesis that the observed variability in weed 

suppression among cover crop mixtures was related to variability in the biomass 
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productivity of the mixtures. However, we observed no relationship between these two 

factors in any year of this study, regardless of termination method (data not shown). This 

result suggests that the variability in weed suppression observed among mixtures is 

related to the biochemical composition and quality of the mixture residue, and largely 

independent of the quantity of mixture residue. This finding offers support for an 

allelopathic (or facilitative in the case of the 6CC mixture), rather than a physical 

mechanism of weed suppression for these cover crop mixtures, and opens the door for 

further research on inter-specific allelopathic interactions.   

The composition and concentration of individual allelopathic plant compounds is 

often species and variety dependent (Branca et al., 2002); thus, it is possible that a 

diversity of allelopathic interactions between cover crops and the numerous target weed 

species resulted in lower weed emergence and growth for various mixtures (Norsworthy 

et al., 2007). Though often documented in greenhouse studies, allelopathic effects of 

cover crop residue on weed seed emergence and growth has been difficult to observe in 

field studies (Haramoto and Gallandt, 2005). While we do not have the biochemical 

analyses to directly support an allelopathic mechanism of suppression, elimination of the 

physical interference hypothesis seems to leave few other logical alternatives. However, 

one additional explanation for these results may be the potential for negative soil 

microbial feedback effects. The negative soil feedback hypothesis suggests that changes 

in the soil microbial community during cover crop growth create a soil environment less 

suitable for germination and growth of certain weed species (Klironomos, 2002). 

Unfortunately, elucidation of these mechanisms will require fundamental research 

beyond the scope of this study.  
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Early-Season Weed Community Composition 

 Density of ABUTH was influenced by the three-way interaction of mixture, 

termination method, and current crop at 32 DAP in 2009 (Table 2.4), but there were few 

consistent differences among crops or cover crop mixtures. Despite this interaction, the 

most noticeable trend in ABUTH density was driven by termination method where 

density was greatest following termination with the disk (12.2 plants m
-2

), followed by 

the NC control (9.9 plants m
-2

), and lowest following termination with the undercutter 

(4.3 plants m
-2

). Termination method strongly influenced ABUTH at 23 DAP also in 

2010, but density was greatest in the NC treatment (55.5 plants m
-2

), followed by 

termination with the disk (19.9 plants m
-2

), and lowest after termination with the 

undercutter (10.3 plants m
-2

). ABUTH density also was influenced by current crop with 

the lowest densities occurring in the sunflower crop (10.7 plants m
-2

) – substantially less 

than the densities found within the corn crop (27.2 plants m
-2

). Similar to results for 2009, 

ABUTH density was influenced by the three-way interaction of mixture, termination 

method, and current crop at 36 DAP in 2011 (Table 2.4). Again, the only consistent trend 

was the effect of termination method, where the undercutter reduced ABUTH density by 

51 and 60% relative to termination with the disk and the NC control, respectively. 

Suppression of ABUTH density with cover crop surface mulch is consistent with 

previous findings (Liebl et al., 1992). Moreover, the reduction in soil mixing with 

conservation tillage implements like the undercutter can aid in reduced emergence of 

dicot weed species like ABUTH (Buhler and Daniel, 1988; Liebl et al., 1992). 

Density of AMARE was not different among cover crop mixtures, termination 

methods, or crops at 32 DAP in 2009, but was influenced by the three-way interaction of 
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these factors at 23 DAP in 2010 (Table 2.4). This interaction was the result of 

extraordinarily high densities of AMARE in the NC control and WD/disk treatment 

combination in soybean (123.2 and 78.2 plants m
-2

, respectively), along with elevated 

densities in the NC control and the WD/disk treatment combination in corn (50.1 and 

77.8 plants m
-2

, respectively). In contrast, AMARE density was relatively low in the 

sunflower crop with minor differences among mixtures and termination methods (Figure 

2.3). Again, the strong competitive effects of sunflower seem to have masked any 

potential effects of mixture or termination method on weed suppression. However, 

reduced densities of AMARE in the cover crop mixtures (regardless of termination 

method) provide evidence for the utility of cover crop mixtures as a weed management 

tool. While the weed suppressive effects of cover crops are often inconsistent and species 

specific, these results suggest that cover crop mixtures may be most effective when used 

as a component of more diversified and integrated approaches to weed management 

(Liebman and Davis, 2000).  

Differences in AMARE densities were influenced by the interaction of 

termination method by current crop at 36 DAP in 2011 (Table 2.4). Termination with the 

undercutter reduced AMARE density by 61% relative to termination with the disk in 

soybean. In sunflower, termination with the undercutter reduced AMARE density by 55 

and 54% relative to the NC control and termination with the disk, respectively. In 

contrast, AMARE density was elevated in corn but not influenced by the effect of 

termination method. Similar to ABUTH, AMARE density was most effectively 

suppressed with conservation tillage and the associated reduction in soil mixing (Liebl et 

al., 1992).  
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 Density of CHEAL was not different among cover crop mixtures, termination 

methods, or crops at the first sampling intervals in 2009 or 2010; however, CHEAL was 

influenced by the interaction of mixture by termination and the interaction of mixture by 

crop at 36 DAP in 2011 (Table 2.4). The interaction of mixture by termination method 

was strongest, where termination with an undercutter in the WD, 6CC, and 8CC 

treatments led to increased CHEAL densities of 6.2, 2.2, and 1.5 plants m
-2

, respectively 

(Figure 2.4). Densities of CHEAL in all other mixture/termination method treatment 

combinations were essentially zero. This result is consistent with the increased broadleaf 

biomass following termination with the undercutter in 2011. Of the dominant broadleaf 

weeds observed in this study, CHEAL was consistently the earliest emerging species in 

the spring (Myers et al., 2004). Therefore, this was the most abundant weed species at the 

time of cover crop/weed termination and thus the most probable species to survive the 

undercutting operation. In contrast, ABUTH and AMARE typically emerged after the 

termination operation, which explains improved suppression of these weeds following 

termination with the undercutter (Liebl et al., 1992; Myers et al., 2004).    

Broadleaf weed species richness, evenness, and diversity at the first sampling 

interval (approximately 30 DAP) were not influenced by cover crop mixture in any year 

of this study (data not shown). It was hypothesized that increasing the diversity of 

allelopathic cover crop species in a mixture would suppress a broad range of weed 

species, resulting in a more diverse but less dense weed community. Initially diverse 

plant communities (polycultures) have previously been shown to beget subsequently 

diverse weed communities (Palmer and Maurer, 1997). In contrast, increasing diversity of 

crop rotations has been shown to reduce weed species diversity (Smith and Gross, 2007). 
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It is possible that spatial and temporal diversity of crop communities have unique 

influences (potentially opposite) on weed community composition and species diversity. 

The lack of differences observed in this study may be related to the short-term duration of 

this cropping systems trial; typically, changes in weed community composition and 

diversity have been observed in longer-term trials (e.g., Menalled et al., 2001; Sosnoskie 

et al., 2006; Wortman et al., 2010). 

Mid-Season Weed Biomass, Cover, and Community Composition 

 Weed cover (%) for grasses, ABUTH, CHEAL, AMARE, and total broadleaf 

weeds was most commonly influenced by the effects of current main crop and 

termination method at 74 DAP in 2009 (Table 2.6). Weed cover of most broadleaf and 

grass weed species was lowest in the sunflower crop compared to both corn and soybean, 

while broadleaf cover was typically greatest in soybean (Table 2.8). This is consistent 

with the levels of weed biomass and densities observed in these crops at 32 DAP. With 

regard to termination method, broadleaf weeds were typically greatest in the NC control 

and lowest following termination with the undercutter (Table 2.8). 

Grass biomass at 50 DAP in 2010 was influenced by the interaction of mixture by 

current main crop, as cover crop mixtures tended to stimulate weed growth (relative to 

the WD and NC controls) in corn and soybean, but not sunflower (Table 2.7). While 

cover crops may aid in early season weed suppression via physical interference or 

allelopathic effects, decomposition and mineralization of the cover crop residue may lead 

to increased growth of both crops and weeds later in the growing season. This is 

consistent with results of Teasdale et al. (1991), who found no difference in late-season 

weed biomass despite early-season reductions in weed density with cover crop residue. 
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Broadleaf and total weed biomass responded similarly, where both were influenced by 

the effect of current crop and the interaction of mixture by termination method (Table 

2.7). Broadleaf and total weed biomass were consistently lowest in sunflower, followed 

by corn, and greatest in soybean (data not shown). The interaction of mixture by 

termination method was largely the result of a 33 and 220% increase in the WD/disk 

relative to the WD/undercut treatment combination for total and broadleaf weed biomass, 

respectively (Figure 2.5).  

Despite several interactions, weed cover was most strongly influenced by current 

crop and termination method at 57 DAP in 2011 (Table 2.6).  Results in 2011 were 

similar to those in 2009, where weed cover (both grasses and broadleaves) was lowest in 

sunflower (Table 2.8). However, in contrast to 2009, weed cover was greater in corn 

compared to soybean in 2011 (Table 2.8). Also similar to 2009 results, weed cover was 

greatest following termination with the disk and lowest following termination with the 

undercutter or in the NC control (Table 2.8). However, CHEAL cover was greatest 

following termination with the undercutter (6.7%) compared to termination with the disk 

(0.8%) and the NC control (0.5%; Table 2.8). This result is consistent with the increase in 

CHEAL density at 36 DAP in 2011 following termination with the undercutter, which is 

likely related to the early emergence timing of CHEAL relative to ABUTH and AMARE 

(Myers et al., 2004). 

Relative Crop Yield 

 Despite the effect of cover crop mixtures on weed biomass early in the growing 

season, relative crop yield was only influenced by termination method in this study. 

Relative to a traditional organic cropping system (NC control), cover crop termination 
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with the undercutter increased corn yield by 16.6%, while termination with the disk did 

not alter yield (Figure 2.6). In soybean, the effect of cover crop termination method was 

more pronounced. Termination with the undercutter increased yield by 22.7%, while 

termination with the disk reduced yield by 13.6% relative to the NC control (Figure 2.6). 

Despite an apparent yield benefit following the disk and undercutter for termination in 

sunflower, the increase was not statistically different from the NC control due to 

substantial variation in relative yield within and among years (Figure 2.6). 

Many studies have demonstrated peripheral benefits of including cover crops in 

agroecosystems, but yield gains are often difficult to detect (Reddy et al., 2003; 

Haramoto and Gallandt, 2005; Russo et al., 2006). However, recent studies have 

demonstrated the potential for cover crop mulches to increase or maintain grain yield 

relative to a no cover crop control (Mischler et al., 2010). Many of these systems have 

depended on herbicides for termination of cover crops and weeds (Swanton et al., 1999; 

Shrestha et al., 2002; Teasdale et al., 2007), which has limited applicability for organic 

farmers. The results of this study demonstrate the potential of cover crop mixtures to 

increase crop yield in organic cropping systems when combined with a sweep plow 

undercutter for termination. 

 

Conclusions 

Changes in weed biomass, density, and community composition were largely 

driven by the current main crop and differences in cover crop termination strategies. 

Reduced weed pressure following termination with the undercutter observed here is 

congruent with the results of Creamer et al. (1995), who found reduced weed biomass 
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following cover crop termination with an undercutter compared to a flail mower. 

Moreover, the stimulation of weed growth commonly observed following termination 

with the disk and in the no cover control is consistent with previous work demonstrating 

the risks of using intensive tillage for early-season weed control and seedbed preparation 

(Liebl et al., 1992; Yenish et al., 1992; Mulugeta and Stoltenberg, 1997). Use of the 

undercutter for weed control and cover crop termination has typically been limited to 

sandier soils of the western US Great Plains. However, these results demonstrate 

potential for this unique conservation tillage implement in the silty clay loam soils of 

eastern Nebraska to aid in profitable cover crop and weed management for increased crop 

yields in organic systems.  

The influence of cover crop mixture and increasing cover crop diversity in this 

study were far more subtle than the impacts of current main crop and termination method. 

However, changes in weed biomass among cover crop mixtures were detectable early in 

the growing season in two of three years. The lack of a relationship between cover crop 

biomass and early-season weed biomass suggests that allelopathic or negative soil 

microbial feedback mechanisms contributed to weed suppression in this study. While 

allelopathic mechanisms of weed suppression are well understood for individual cover 

crop species (e.g., Norsworthy et al., 2007), future studies should focus on the complex 

interactions occurring at the plant-soil interface between diverse cover crop communities 

and weed seed germination and growth. 



59 

 

 

Literature Cited 

Aarssen, L. W., and D. R. Taylor. 1992. Fecundity allocation in herbaceous plants. Oikos 

65:225-232. 

Al-Khatib, K., C. Libbey, and R. Boydston. 1997. Weed suppression with Brassica green 

manure crops in green pea. Weed Science 45:439-445. 

Bialy, Z., W. Oleszek, J. Lewis and G. R. Fenwick. 1990. Allelopathic potential of 

glucosinolates (mustard oil glycosides) and their degradation products against wheat. 

Plant and Soil 129:277-281. 

 

Blackshaw, R. E., J. R. Moyer, R. C. Doram, and A. L. Boswell. 2001. Yellow 

sweetclover, green manure, and its residues effectively suppress weeds during fallow. 

Weed Science 49:406-413.  

 

Boydston, R. A., and A. Hang. 1995. Rapeseed (Brassica napus) green manure crop 

suppresses weeds in potato (Solanum tuberosum). Weed Technology 9:669-675. 

 

Branca, F., G. Li, S. Goyal, and C. F. Quiros. 2002. Survey of glucosinolates in Sicilian 

wild and cultivated Brassicaceae. Phytochemistry 59:717-724. 

 

Buhler, D. D., and T. C. Daniel. 1988. Influence of tillage systems on giant foxtail and 

velvetleaf density and control in corn. Weed Science 36:642-647. 

Creamer, N. G., B. Plassman, M. A. Bennett, R. K. Wood, B. R. Stinner, and J. Cardina. 

1995. A method for mechanically killing cover crops to optimize weed suppression. 

American Journal of Alternative Agriculture 10:157-162. 

Corn and Soybean Digest. 2010. Why corn and soybean farmers don’t use cover crops. 

<http://cornandsoybeandigest.com/conservation/why-corn-and-soybean-farmers-

dont-use-cover-crops> Verified 8 Jan. 2012. 

Dabney, S. M., J. D. Schreiber, C. S. Rothrock, and J. R. Johnson. 1996. Cover crops 

affect sorghum seedling growth. Agronomy Journal 88:961-970. 

 

Davis, A. S. and M. Liebman. 2003. Cropping system effects on giant foxtail 

demography I. Green manure and tillage timing. Weed Science 51:919-929. 

 

Davis, A. S. 2010. Cover-crop roller-crimper contributes to weed management in no-till 

soybean. Weed Science 58:300-309.  

 

Dyck, E., M. Liebman, and M. S. Erich. 1995. Crop-weed interference as influenced by a 

leguminous or synthetic fertilizer nitrogen source: I. Double cropping experiments 

with crimson clover, sweet corn and lambsquarters. Agriculture, Ecosystems and 

Environment 56:93-108. 



60 

 

 

Eberlein, C. V., M. J. Morra, M. J. Gittieri, P. D. Brown, and J. Brown. 1998. 

Glucosinolate production by five field-grown Brassica napus cultivars used as green 

manures. Weed Technology 12:712-718. 

Gallandt, E. R., T. Molloy, R. P. Lynch, and F. A. Drummond. 2005. Effect of cover-

cropping systems on invertebrate seed predation. Weed Science 53:69-76. 

Geier, P. W., L. D. Maddux, L. J. Moshier, and P. W. Stahlman. 1996. Common 

sunflower (Helianthus annuus) interference in soybean (Glycine max). Weed 

Technology 10:317-321. 

Haramoto, E. R. and E. R. Gallandt. 2005. Brassica cover cropping: II. Effects on growth 

and interference of green bean (Phaseolus vulgaris) and redroot pigweed 

(Amaranthus retroflexus). Weed Science 53:702-708. 

 

Hill, E. C., M. Ngouajio, and M. G. Nair. 2006. Differential response of weeds and 

vegetable crops to aqueous extracts of hairy vetch and cowpea. HortScience 41:695–

700. 

 

Ju, H. Y., C. Chong, B. B. Bible, and W. J. Mullin. 1980. Seasonal variation in 

glucosinolate composition of rutabaga and turnip. Canadian Journal of Plant Science 

60:1295-1302. 

Kegode, G. O., F. Forcella, and S. Clay. 1999. Influence of crop rotation, tillage, and 

management inputs on weed seed production. Weed Science 47:175-183. 

Klironomos, J. 2002. Feedback with soil biota contributes to plant rarity and invasiveness 

in communities. Nature 417:67-70. 

Krishnan, G., D. L. Holshouser, and S. J. Nissen. 1998. Weed control in soybean 

(Glycine max) with green manure crops. Weed Technology 12:97-102. 

 

Leather, G. R. 1983. Sunflowers (Helianthus annuus) are allelopathic to weeds. Weed 

Science 31:37-42. 

 

Liebl, R., F. W. Simmons, L. M. Wax, and E. W. Stoller. 1992. Effect of rye (Secale 

cereale) mulch on weed control and soil moisture in soybean (Glycine max). Weed 

Technology 6:838-846. 

 

Liebman, M., and A. S. Davis. 2000. Integration of soil, crop and weed management in 

low-external-input farming systems. Weed Research 40:27–47. 

 

Louda, S. M. and J. E. Rodman. 1983. Ecological patterns in the glucosinolate content of 

a native mustard, Cardamine cordifolia, in the Rocky Mountains. Journal of 

Chemical Ecology 9:397-422. 

 



61 

 

 

Menalled, F. D., K. L. Gross, and M. Hammond. 2001. Weed aboveground and seedbank 

community responses to agricultural management systems. Ecological Applications 

11:1586–1601. 

 

Mirsky, S. B., W. S. Curran, D. A. Mortensen, M. R. Ryan, D. L. Shumway. 2009. 

Control of cereal rye with a roller/crimper as influenced by cover crop phenology. 

Agronomy Journal 101:1589-1596. 

 

Mirsky, S. B., W. S. Curran, D. M. Mortensen, M. R. Ryan, and D. L. Shumway. 2011. 

Timing of cover-crop management effects on weed suppression in no-till planted 

soybean using a roller-crimper. Weed Science 59:380-389. 

 

Mischler, R. A., W. S. Curran, S. W. Duiker, and J. A. Hyde. 2010. Use of a rolled-rye 

cover crop for weed suppression in no-till soybeans. Weed Technology 24:253-261. 

  

Moonen, A. C., and P. Barberi. 2004. Size and composition of the weed seedbank after 7 

years of different cover-crop-maize management systems. Weed Research 44:163-

177. 

Mulugeta, D., and D. E. Stoltenberg. 1997. Increased weed emergence and seed bank 

depletion by soil disturbance in a no-tillage system. Weed Science 45:234-241. 

 

Norsworthy, J. K. 2003. Allelopathic potential of wild radish (Raphanus raphanistrum). 

Weed Technology 17:307-313. 

 

Norsworthy, J. K., M. S. Malik, P. Jha, and M. B. Riley. 2007. Suppression of Digitaria 

sanguinalis and Amaranthus palmeri using autumn-sown glucosinolate-producing 

cover crops in organically grown bell pepper. Weed Research 47:425-432. 

 

Palmer, M. W., and T. A. Maurer. 1997. Does diversity beget diversity? A case study of 

crops and weeds. Journal of Vegetation Science 8:235-240. 

Petersen, J., R. Belz, F. Walker, and K. Hurle. 2001. Weed suppression by release of 

isothiocyanates from turnip-rape mulch. Agronomy Journal 93:37-43. 

Reddy, K. N., R. M. Zablotowicz, M. A. Locke, and C. H. Koger. 2003. Cover crop, 

tillage, and herbicide effects on weeds, soil properties, microbial populations, and 

soybean yield. Weed Science 51:987-994. 

 

Rosa, E., R. Heaney, G. Fenwick, and C. Portas. 1997. Glucosinolates in crop plants. 

Pages 99-215, in J. Janick, ed. Horticultural Reviews. Volume 19. New York, Wiley. 

 

Russo, V. M., B. Kindiger, and C. L. Webber, III. 2006. Pumpkin yield and weed 

populations following annual ryegrass. Journal of Sustainable Agriculture 28:85-96. 

 

Sarrantonio, M. and E. R. Gallandt. 2003. The role of cover crops in North American 

cropping systems. Journal of Crop Production 8:53-73.  

 



62 

 

 

Shrestha, A., S. Z. Knezevic, R. C. Roy, B. R. Ball-Coelho, C. J. Swanton. 2002. Effect 

of tillage, cover crop and crop rotation on the composition of weed flora in a sandy 

soil. Weed Research 42:76-87. 

 

Smith, R. G., Gross, K. L. 2007. Assembly of weed communities along a crop diversity 

gradient. Journal of Applied Ecology 44:1046–1056. 

 

Sosnoskie, L. M., C. P. Herms, and J. Cardina. 2006. Weed seedbank composition in a 

35-yr-old tillage and rotation experiment. Weed Science 54:263-273. 

Swanton, C. J., A. Shrestha, R. C. Roy, B. R. Ball-Coelho, and S. Z. Knezevic. 1999. 

Effect of tillage systems, N, and cover crop on the composition of weed flora. Weed 

Science 47:454-461. 

Teasdale, J.R., C.E. Beste, and W.E. Potts. 1991. Response of weeds to tillage and cover 

crop residue. Weed Science 39:195-199. 

 

Teasdale, J. R., and C. L. Mohler. 1993. Light transmittance, soil temperature, and soil 

moisture under residue of hairy vetch and rye. Agronomy Journal 85:673–680. 

 

Teasdale, J. R. and R. B. Taylorson. 1986. Weed seed response to methyl isothiocyanate 

and metham. Weed Science 34:520-524. 

 

Teasdale, J. R., and P. Pillai. 2005. Contribution of ammonium to stimulation of smooth 

pigweed (Amaranthus hybridus L.) germination by extracts of hairy vetch (Vicia 

villosa Roth) residue. Weed Biology and Management 5:19–25. 

 

Teasdale, J. R., L. O. Brandsaeter, A. Calegari, and F. Skora Neto. 2007. Cover crops and 

weed management. In Non-chemical Weed Management. Eds. M.K. Upadhyaya and 

R.E. Blackshaw. CAB International. 

Tilman, D., P. B. Reich, J. Knops, D. Wedin, T. Mielke, and C. Lehman. 2001. Diversity 

and productivity in a long-term grassland experiment. Science 294:843-845. 

White, R. H., A. D. Worsham, and U. Blum. 1989. Allelopathic potential of legume 

debris and aqueous extracts. Weed Science 37:674-679. 

 

Wortman, S. E., J. L. Lindquist, M. Haar, and C. A. Francis. 2010. Increased weed 

diversity, density and aboveground biomass in long-term organic crop rotations. 

Renewable Agriculture and Food Systems 25:281-295. 

 

Wortman, S. E., C. A. Francis, and J. L. Lindquist. 2012. Cover crop mixtures for the 

western Corn Belt: Opportunities for increased productivity and stability. In Press. 

Agronomy Journal. 

 

Yenish, J. P., J. D. Doll, and D. D. Buhler. 1992. Effects of tillage on vertical distribution 

and viability of weed seed in soil. Weed Science 40:429-433



63 

 

 

Tables and Figures 

Table 2.1. Cover crop species and seeding rates used in individual cover crop mixtures for 2009 and 2010-11 (2CC = 2 species 

mixture; 4CC = 4 species mixture; 6CC = 6 species mixture; 8CC = 8 species mixture). 

    Cover Crop Seeding Rate 

    2CC 4CC 6CC 8CC 

Common Name Scientific Name 
____________ 

 kg ha
-1  _____________

 

Hairy Vetch Vicia villosa 22.4 11.2 7.5 5.6 

Buckwheat (2009) Fagopyrum sagittatum 28.0 14.0 9.3 7.0 

Idagold Mustard (2010-11) Sinapus alba 6.7 3.4 2.2 1.7 

Field Pea Pisum sativum 

 

28.0 18.7 14.0 

Pacific Gold Mustard Brassica juncea 

 

2.2 1.7 1.1 

Oilseed Radish Raphanus sativus 

  

2.8 2.1 

Crimson Clover Trifolium incarnatum 

  

4.7 3.5 

Dwarf Essex Rape Brassica napus 

   

1.7 

Chickling Vetch Lathyrus sativus       8.4 

 

6
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Table 2.2. Timing of field operations and data collection for each year of the study. 

  Year 

Operation 2009 2010 2011 

    Cover Crop Planting 20 March 30 March 21 March 

Cover Crop Termination 22 May 28 May 3 June 

Main Crop Planting 28 May 1-3 June 6 June 

1st Weed Biomass Sampling 29-30 June 24-25 June 12-13 July 

1st Inter-row Cultivation 1 July 28 June 30 June 

2nd Inter-row Cultivation 

 

1 July 8 July 

2nd Weed Biomass Sampling/Visual Rating  10 August 19-26 July 2 August 

 

6
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Table 2.3. F-values from linear mixed model analyses of variance for fixed effects and all possible interactions of cover crop mixture, 

termination method, and current crop on grass, broadleaf, and total weed biomass at 32, 23, and 36 DAP for the years 2009, 2010, and 

2011, respectively. Significance of F-values is designated as * = P < 0.05, ** = P < 0.01, and *** = P < 0.001.  

6
5
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Source df 
a
 Grass biomass Broadleaf biomass Total biomass 

2009 

    Mixture 4 0.81 1.47 0.72 

Termination 1 5.59* 1.70 6.47* 

Crop 2 4.94* 0.07 2.50 

Mixture x termination 4 1.55 1.08 2.55 

Mixture x crop 8 0.93 0.78 0.74 

Termination x crop 2 0.85 2.74 0.60 

Mixture x termination x crop 8 1.74 1.91 1.70 

2010 

    Mixture 4 2.75* 2.54 2.18 

Termination 1 95.84*** 0.39 94.98*** 

Crop 2 0.17 5.07** 0.41 

Mixture x termination 4 3.30* 0.70 4.13** 

Mixture x crop 8 0.42 0.50 0.59 

Termination x crop 2 2.24 0.38 1.97 

Mixture x termination x crop 8 1.62 0.33 1.48 

2011 

    Mixture 4 3.32* 2.11 0.64 

Termination 1 69.45*** 0.76 16.76*** 

Crop 2 3.19* 5.04** 5.04** 

Mixture x termination 4 0.04 3.91** 4.61** 

Mixture x crop 8 0.98 0.59 0.73 

Termination x crop 2 3.65* 1.85 4.28* 

Mixture x termination x crop 8 0.93 1.30 1.51 

a 
Abbreviation: df, degrees of freedom. 

 

6
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Table 2.4. F-values from linear mixed model analyses of variance for fixed effects and all possible interactions of cover crop mixture, 

termination method, and current crop on ABUTH, CHEAL, AMARE, and total broadleaf weed density at 32, 23, and 36 DAP for the 

years 2009, 2010, and 2011, respectively. Significance of F-values is designated as * = P < 0.05, ** = P < 0.01, and *** = P < 0.001.  
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Source df 
a
 ABUTH CHEAL AMARE Broadleaves 

2009 

     Mixture 4 1.09 1.12 0.03 1.67 

Termination 1 23.55*** 1.29 0.01 27.68*** 

Crop 2 0.59 0.16 0.01 0.07 

Mixture x termination 4 0.94 0.80 0.28 0.68 

Mixture x crop 8 1.69 0.82 0.15 0.76 

Termination x crop 2 4.37* 0.06 0.01 3.90* 

Mixture x termination x crop 8 2.57* 0.47 1.10 1.43 

2010 

     Mixture 4 1.07 0.03 3.08* 0.68 

Termination 1 41.58*** 0.01 1.75 17.65*** 

Crop 2 7.20** 0.01 11.10*** 10.85*** 

Mixture x termination 4 0.49 0.01 3.69* 1.36 

Mixture x crop 8 1.01 0.04 0.37 0.44 

Termination x crop 2 0.03 0.01 1.71 0.64 

Mixture x termination x crop 8 0.82 0.25 2.30* 1.46 

2011 

     Mixture 4 1.94 108.80 1.92 1.00 

Termination 1 40.18*** 0.04 9.31** 13.17*** 

Crop 2 11.98*** 0.01 25.70*** 23.12*** 

Mixture x termination 4 1.28 1.7 E +31*** 1.18 0.97 

Mixture x crop 8 1.79 2.62* 1.27 1.12 

Termination x crop 2 3.33* 0.01 3.35* 2.81 

Mixture x termination x crop 8 2.91* 1.39 0.56 1.16 
a 
Abbreviation: df, degrees of freedom. 

    

 

6
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Table 2.5. Total broadleaf weed density (plants m
-2

) in response to current crop and 

cover crop termination method at 32, 23, and 36 DAP for the years 2009, 2010, and 2011, 

respectively. Data shown are back-transformed LS means, which eliminated the 

possibility to present error terms. Instead, differences (α = 0.05) among transformed LS 

means are indicated by different letters adjacent to the back-transformed value.  

  Year 

 
2009 2010 2011 

Effect Total broadleaf weed density (plants m
-2

) 

Crop 

   Corn 21.7 a 53.4 a 26.3 a 

Soybean 19.3 a 37.9 b 8.3 b 

Sunflower 18.5 a 20.8 c 21.7 a 

Termination 

   No cover 25.3 a 115.2 a 24.2 a 

Disk 24.1 a 38.6 b 20.3 a 

Undercutter 10.1 b 24.7 c 12.9 b 
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Table 2.6. F-values from linear mixed model analyses of variance for fixed effects and all possible interactions of cover crop mixture, 

termination method, and current crop on grass, ABUTH, CHEAL, AMARE, and total broadleaf weed cover at 74 and 57 DAP for the 

years 2009 and 2011, respectively. Significance of F-values is designated as * = P < 0.05, ** = P < 0.01, and *** = P < 0.001.  

Source df 
a
 Grasses ABUTH CHEAL AMARE Broadleaves 

2009 

      Mixture 4 0.95 0.92 1.37 1.27 1.44 

Termination 1 3.87 21.69*** 2.18 5.00* 8.21** 

Crop 2 10.60*** 14.85*** 4.50* 2.98 19.92*** 

Mixture x termination 4 0.71 0.09 0.92 0.84 0.12 

Mixture x crop 8 0.41 0.95 0.57 0.97 1.29 

Termination x crop 2 0.73 0.96 1.20 1.76 1.73 

Mixture x termination x crop 8 1.47 1.66 0.44 0.46 0.68 

2011 

      Mixture 4 2.83* 3.77** 1.87 0.18 0.90 

Termination 1 93.49*** 123.09*** 64.71*** 6.24* 20.06*** 

Crop 2 13.92*** 22.18*** 2.02 26.61*** 34.37*** 

Mixture x termination 4 0.74 1.28 2.28 0.30 1.62 

Mixture x crop 8 1.29 0.72 1.46 0.56 0.68 

Termination x crop 2 5.75** 4.18* 0.85 1.64 3.48* 

Mixture x termination x crop 8 1.23 1.72 0.49 0.76 2.64* 

a 
Abbreviation: df, degrees of freedom. 
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Table 2.7. F-values from linear mixed model analyses of variance for fixed effects and all possible interactions of cover crop mixture, 

termination method, and current crop on grass, broadleaf, and total weed shoot biomass at 50 DAP in 2010. Significance of F-values 

is designated as * = P < 0.05, ** = P < 0.01, and *** = P < 0.001. 

Source df 
a
 Grass biomass Broadleaf biomass Total biomass 

Mixture 4 4.07** 0.51 2.95* 

Termination 1 2.08 0.05 3.32 

Crop 2 22.48*** 13.98*** 40.21*** 

Mixture x termination 4 1.69 3.22* 4.11** 

Mixture x crop 8 2.33* 0.65 1.96 

Termination x crop 2 0.98 0.85 0.34 

Mixture x termination x crop 8 0.46 0.64 0.87 

a 
Abbreviation: df, degrees of freedom. 

7
1
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Table 2.8.  Percent weed cover in response to main crop and cover crop termination 

method at 74 and 57 DAP for the years 2009 and 2011, respectively. Data shown are 

back-transformed LS means, which eliminated the possibility to present error terms. 

Instead, differences (α = 0.05) among transformed LS means are indicated by different 

letters adjacent to the back-transformed value.  

Effect Grasses ABUTH CHEAL AMARE Broadleaves 

 

__________
 % weed cover 

___________
 

2009 

     Crop 

     Corn 87.2 a 10.8 a 3.2 b 4.6 b 23.1 b 

Soybean 85.8 a 10.7 a 5.7 a 5.7 a 27.6 a 

Sunflower 82.5 b 5.4 b 3.4 b 3.8 b 15.6 c 

Termination 

     No cover 82.6 b 13.6 a 2.3 b 6.0 a 27.8 a 

Disk 86.1 a 9.9 b 3.8 a 4.8 ab 22.4 b 

Undercutter 84.8 b 6.9 c 4.7 a 4.1 b 19.8 c 

2011 
     Crop 
     Corn 47.7 a 28.8 a 2.9 a 16.1 a 54.5 a 

Soybean 36.7 b 23.6 b 2.9 a 11.2 b 46.8 b 

Sunflower 32.5 c 14.4 c 1.8 b 6.1 c 26.8 c 

Termination 

     No cover 28.2 b 20.3 b 0.5 b 11.2 ab 37.8 b 

Disk 48.2 a 29.5 a 0.8 b 12.2 a 50.1 a 

Undercutter 31.8 b 15.6 c 6.7 a 9.4 b 37.4 b 
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Figure 2.1. Grass (a) and total (b) weed shoot biomass (g m
-2

) as influenced by the 

interaction of cover crop mixture and termination method at 23 DAP in 2010. Data 

shown are back-transformed LS means, which eliminated the possibility to present error 

terms. Instead, differences (α = 0.05) among transformed LS means are indicated by 

different letters above back-transformed data points. NC = no cover control; WD = 

weedy mixture; 2-, 4-, 6-, and 8CC = 2, 4, 6, and 8 cover crop species mixtures, 

respectively (Table 2.1).  
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Figure 2.2. Total weed shoot biomass (g m
-2

) as influenced by the interaction of cover 

crop mixture and termination method at 36 DAP in 2011. Data shown are back-

transformed LS means, which eliminated the possibility to present error terms. Instead, 

differences (α = 0.05) among transformed LS means are indicated by different letters 

above back-transformed data points. NC = no cover control; WD = weedy mixture; 2-, 4-, 

6-, and 8CC = 2, 4, 6, and 8 cover crop species mixtures, respectively (Table 2.1). 
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Figure 2.3. Total AMARE weed density (plants m
-2

) as influenced by the interaction of 

cover crop mixture, termination method, and current crop at 23 DAP in 2010. Data 

shown are LS means and standard errors with a generalized Poisson distribution; thus, the 

standard error varies with the mean for each treatment. NC = no cover control; WD = 

weedy mixture; 2-, 4-, 6-, and 8CC = 2, 4, 6, and 8 cover crop species mixtures, 

respectively (Table 2.1). 
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Figure 2.4. Total CHEAL weed density (plants m
-2

) as influenced by the interaction of 

cover crop mixture and termination method at 36 DAP in 2011. Data shown are LS 

means and standard errors with a generalized Poisson distribution; thus, the standard 

error varies with the mean for each treatment. NC = no cover control; WD = weedy 

mixture; 2-, 4-, 6-, and 8CC = 2, 4, 6, and 8 cover crop species mixtures, respectively 

(Table 2.1). 
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Figure 2.5. Broadleaf (a) and total (b) weed shoot biomass (g m
-2

) as influenced by the 

interaction of cover crop mixture and termination method at 50 DAP in 2010. Data 

shown are back-transformed LS means, which eliminated the possibility to present error 

terms. Instead, differences (α = 0.05) among transformed least square means are indicated 

by different letters above back-transformed data points. NC = no cover control; WD = 

weedy mixture; 2-, 4-, 6-, and 8CC = 2, 4, 6, and 8 cover crop species mixtures, 

respectively (Table 2.1). 
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Figure 2.6. The effect of cover crop termination method (disk or undercutter) on crop 

yield relative to the no cover crop control treatment pooled across 2009, 2010, and 2011 

for each crop. Error bars indicate ± one standard error of the LS means. 
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Chapter 3 

Relative influence of cover crop diversity, weed communities, and termination method on 

soil microbial community structure 

 

Abstract 

Many studies have demonstrated microbial community response to individual 

cover crop species, but the effect of increasing cover crop diversity has received less 

attention. Moreover, the relationship between agricultural weeds and soil microbial 

communities is not well understood. The objective of this study was to determine the 

relative influence of cover crop diversity, spring weed communities, and plant 

termination method on soil microbial community structure in an organic cropping system 

through the extraction of fatty acid methyl esters (FAMEs). A field experiment was 

conducted in 2009 and 2010 near Mead, NE where spring-sown mixtures of zero 

(control), two, and eight cover crop species were included in a sunflower – soybean – 

corn crop rotation. A mixture of four weed species was planted in all experimental units 

(excluding the no-cover control), and also included as an individual treatment (e.g., 

weeds as a potential cover crop). Cover crops and weeds were planted in late-March, 

terminated in late-May using a field disk or sweep plow undercutter, and main crops were 

planted within one week of termination. Three (2009) or four (2010) soil cores were 

taken to a depth of 20 cm in all experimental units at 45 and 32 days following cover crop 

termination in 2009 and 2010, respectively. Total FAMEs were greatest in the 2 species 

mixture – undercutter treatment combination (140.8 ± 3.9 nmol g
-1

) followed by the 8 

species mixture – undercutter treatment combination (132.4 ± 3.9 nmol g
-1

). Five FAME 
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biomarkers (iC16:0, i10MeC17:0, i10MeC18:0, C16:1(cis11), C18:1(cis11)) were 

reduced in the weedy treatment relative to both cover-cropped treatments and the no-

cover control. Termination with the undercutter reduced abundance of most actinomycete 

biomarkers while termination with the field disk reduced abundance of C18:1(cis11) and 

iC16:0. Canonical discriminant analysis of the microbial community successfully 

segregated most cover crop mixture by termination method treatment combinations. 

Segregation was most pronounced between the cover-cropped and weedy treatments, 

which was due in part to reduced abundance of the biomarkers C18:1(cis11) and 

i10MeC18:0 in the weedy treatment. While termination method did impact actinomycete 

abundance, microbial communities were most strongly influenced by the presence and 

type of early-spring plant communities (i.e., weeds vs. cover crops). Weeds may alter soil 

microbial community structure as a means of increasing competitive success and this 

relationship warrants further investigation.  
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Introduction 

 Soil microbial community composition is often responsive to a broad range of 

ecosystem and management factors. Knowledge of microbial community composition 

and diversity can provide valuable insight into soil function such as soil organic carbon 

and nitrogen retention, nutrient cycling and overall soil stability and health (van Bruggen 

and Semenov, 2000; Jackson et al., 2003). Several specific factors that may influence soil 

microbial community structure include soil type, plant community composition, climatic 

conditions, soil water availability, and soil management (Waldrop et al., 2000; 

Drenovsky et al., 2004; Cookson et al., 2008). In agricultural management systems both 

tillage and cover cropping are thought to influence microbial community structure, 

though these changes to the community are likely the result of complex interactions 

(Drijber et al., 2000; Buckley and Schmidt, 2001; Carrera et al., 2007). For example, one 

management decision (e.g., cover cropping) can substantially alter the subsequent weed 

community, labile soil carbon, and soil moisture; all of which may have unique impacts 

on microbial community structure (Buyer et al., 2010). 

 One management factor that consistently alters microbial community composition 

is the addition of organic carbon substrates, typical of organic cropping systems (Bossio 

et al., 1998). Microbial communities are often limited by organic carbon availability; 

thus, it is not surprising that the addition of labile organic matter (e.g., compost, manure, 

and plant residue) will result in changes to community structure (Drenovsky et al., 2004). 

In the short-term, organic management (e.g., cropping systems dependent on organic 

carbon substrates for soil fertility) selects for microbial species that have the highest 

growth rate and ability to absorb nutrients (Alden et al., 2001). Among other changes, 
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previous studies have reported increased abundance and diversity of bacteria and 

arbuscular mycorrhizal fungi (AMF), as well as greater physiological diversity of 

microbes in organically managed soils (Shannon et al., 2002; Oehl et al., 2003; van 

Diepeningen et al., 2006). Cover crops are a common source of labile organic carbon in 

organic cropping systems and have been shown to increase abundance of gram-negative 

bacteria, fungi and AMF, actinomycetes, and protozoa for several months following 

cover crop termination (Schutter et al., 2001; Carrera et al., 2007; Buyer et al., 2010). 

Moreover, the presence of cover crops has been identified as the primary factor affecting 

microbial community composition, despite differences in soil moisture and temperature 

(Buyer et al., 2010). In contrast, one recent study found that species of cover crop (rye vs. 

vetch) had little effect on community composition (Buyer et al., 2010); rather, the 

addition of any labile organic matter (e.g., cover crops or compost) will likely result in 

similar community changes (Drenovsky et al., 2004). However, differences in the 

biochemical composition of plant species and the subsequent organic compounds 

available to microbes may alter the composition of microbial communities (Zak et al., 

2003). 

Several recent studies have reported plant species-dependent changes in microbial 

communities of either the root rhizosphere or bulk soil (Germida et al., 1998; Kowalchuk 

et al., 2002; Zak et al., 2003; van Diepeningen et al., 2006). Individual plant species and 

communities have been shown to foster different levels of bacterivorous nematode 

species (van Diepeningen et al., 2006), bacterial diversity (Germida et al., 1998), 

microbial group abundance and overall community composition (Zak et al., 2003). Zak et 

al. (2003) found that increasing plant community diversity reduced the abundance of soil 
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bacteria and actinomycetes, and increased abundance of soil fungi, though the effects 

were confounded by differences in plant primary productivity (productivity increased 

with diversity). Nonetheless, these studies suggest that a diverse plant community and the 

individual species therein have the capacity to influence the composition of the soil 

microbial community.  

Weed communities may also exert species-specific impacts on soil microbial 

community composition. Indeed, previous studies have demonstrated substantial effects 

of weed species (e.g., Centaurea maculosa) on soil microbial functional group abundance 

and community composition (Marler et al., 1999; Lutgen and Rillig, 2004; Batten et al., 

2006). These changes in microbial community composition are often viewed as a novel 

competitive strategy and defense mechanism adapted by certain weedy and invasive 

species (Marler et al., 1999; Callaway and Ridenour, 2004). However, many of these 

observations have been limited to invasive weeds of unmanaged ecosystems and studies 

on the effects of agricultural weeds on soil microbial community composition are rare.   

Soil tillage is another agricultural management factor that results in immediate 

and long-term changes to microbial community structure (Drijber et al., 2000; Jackson et 

al., 2003). In general, tillage shifts soil microbial communities toward aerobic species 

with high metabolic rates typical of bacteria species (Roper and Gupta, 1995). Indeed, 

several studies have shown that switching from a no-tillage system to a disk or plow 

management system reduces the ratio of fungi to bacteria (Frey et al., 1999; Pankhurst et 

al., 2002). Soil tillage has also been shown to reduce diversity of soil bacteria and 

abundance of microeukaryotes (Lupwayi et al., 1998; Jackson et al., 2003). While general 

soil disturbance often results in predictable changes to the microbial community, there is 
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some evidence that different tillage practices (e.g., disk, moldboard plow, chisel plow) 

will have variable effects on community structure, as one study demonstrated unique 

community differences between a moldboard plow and a sub plow undercutter tillage 

system (Drijber et al., 2000). With regard to cover crops, soil tillage associated with 

different plant termination methods may influence microbial community structure. 

 Typically, cover crops are used as green manures for increasing soil nitrogen, 

especially in organic cropping systems. To this end, soil incorporation of the cover crop 

with a field disk or moldboard plow is usually most effective. This management practice 

has been shown to increase abundance of total bacteria and gram-negative bacteria, while 

the abundance of actinomycetes and fungi either decrease or remain stable (Zelles et al., 

1992; Lundquist et al., 1999; Drenovsky et al., 2004; Elfstrand et al., 2007). In contrast, 

utilizing cover crops for weed control may require that residue be mulched and left on the 

soil surface (Teasdale and Mohler, 1993). In general, residue placement on the soil 

surface leads to greater abundance of fungi and AMF compared to soil incorporation of 

residue (Doran, 1980; Holland and Coleman, 1987; Roper and Gupta, 1995; Elfstrand et 

al., 2007). In addition to weed suppressive benefits, maintenance of cover crop residue on 

the soil surface appears to create a favorable habitat for fungal growth characterized by 

greater soil moisture and limited soil disturbance (Elfstrand et al., 2007). Fungal species 

generally have a greater efficiency of carbon assimilation; thus, increasing the abundance 

of fungi may increase soil carbon storage in agricultural systems (Holland and Coleman, 

1987).  

 The objectives of this study were to quantify changes in total microbial 

community structure and individual functional group abundance in response to increasing 
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cover crop diversity, spring weed communities, and different weed/cover crop residue 

termination methods. To accomplish these objectives, we used soil extractions of fatty 

acid methyl esters (FAMEs) to quantify the relative abundance of soil microbial 

functional groups and changes in total community structure. We hypothesized that the 

combined effects of increasing cover crop diversity and the management of residue on 

the soil surface (via termination with a sweep plow undercutter) will result in a unique 

microbial community structure characterized by an increased abundance of fungal 

biomarkers.  

 

Materials and Methods 

Experimental Site and Design 

A field experiment was conducted in 2009 and 2010 at the University of 

Nebraska-Lincoln Agricultural Research and Development Center (ARDC) near Mead, 

Nebraska. Dominant soil type at the site is a Sharpsburg silty clay loam (fine, smectitic, 

mesic typic Argiudoll) with 0 to 5% slopes. The experiment was conducted in a 2.8 ha 

field that is certified for organic production (OCIA International, Lincoln, NE), and is 

managed without irrigation. This field was in organic alfalfa hay production between the 

2004 and 2008 cropping seasons. In the fall of 2008 the experimental area was amended 

with 50 Mg ha
-1

 of liquid beef feedlot manure that was incorporated with a field disk.  

The experiment was designed as a split-plot randomized complete block design 

within a 3-year crop rotation with 4 replications. The rotation sequence consisted of 

confectionery sunflower (Helianthus annuus) – soybean (Glycine max) – corn (Zea 

mays). Within each crop species, whole-plots (9.1 x 21.3 m; 12 crop rows spaced 0.76 m 
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apart) were defined by cover crop treatment, while split-plots (4.5 x 21.3 m; 6 crop rows 

spaced 0.76 m apart) were defined by plant termination method. Each “crop x cover crop 

mixture x termination method” treatment combination was replicated within each block 

so that each phase of the 3-year crop sequence was present each year within each block. 

There were four whole-plot cover crop treatments: 1) two-species cover crop mixture 

(2CC), 2) eight-species cover crop mixture (8CC), 3) weedy but no cover crop prior to 

main crop planting (WD), and 4) no cover crop and weed-free prior to main crop planting 

(NC control). The NC whole-plots were field disked and hand-hoed twice prior to main 

crop planting to remove emerged weed seedlings, while weeds in the WD whole-plots 

were left unmanaged until cover crop termination. Details on the individual species and 

seeding rates included in each cover crop treatment whole-plot are included in Table 3.1. 

On March 15, 2009, the 2CC, 8CC, and WD treatments were seeded with 8.1 kg ha
-1

 of 

velvetleaf (Abutilon theophrasti) seed, 2.6 kg ha
-1

 of common lambsquarters 

(Chenopodium album) seed, 1.2 kg ha
-1

 of redroot pigweed (Amaranthus retroflexus) 

seed, and 3.7 kg ha
-1

 of green foxtail (Setaria viridis) seed to establish a common weed 

seedbank for weed suppression data collection.  

Split-plot cover crop residue management methods included either disking or 

undercutting. Management method was randomized within the first replication 

(southernmost) and duplicated in the remaining three replications (north of the first 

replication) to facilitate adequate speed for effective tillage operations driving north-

south through the field. Disking was conducted with a 4.6 m wide Sunflower 3300 

(Sunflower Mfg., Beloit, KS, USA) disk to an approximate depth of 15 cm. Undercutting 

was conducted with either a Buffalo 6000 (Buffalo Equipment, Columbus, NE, USA) 
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cultivator (modified for undercutting) with seven overlapping 0.75 m wide sweep blades 

(2009) or a Miller Flex-Blade sweep plow undercutter (2010 and 2011) with three 

overlapping 1.5 m sweep blades. The undercutter sweeps are designed to cut a level plane 

through the soil at an approximate depth of 10 cm, severing plant roots and minimizing 

soil inversion, resulting in a layer of intact surface residue. Details on the design of the 

undercutter can be found in Creamer et al. (1995).   

Cover crop mixtures were planted via hand-crank broadcast seeding followed by 

light incorporation with a John Deere 950 cultipacker (Deere and Company, Moline, IL, 

USA). Generally, cover crops were planted in late-March, terminated in late-May, and 

main crops were planted within one week of termination. Specific dates for field 

operations across both years are detailed in Table 3.2. Seeding rates for confectionery 

sunflower, soybean, and corn were 62,000, 556,000, and 86,000 seeds ha
-1

, respectively. 

All crops were inter-row cultivated once (2009) or twice (2010) approximately 30 days 

after planting the main crops. Seeds of all legume cover crop and crop species were 

inoculated with appropriate rhizobia bacterial species prior to planting in 2009 and 2010.   

Soil Sampling  

Soil samples were taken for fatty acid methylated esters (FAME) soil microbial 

analysis from 84 experimental units at 45 and 32 days after cover crop termination (DAT) 

in 2009 and 2010, respectively. These samples represented four whole-plot treatments, 

two split-plot treatments, three main crops, and four replications in each of two years. 

The NC control treatment did not include split-plots, as there were no plants to terminate 

and compare methods. This resulted in 168 composite samples for extraction and 

analysis.  
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Soil sampling was conducted in an aseptic manner whenever possible. To this 

end, nitrile gloves were worn during sampling and all supplies (soil probe, buckets, and 

gloves) were sprayed with 91% isopropyl alcohol between sampling each experimental 

unit. Three (2009) or four (2010) soil cores (3.2 cm diameter by 20 cm depth) were taken 

within crop rows in each experimental unit. Cores were sampled from undisturbed soil 

within crop rows to avoid the effects of inter-row cultivation that occurred prior to 

sampling. Cores from each experimental unit were pooled in a plastic bucket and mixed 

by hand to break up large aggregates and create a homogenous mixture of soil profiles.  

A subsample of approximately 300 grams was then placed in a plastic freezer bag, sealed 

and placed in an iced cooler for no more than 2 hours. When soil sampling was complete, 

subsamples were stored in a refrigerator at 2° C for less than 24 hours until processing.   

Soil samples were then sieved with a 0.47 cm sieve to remove large organic 

residues. Similar to the sampling process, sieving was conducted aseptically by wearing 

nitrile gloves, and spraying all equipment (gloves and sieves) with 91% isopropyl alcohol 

between each sample. After sieving, 100 g of soil was weighed and placed back in each 

plastic freezer bag. Sieved samples were then stored at -20° C until the time of FAME 

extraction (approximately 6 months after sampling). 

FAME Extraction 

Microbial community composition was determined from fatty acid methyl esters 

(FAMEs). The method, adapted from White et al. (1979), results in a direct hydrolysis, 

derivatization, and extraction of FAMEs from soil microorganisms in situ. First, 10 g of 

each frozen soil sample was weighed and placed in a 50 ml Teflon centrifuge tube. 

Twenty ml of MeOH-KOH was then added to each Teflon tube in 10 ml increments, and 
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vortexed thoroughly after each addition. Samples were then placed in a 37° C water bath 

for one hour, and mixed every 15 minutes during this hour. Upon removal from the water 

bath, 2 ml of acetic acid were added to each sample to restore solution neutrality. Next, 5 

ml of hexane was added to each sample. Samples were thoroughly vortexed and then 

centrifuged for 10 minutes at 6000 rpm. The resulting hexane layer (with extracted 

FAMEs in solution) was transferred via pipette to a 15 ml Pyrex tube. The extraction 

procedure (hexane addition, centrifugation, and transfer) was repeated one time, and each 

sample was then filtered through a PTFE 0.2 μm syringe filter into a Pyrex tube. The 

filtered solvent was then evaporated under N2 gas to a small volume. Several drops of 

benzene were added to each sample, mixed, and again evaporated under N2 gas until 

visibly dry. The remaining sample was then redissolved in 1 ml of hexane and transferred 

to a 2 ml vial. Samples were then stored at -20° C until preparation for gas 

chromatography (GC) analysis. In preparation for GC analysis, hexane in each sample 

was evaporated under N2 gas until completely dry and then 500 µl of hexane with C19:0 

(0.05 mg/ml; as an internal standard) was added to each vial. A 50 µl aliquot of each 

sample was then transferred to the GC vial and capped for analysis.   

Individual FAMEs were separated by capillary gas chromatography on a Hewlett 

Packard 5890 Series II gas chromatograph (Hewlett-Packard Company, Palo Alto, CA) 

with helium as the carrier gas. Oven temperature in the GC was held at 100° C for 1 min 

and then increased at 2.5° C min
-1

 to a final temperature of 225° C. Injector and flame 

ionization detector temperatures were 250° C and 280° C, respectively. Determination of 

FAME identity was accomplished through a comparison of retention times and 

equivalent chain lengths with known standards (Bacterial Acid Methyl Esters CP Mix, 
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Supelco USA). FAME identities were then confirmed by gas chromatography mass 

spectrometry (GC-MS). FAMEs were represented and written as the total number of 

carbon atoms followed by a colon, the number of double bonds followed by the position 

of those double bonds from the carboxyl end of the molecule, and its cis or trans 

configuration in brackets (e.g., C16:1(cis11)).  

Data Analysis 

Consistent with previous studies, individual FAMEs were reported as a ratio (% 

nmol) of total FAMEs (Petersen et al., 1997; Reichardt et al., 1997). FAMEs with 

retention times less than C14:0 and greater than C20:0 were deleted from the data matrix. 

Remaining FAME ratios or quantities in the data set were first analyzed by analysis of 

variance (Proc MIXED; SAS 9.2, SAS Institute Inc., Cary, NC, USA) to determine 

differences in total FAMEs and individual biomarkers among cover crop mixture, 

termination, and main crop treatments.  

Stepwise discriminant analysis and canonical discriminant analysis (Proc 

STEPDISC and Proc CANDISC; SAS 9.2) were then performed to characterize changes 

in overall soil microbial community structure in response to cover crop mixture and 

termination method treatment combinations. Stepwise discriminant analysis was used to 

identify individual FAMEs contributing most to treatment segregation. The resulting 

discriminant model was then subjected to a canonical discriminant analysis. Mahalanobis 

distances and the associated probabilities of significance (p-values) were used to detect 

differences among treatment combinations. The number of significant (p < 0.05) 

canonical discriminant functions (linear combinations of important FAME markers – 

those identified in stepwise discriminant analysis) determined the number of dimensions 
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used to segregate among treatment groups. The first canonical discriminant function 

always explains the most variation among treatment groups, followed by the second 

function, and so on. Canonical coefficients were used to determine the relative magnitude 

and directional relationship of FAME variables contributing to the canonical discriminant 

functions. Discriminant scores were then calculated for each experimental unit across 

both years (N = 168) with each significant discriminant function. Class means for all 

discriminant scores within treatment combinations were plotted along with the canonical 

coefficients for FAMEs in the significant discriminant functions.   

To aid in the visualization of statistical interactions, FAME abundance and ratios 

were often plotted as lines with cover crop mixture on the x-axis (Sosnoskie, 2006). The 

cover crop treatments were arranged in order (left-to-right) of increasing species diversity 

(from zero in the WD treatment to eight species in the 8CC treatment) along the x-axis 

similar to the figures presented by Tilman et al. (2001). However, we recognize that these 

data are not truly continuous as is traditionally expected in line plots. 

 

Results and Discussion 

Total FAMEs 

 While total extracted FAMEs is not a direct measure of microbial biomass, this 

method has been well correlated with more traditional measures of biomass (Zelles et al., 

1992). Total FAMEs were greatest in the 2CC – undercutter treatment combination 

(140.8 ± 3.9 nmol g
-1

) followed by the 8CC– undercutter treatment combination (132.4 ± 

3.9 nmol g
-1

; Figure 3.1). However, there was no difference in total FAMEs among the 

remaining treatment combinations. In contrast to our hypothesis, increasing carbon inputs 
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(in the form of cover crop and weed residue) did not consistently increase short-term total 

FAMEs. However, cover crop termination with the undercutter generally increased total 

FAMEs. This suggests that tillage with the undercutter resulted in a more favorable 

microbial habitat early in the growing season. In previous studies, incorporation of plant 

residue via disking or plowing typically increased bacterial abundance and reduced the 

ratio of fungi to bacteria (Zelles et al., 1992; Lundquist et al., 1999; Pankhurst et al., 

2002; Drenovsky et al., 2004; Elfstrand et al., 2007). However, the results of this study 

suggest that disk incorporation will reduce total FAMEs regardless of functional group, 

relative to cover crop termination and surface residue management with a conservation 

tillage implement like the undercutter. These results may indicate a general reduction in 

microbial abundance and biomass as tillage intensity increases. This is consistent with 

previous studies where microbial biomass was greater in surface soils of no-till 

treatments relative to plowed treatments in a long-term wheat-fallow cropping system 

(Doran et al., 1987; Drijber et al., 2000).  

Individual FAME Ratios 

Five FAME biomarkers (iC16:0, i10MeC17:0, i10MeC18:0, C16:1(cis11), 

C18:1(cis11)) were influenced by the effect of cover crop treatment. More specifically, 

abundance of these biomarkers was reduced in response to the WD treatment 

(unmanaged spring weed communities; Table 3.3). Despite the relationship between plant 

and microbial communities, there was no difference in individual FAME abundance 

between the 2CC and 8CC treatments. The effects of increasing aboveground plant 

diversity on soil microbial diversity and community composition are often subtle and 

only detected within the root rhizosphere (Kowalchuk et al., 2002). Moreover, individual 
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FAME abundance was typically not different between cover-cropped treatments (2CC 

and 8CC) and the NC control (Table 3.3). These results suggest that early-season weed 

communities (primarily Chenopodium album, Abutilon theophrasti, Amaranthus 

retroflexus, Thlaspi arvense, and Setaria viridis in this study) were altering microbial 

communities by reducing the abundance of several functional groups relative to soil with 

and without cover crop growth.  

The unique influence of weedy and invasive plant species on soil microbial 

community composition and specific functional groups has been observed previously 

(Batten et al., 2006). However, the influence of weedy and invasive plants on microbial 

community composition is not always consistent. Previous studies have found that weedy 

species (i.e., Centaurea maculosa, Centaurea solstitialis, and Aegilops triuncialis) can 

alter microbial community composition and increase the abundance of beneficial 

microbial groups (i.e., AMF species; Marler et al., 1999; Batten et al., 2006). In addition, 

these changes in microbial community structure have been shown to increase the 

competitive advantage of the weedy species relative to native competitors (Marler et al., 

1999). In contrast, others have reported that C. maculosa reduces the abundance and 

diversity of AMF (Lutgen and Rillig, 2004; Mummey and Rillig, 2006), which is more 

consistent with the results of this study. The reduction of C16:1(cis11) and C18:1(cis11) 

following spring weed growth in this study is especially relevant, as these markers have 

been cited as FAME biomarkers for AMF (Olsson et al., 1995; Olsson et al., 1999; van 

Aarle and Olsson, 2003). Mycorrhizal fungi can form mutualistic relationships with many 

crop species, improving nutrient uptake and subsequent crop yield (Mosse, 1973); thus, it 
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would seem reduction of AMF abundance could be an effective competitive strategy for 

weeds. 

While invasive plant species (primarily C. maculosa) have been extensively 

studied for effects on soil microbial communities, there have been relatively few studies 

examining the role of arable system weeds on soil microbial community structure in 

agroecosystems. Soil microbes have been viewed as a potential weed management tool 

(e.g., seedbank depletion and plant pathogenic fungi; Schaefer and Kotanen, 2003; 

Okalebo et al., 2011), but the influence of unmanaged weed communities on soil 

microbial community dynamics represents a new frontier in weed and soil ecology. 

Indeed, changes in the soil microbial community may influence competitive outcomes 

between weed and crop species (Marler et al., 1999); thus, these interactions warrant 

further investigation.     

 Plant termination with the undercutter reduced abundance of four actinomycete 

biomarkers (8MeC16:0, i10MeC17:0, i10MeC18:0, a10MeC18:0) but increased 

abundance of the actinomycete marker 10MeC18:0 relative to termination with the field 

disk (Table 3.4). This result contradicts previous findings, where actinomycete 

abundance was typically unaffected or reduced following cover crop termination with a 

field disk or plow (Zelles et al., 1992; Lundquist et al., 1999; Drenovsky et al., 2004; 

Elfstrand et al., 2007). It was hypothesized that termination with the undercutter would be 

a less intensive termination strategy and more closely mimic soil community response to 

no-till management observed in previous studies. Termination with the field disk did 

reduce abundance of the fungal marker C18:1(cis11) and the bacterial marker iC16:0 

relative to termination with the undercutter (Table 3.4). Reduced abundance of the 
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C18:1(cis11) fungal marker highlights the potentially negative effects of inversion tillage 

(e.g., field disking) on soil fungi. C18:1(cis11) is part of the neutral lipid fraction in 

arbuscular mycorrhizal fungi (AMF), which is essential to AMF metabolism (Graham et 

al., 1995). These lipids are thought to be the substrate for extraradical mycelium 

respiration (Bago et al., 2002). The majority of AMF biomass in the soil exists as 

extraradical mycelium, so it has been hypothesized that C18:1(cis11) originates primarily 

from AMF biomass (Olsson et al., 1999; van Aarle and Olsson, 2003). The reduction in 

C18:1(cis11) following disk incorporation (relative to undercutting and the NC control) 

observed here is congruent with many previous studies demonstrating that residue 

placement on the soil surface leads to greater abundance of fungi and AMF compared to 

full soil incorporation of residue (Doran, 1980; Holland and Coleman, 1987; Roper and 

Gupta, 1995; Elfstrand et al., 2007). Reduced fungal abundance in the disk treatment may 

be due to the complex interaction of factors associated with the soil habitat, including 

reduced soil moisture and increased soil disturbance (Elfstrand et al., 2007).    

Individual FAMEs were less influenced by the main crop, but the presence of 

sunflower reduced the abundance of bacterial biomarkers iC15:0 and aC15:0 relative to 

soil sampled in the corn crop (Table 3.5). In contrast, sunflower promoted the abundance 

of the C18:2 (cis9,12) fungal biomarker (6.32 ± 0.18%) relative to soil sampled in the 

corn (5.74 ± 0.18%) or soybean (5.77 ± 0.18%) crops (Table 3.5). The relatively weak 

influence of individual plant species on soil microbial community composition is 

consistent with previous studies (Buyer et al., 1999; Kielak et al., 2008). However, 

changes in soil microbial community composition may be more pronounced as the crop 

community matures throughout the growing season. Indeed, current crop can be a strong 
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driver of microbial community composition, often masking alternative influences like 

tillage (Drijber et al., 2000).  

 The FAME C16:1(cis11) is commonly cited as a biomarker for AMF (Olsson et 

al., 1995; Drijber et al., 2000), and was influenced by the three way interaction of cover 

crop treatment, termination method, and year (F = 13.11, dfn = 2, dfd = 122, p < 0.0001). 

Abundance of C16:1(cis11) in the 8CC – undercutter treatment combination (3.53 ± 0.28 

nmol g
-1

) was greater than the 8CC – disk treatment (2.77 ± 0.28 nmol g
-1

) and both the 

WD – disk and WD – undercutter treatment combinations (2.93 ± 0.28 nmol g
-1

 and 2.71 

± 0.28 nmol g
-1

, respectively) in 2009 (Figure 3.2). C16:1(cis11) abundance was also 

elevated in the 2CC – disk and 2CC – undercutter treatment combinations (3.56 ± 0.28 

nmol g
-
1 and 3.61 ± 0.28 nmol g

-1
, respectively), but none of the treatment combinations 

in 2009 was different from the NC control (3.15 ± 0.28 nmol g
-1

). 

 Generally, C16:1(cis11) abundance was greater in cover-cropped treatments 

compared to both WD treatments and the NC control in 2010 (Figure 3.2). The response 

to termination method was inconsistent across cover crop treatments as the undercutter 

increased C16:1(cis11) abundance in the 2CC cover crop mixture (4.18 ± 0.28 nmol g
-1

) 

but reduced abundance in the 8CC cover crop mixture (3.54 ± 0.28 nmol g
-1

) relative to 

termination with the disk. We hypothesized that cover crop termination with the disk 

would reduce AMF abundance as intensive tillage has been shown to reduce ratios of 

fungi to bacteria and AMF hyphal length and abundance (Frey et al., 1999; Drijber et al., 

2000; Pankhurst et al., 2002). While the effect of termination method was inconsistent, 

the presence of cover crops often led to increased abundance of C16:1(cis11). This result 

is consistent with Drijber et al. (2000) who found that abundance of C16:1(cis11) 
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decreased in the absence of carbon substrates (fallow period). However, it is unique that 

the type of plant residue (weeds vs. cover crops) affected the abundance of C16:1(cis11). 

Despite the addition of fresh carbon substrates in the WD treatments, C16:1(cis11) was 

often lower (though not always significantly so) than levels in the cover-cropped 

treatments (Figure 3.2). This reduction in AMF abundance following growth of weedy 

species is consistent with previous studies (Lutgen and Rillig, 2004; Mummey and Rillig, 

2006). However, information on the effects of agricultural weeds remains scarce.  

Microbial Community Composition 

 Of the 42 FAMEs identified among all soil samples, 9 were included in the 

discriminant function after stepwise discriminant analysis. Canonical discriminant 

analysis then identified two significant disciminant functions (DA1 and DA2; p < 0.05), 

which explained 65.2 and 14.3% of the variance, respectively, for a total explained 

variance of 79.5%. The p-values associated with pairwise squared Mahalanobis distances 

indicated that a majority of cover crop – termination method treatment groups segregate 

from one another when using a rejection level of α = 0.10 (Table 3.6). However, when 

using the more traditional α = 0.05 rejection level, segregation among treatments required 

broader classifications. The most obvious segregation occurred between the WD 

treatments (both disk and undercutter termination methods) and all other treatment 

groups. This finding is consistent with univariate analyses indicating that the WD 

treatments reduced five FAME ratios relative to both cover-cropped treatments and the 

NC control (Table 3.3). 

Termination method was effective in treatment segregation within the 2CC 

mixture, but not within the 8CC or WD treatments. Cover-cropped treatments only 
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segregated from the NC control when combined with the undercutter for termination. In 

contrast to our hypothesis, there were relatively minor differences in microbial 

community composition among the 2CC and 8CC treatments. Instead, the early-season 

weed communities were driving the most substantial changes in microbial community 

composition (Table 3.6; Figure 3.3a). Indeed, the effect of increasing plant diversity on 

soil microbial community composition is often limited to the soil rhizosphere or is not 

detectable (Kowalchuk et al., 2002; Kielak et al., 2008). Few studies have addressed the 

role of increasing plant diversity on soil microbial diversity and community composition 

(Waldrop et al., 2006), but the results of this study in combination with others would 

suggest that the proposed relationship is relatively weak.  

 FAME marker ratios positively correlated to DA1 (as indicated by positive 

canonical coefficients) included i10MeC18:0, C18:1(cis11), C16:1(cis5), C17:1(cis9), 

and C20:n (in order of highest to lowest canonical coefficients; Figure 3.3b). FAME 

ratios for these biomarkers were generally greatest in cover-cropped treatment groups and 

lowest in the WD treatments. The i10MeC18:0 marker has been cited as a FAME 

biomarker for actinomycetes while C17:1(cis9) has been cited as a biomarker for bacteria 

(Wortmann et al., 2008). Increased ratios of actinomycetes and fungi (C18:1(cis11)) in 

the cover-cropped soils are congruent with previous studies (Schutter et al., 2001; Carrera 

et al., 2007; Buyer et al., 2010). In contrast, negative canonical coefficients were found 

for a10MeC18:0, C18:0, C18:1(cis13), and cyC19(9,10) (in order of most to least 

negative canonical coefficients; Figure 3.3b). However, these are less common FAME 

biomarkers that are not typically associated with major soil microbial function groups.  
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DA2 was positively correlated with FAME ratios for C17:1(cis9), C20:n, 

cyC19(9,10), and C18:1(cis13), and negatively correlated with FAME ratios for 

C18:1(cis11), i10MeC18:0, and C18:0 (Figure 3.3b). The largest segregation among 

treatment groups by DA2 was between the NC control treatment and the undercutter 

treatments (Figure 3.3a). This segregation suggests that ratios of C17:1(cis9) (a bacterial 

biomarker), C20:n, cyC19(9,10), and C18:1(cis13) were greater in treatments with plant 

residue managed on the soil surface (cover crops or weeds), whereas ratios of 

C18:1(cis11) (a fungal biomarker), i10MeC18:0 (an actinomycete marker), and C18:0 

were greatest in the NC treatment without any plant growth or subsequent residue cover. 

The negative relationship between the cover crop – undercutter treatment combinations 

and i10MeC18:0 is consistent with univariate analyses (Table 3.4) and suggests that the 

soil environment following an undercutting operation is not conducive to actinomycete 

growth. Previous studies have found that intensive tillage and full soil incorporation of 

cover crop residue reduces actinomycete abundance (Zelles et al., 1992; Lundquist et al., 

1999; Drenovsky et al., 2004; Elfstrand et al., 2007), but this is the first evidence that the 

sweep plow undercutter for cover crop termination negatively affects actinomycetes. 

Another unexpected result was the negative relationship observed between C18:1(cis11) 

and the undercutter – cover crop treatment combinations in the second discriminant 

function. This was not consistent with univariate analysis (Table 3.4) and may not 

represent a predictable shift in microbial community composition given that DA2 

explained only 14.3% of the total variation in the data.   
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Conclusions 

While the results for individual FAMEs and overall community composition were 

sometimes inconsistent with previous studies, it is clear from this work that the type of 

residue (cover crops vs. weeds) and the method of plant termination and residue 

management resulted in unique changes to microbial community structure. While tillage 

is often a strong driver of soil microbial community structure in managed ecosystems 

(Drijber et al., 2000), the results of this study highlight the unique influence of weed 

communities on specific soil microbial function groups and community structure as a 

whole. Previous studies have found that plant species, community composition, and 

diversity are relatively weak drivers of microbial community composition (Kielak et al., 

2008), but these results demonstrate the potential influence of plants when comparing 

different plants classifications (weedy species vs. cultivated crops).  Future studies should 

be directed toward understanding the prominent role of agricultural weed communities in 

driving microbial community composition and also toward determining the functions of 

these unique communities and functional groups (Torsvik et al., 2002).  

 



103 

 

 

Literature Cited 

Alden, L., F. Demoling, and E. Baath. 2001. Rapid method of determining factors 

limiting bacterial growth in soil. Applied and Environmental Microbiology 67:1830-

1838. 

Bago, B., W. Zipfel, R. M. Williams, J. Jun, R. Arreola, P. J. Lammers, P. E. Pfeffer, and 

Y. Shachar-Hill. 2002. Translocation and utilization of fungal storage lipid in the 

arbuscular mycorrhizal symbiosis. Plant Physiology 128:108–124. 

Batten, K. M, K. M. Scow, K. F. Davies, S. P. Harrison. 2006. Two invasive plants alter 

soil microbial community composition in serpentine grasslands. Biological Invasions 

8:217–230. 

Bossio, D. A., K. M. Scow, N. Gunapala, and K. J. Graham. 1998. Determinants of soil 

microbial communities: effects of agricultural management, season, and soil type on 

phospholipid fatty acid profiles. Microbial Ecology 36:1-12. 

Buckley, D. H., and T. M. Schmidt. 2001. The structure of microbial communities in soil 

and the lasting impact of cultivation. Microbial Ecology 42:11-21.  

Buyer, J. S., D. P. Roberts, and E. Russek-Cohen. 1999. Microbial community structure 

and function in the spermosphere as affected by soil and seed type. Canadian Journal 

of Microbiology 45:138–144.  

Buyer, J. S., J. R. Teasdale, D. P. Roberts, I. A. Zasada, and J. E. Maul. 2010. Factors 

affecting soil microbial community structure in tomato cropping systems. Soil 

Biology and Biochemistry 42:831-841. 

Callaway, R. M., and W. M. Ridenour. 2004. Novel weapons: Invasive success and the 

evolution of increased competitive ability. Frontiers in Ecology and the Environment 

2:436–443. 

Carrera, L. M., J. S. Buyer, B. Vinyard, A. A. Abdul-Baki, L. J. Sikora, and J. R. 

Teasdale. 2007. Effects of cover crops, compost, and manure amendments on soil 

microbial community structure in tomato production systems. Applied Soil Ecology 

37:247-255. 

Cookson, W. R., D. V. Murphy, and M. M. Roper. 2008. Characterizing the relationships 

between soil organic matter components and microbial function and composition 

along a tillage disturbance gradient. Soil Biology and Biochemistry 40:763-777. 

Creamer, N. G., B. Plassman, M. A. Bennett, R. K. Wood, B. R. Stinner, and J. Cardina. 

1995. A method for mechanically killing cover crops to optimize weed suppression. 

American Journal of Alternative Agriculture 10:157-162. 

Doran, J. 1980. Microbial changes associated with residue management with reduced 

tillage. Soil Science Society of America Journal 44:518-524. 



104 

 

 

Doran, J.W. 1987. Microbial biomass and mineralizable nitrogen distributions in no-

tillage and plowed soils. Biology and Fertility of Soils 5:68-75. 

Drenovsky, R. E., D. Vo, K. J. Graham, and K. M. Scow. 2004. Soil water content and 

organic carbon availability are major determinants of soil microbial community 

composition. Microbial Ecology 48:424-430. 

Drijber, R. A., and W. B. McGill. 1994. Sulfonolipids as a biomarker to monitor the 

population dynamics of the genera Cytophaga and Flexibacter in soil worked by the 

earthworm Aporrectodea turgida. Soil Biology and Biochemistry 26:1395 -1403. 

Drijber, R. A., J. W. Doran, A. M. Parkhurst, and D. J. Lyon. 2000. Changes in soil 

microbial community structure with tillage under long-term wheat-fallow 

management. Soil Biology and Biochemistry 32:1419-1430. 

Elfstrand, S., B. Bath, and A. Martensson. 2007. Influence of various forms of green 

manure amendment on soil microbial community composition, enzyme activity and 

nutrient levels in leek. Applied Soil Ecology 36:70-82. 

Frey, S. D., E. T. Elliott, and K. Paustian. 1999. Bacterial and fungal abundance and 

biomass in conventional and no-tillage agroecosystems along two climatic gradients. 

Soil Biology and Biochemistry 31:573-585. 

Germida, J. J., S. D. Siciliano, J. R. de Freitas, A. M. Seib. 1998. Diversity of root-

associated bacteria associated with field-grown canola (Brassica napus L.) and wheat 

(Triticum aestivum L.). FEMS Microbiology Ecology 26:43-50.  

Graham, J. H., N. C. Hodge, J. B. Morton. 1995. Fatty acid methyl ester profiles for 

characterization of Glomalean fungi and their endomycorrhizae. Applied and 

Environmental Microbiology 61:58–64. 

Grogan, D.W., J. E. Cronan Jr. 1997. Cyclopropane ring formation in membrane lipids of 

bacteria. Microbiology and Molecular Biology Reviews 61:429-441. 

Holland, E. A., and D. C. Coleman. 1987. Litter placement effects on microbial and 

organic matter dynamics in an agroecosystem. Ecology 68:425-433. 

Jackson, L. E., F. J. Calderon, K. L. Steenworth, K. M. Scow, and D. E. Rolston. 2003. 

Responses of soil microbial processes and community structure to tillage events and 

implications for soil quality. Geoderma 114:305-317. 

Kates, M. 1986. Techniques of lipidology: isolation, analysis and identification of lipids. 

In: Burdon, R.H., van Kippenberg, P.H. (Eds.), Laboratory Techniques in 

Biochemistry and Molecular Biology, vol. 3, Part 2. Elsevier, NY. 

Kielak, A., A. S. Pijl, J. A. Van Veen, and G. A. Kowalchuk. 2008. Differences in 

vegetation composition and plant species identity lead to only minor changes in soil-



105 

 

 

borne microbial communities in a former arable field. FEMS Microbiology Ecology 

63:372–382. 

Kowalchuk, G. A., D. S. Buma, W. de Boer, P. G. L. Klinkhamer, J. A. van Veen. 2002. 

Effects of above-ground plant species composition and diversity on the diversity of 

soil-borne microorganisms. Antonie van Leeuwenhoek 81:509-520. 

Lutgen, E. R., and M. C. Rillig. 2004. Influence of spotted knapweed (Centaurea 

maculosa) management treatments on arbuscular mycorrhizae and soil aggregation. 

Weed Science 52:172–177. 

Lundquist, E. J., L. E. Jackson, K. M. Scow, and C. Hsu. 1999. Changes in microbial 

biomass and community composition, and soil carbon and nitrogen pools after 

incorporation of rye into three California agricultural soils. Soil Biology and 

Biochemistry 31:221-236. 

Lupwayi, N. Z., W. A. Rice, and G. W. Clayton. 1998. Soil microbial diversity and 

community structure under wheat as influenced by tillage and crop rotation. Soil 

Biology and Biochemistry 30:1733-1741.  

Marler, M. J., C. A. Zabinski, and R. M. Callaway. 1999. Mycorrhizae indirectly enhance 

competitive effects of an invasive forb on a native bunchgrass. Ecology 80:1180–

1186. 

Mosse, B. 1973. Advances in the study of vesicular-arbuscular mycorrhiza. Annual 

Review of Phytopathology 11:171-196. 

Nichols, P. D., J. B. Guckert, and D. C. White. 1986. Determination of monounsaturated 

fatty acid double-bond position and geometry for microbial monocultures and 

complex consortia by capillary GC-MS of their dimethyl disulphide adducts. Journal 

of Microbiological Methods 5:49-55. 

Oehl, F., E. Sieverding, K. Ineichen, P. Mader, T. Boller, and A. Wiemken. 2003. Impact 

of land use intensity on the species diversity of arbuscular mycorrhizal fungi in 

agroecosystems of central Europe. Applied and Environmental Microbiology 

69:2816-2824. 

Okalebo, J., G. Y. Yuen, R. A. Drijber, E. E. Blankenship, C. Eken, and J. L. Lindquist. 

2011. Biological suppression of velvetleaf (Abutilon theophrasti) in an eastern 

Nebraska soil. Weed Science 59:155-161. 

Olsson, P. A., Baath, E., Jakobsen, I., Soderstrom, B. 1995. The use of phospholipid and 

neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. 

Mycological Research 99:623-629. 

Olsson, P. A., I. Thingstrup, I. Jakobsen, and E. Baath. 1999. Estimation of biomass of 

arbuscular mycorrhizal fungi in a linseed field. Soil Biology and Biochemistry 31: 

1879-1887. 



106 

 

 

Pankhurst, C. E., C. A. Kirkby, and B. G. Hawke. 2002. Impact of a change in tillage and 

crop residue management practice on soil chemical and microbiological properties in 

a cereal-producing red duplex soil in NSW, Australia. Biology and Fertility of Soils 

35:189-196.  

Petersen, S. O., K. Debosza, P. Schjùnning, B. T. Christensen, and S. Elmholt. 1997. 

Phospholipid fatty acid profiles and C availability in wet-stable macro-aggregates 

from conventionally and organically farmed soils. Geoderma 78:181-196. 

Reichardt, W., G. Mascarina, B. Padre, and J. Doll. 1997. Microbial communities in 

continuously cropped, irrigated rice fields. Applied and Environmental Microbiology 

63:233-238. 

Roper, M. M., and V. V. S. R. Gupta. 1995. Management practices and soil biota. 

Australian Journal of Soil Research 33:321–339. 

Schafer, M., and P. M. Kotanen. 2003. The influence of soil moisture on losses of buried 

seeds to fungi. Acta Oecologia 24:255–263. 

Schutter, M. E., J. M. Sandeno, and R. P. Dick. 2001. Seasonal, soil type, and alternative 

management influences on microbial communities of vegetable cropping systems. 

Biology and Fertility of Soils 34:397-410. 

Shannon, D., A. M. Sen, and D. B. Johnson. 2002. A comparative study of the 

microbiology of soils managed under organic and conventional regimes. Soil Use and 

Management 18:274-283. 

Sosnoskie, L. M., C. P. Herms, and J. Cardina. 2006. Weed seedbank composition in a 

35-yr-old tillage and rotation experiment. Weed Science 54:263-273. 

Teasdale, J. R., and C. L. Mohler. 1993. Light transmittance, soil temperature, and soil 

moisture under residue of hairy vetch and rye. Agronomy Journal 85:673-680. 

Tilman, D., P. B. Reich, J. Knops, D. Wedin, T. Mielke, and C. Lehman. 2001. Diversity 

and productivity in a long-term grassland experiment. Science 294:843–845. 

Torsvik, V., and L. Øvreås. 2002. Microbial diversity and function in soil: from genes to 

ecosystems. Current Opinion in Microbiology 5:240–245. 

van Aarle, I. M., and P. A. Olsson. 2003. Fungal lipid accumulation and development of 

mycelial structures by two arbuscular mycorrhizal fungi. Applied and Environmental 

Microbiology 69:6762–6767. 

van Bruggen A. H. C., and A. M. Semenov. 2000. In search of biological indicators for 

soil health and disease suppression. Applied Soil Ecology 15:13-24.  



107 

 

 

van Diepeningen, A. D., O. J. de Vos, G. W. Korthals, and A. H. C. van Bruggen. 2006. 

Effects of organic versus conventional management on chemical and biological 

parameters in agricultural soils. Applied Soil Ecology 31:120-135. 

Waldrop, M. P., T. Balser, and M. K. Firestone. 2000. Linking microbial community 

composition to function in a tropical soil. Soil Biology and Biochemistry 32:1837-

1846. 

Waldrop, M. P., D. R. Zak, C. B. Blackwood, C. D. Curtis, and D. Tilman. 2006. 

Resource availability controls fungal diversity across a plant diversity gradient. 

Ecology Letters 9:1127–1135. 

White, D. C., W. M. Davis, J. S.Nickels, J. D. King, R. J. Bobbie. 1979. Determination of 

the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40:51-

62. 

Wortmann, C. S., J. A. Quincke, R. A. Drijber, M. Mamo, and T. Franti. 2008. Soil 

microbial community change and recovery after one-time tillage of continuous no-till. 

Agronomy Journal 100:1681-1686.  

Yu, Q. T., B. N. Liu, J. Y. Zhang, Z. H. Huang. 1989. Location of double bonds in fatty 

acids of fish oil and rat testis lipids. Gas chromatography-mass spectrometry of the 

oxazoline derivatives. Lipids 24:79-83. 

Zak, D. R., W. E. Holmes, D. C. White, A. D. Peacock, and D. Tilman. 2003. Plant 

diversity, soil microbial communities, and ecosystem function: are there any links? 

Ecology 84:2042-2050. 

Zelles, L., Q. Y. Bai, T. Beck, and F. Beese. 1992. Signature fatty acids in phospholipids 

and lipopolysaccharides as indicators of microbial biomass and community structure 

in agricultural soils. Soil Biology and Biochemistry 24:317-323. 



108 

 

 

Tables and Figures 

Table 3.1. Cover crop species and seeding rates (kg ha
-1

) used in individual cover crop 

mixtures for the years 2009 and 2010 (2CC = 2 species mixture; 8CC = 8 species 

mixture). 

    Seeding rate 

Common name Scientific name 2CC 8CC 

  

__ 
 kg ha

-1  __
 

Hairy Vetch Vicia villosa 22.4 5.6 

Buckwheat (2009) Fagopyrum sagittatum 28.0 7.0 

Idagold Mustard (2010) Sinapus alba 6.7 1.7 

Field Pea Pisum sativum 

 

14.0 

Pacific Gold Mustard Brassica juncea 

 

1.1 

Oilseed Radish Raphanus sativus 

 

2.1 

Crimson Clover Trifolium incarnatum 

 

3.5 

Dwarf Essex Rape Brassica napus 

 

1.7 

Chickling Vetch Lathyrus sativus   8.4 

 

 

 

Table 3.2. Timing of field operations and data collection for each year of the study. 

  Date 

 

2009 2010 

Operation 

  Cover crop planting 20 March 30 March 

Cover crop termination 22 May 28 May 

Main crop planting 28 May 1-3 June 

1st inter-row cultivation 1 July 28 June 

2nd inter-row cultivation 

 

1 July 

Soil sampling 6-7 July 29-30 June 
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Table 3.3. LS means and standard errors of ratios of FAME peak area to total FAMEs 

(nmol %) as influenced by cover crop mixture. 

  Cover crop mixture 

  NC WD 2CC 8CC 

Bacteria 

    iC16:0 4.53 (0.08) 4.38 (0.06) 4.56 (0.06) 4.55 (0.06) 

Actinomycetes 

    i10MeC17:0 1.31 (0.08) 1.15 (0.06) 1.36 (0.06) 1.28 (0.06) 

i10MeC18:0 3.65 (0.28) 3.13 (0.20) 3.79 (0.20) 3.60 (0.20) 

AMF 

    C16:1 (cis11) 2.59 (0.13) 2.41 (0.10) 2.85 (0.10) 2.69 (0.10) 

C18:1 (cis11) 4.70 (0.10) 4.42 (0.07) 4.74 (0.07) 4.77 (0.07) 

 

 

 

Table 3.4. LS means and standard errors of ratios of FAME peak area to total FAMEs 

(nmol %) as influenced by cover crop termination method. 

  Cover crop termination method 

  No cover Disk Undercutter 

Bacteria 

   C17:0 0.736 (0.011) 0.718 (0.006) 0.739 (0.006) 

Actinomycetes 

   8MeC16:0 1.85 (0.08) 1.88 (0.04) 1.71 (0.04) 

i10MeC17:0 1.31 (0.08) 1.33 (0.05) 1.20 (0.05) 

i10MeC18:0 3.65 (0.28) 3.71 (0.16) 3.30 (0.16) 

a10MeC18:0 0.453 (0.020) 0.467 (0.012) 0.441 (0.012) 

10MeC18:0 1.438 (0.028) 1.430 (0.016) 1.468 (0.016) 

AMF 

   C18:1 (cis11) 4.70 (0.10) 4.56 (0.06) 4.72 (0.06) 
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Table 3.5. LS means and standard errors of ratios of FAME peak area to total FAMEs 

(nmol %) as influenced by current crop. 

  Current crop 

  Corn Soybean Sunflower 

Bacteria 

   iC15:0 5.46 (0.06) 5.37 (0.06) 5.30 (0.06) 

aC15:0 3.71 (0.06) 3.69 (0.06) 3.58 (0.06) 

Fungi 

   C18:2 (cis9,12) 5.74 (0.18) 5.77 (0.18) 6.32 (0.18) 
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Table 3.6. Pairwise squared Mahalanobis distance for FAMEs between cover crop mixture by termination method treatment groups 

pooled across main crops and years.  

Treatment 2CC/D 2CC/U 8CC/D 8CC/U WD/D WD/U NC 

 

Squared Mahalanobis distance/(probability>Mahalanobis distance) 

2CC/D
a
 0.000 2.186 1.492 1.939 1.774 2.328 1.385 

 

(1.000) (0.005) (0.057) (0.012) (0.022) (0.004) (0.082) 

2CC/U 2.186 0.000 1.525 0.696 4.270 5.135 2.618 

 

(0.005) (1.000) (0.051) (0.543) (0.0001) (0.0001) (0.001) 

8CC/D 1.492 1.525 0.000 0.483 3.171 4.264 1.377 

 

(0.057) (0.051) (1.000) (0.786) (0.000) (0.0001) (0.084) 

8CC/U 1.939 0.696 0.483 0.000 3.700 4.917 2.265 

 

(0.012) (0.543) (0.786) (1.000) (0.0001) (0.0001) (0.004) 

WD/D 1.774 4.270 3.171 3.700 0.000 0.408 1.903 

 

(0.022) (0.0001) (0.0001) (0.0001) (1.000) (0.869) (0.014) 

WD/U 2.328 5.135 4.264 4.917 0.408 0.000 2.482 

 

(0.004) (0.0001) (0.0001) (0.0001) (0.869) (1.000) (0.002) 

NC 1.385 2.618 1.377 2.265 1.903 2.482 0.000 

  (0.082) (0.001) (0.084) (0.004) (0.014) (0.002) (1.000) 
a
 2CC/D = 2 species mix + disk; 2CC/U = 2 species mix + undercutter; 8CC/D = 8 species mix + disk; 8CC/U = 8 species mix + 

undercutter; WD/D = weedy control + disk; WD/U = weedy control + undercutter; NC = no cover crop (or weeds) control.

1
1

1
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Figure 3.1. Effects of cover crop mixture and termination method on total FAMEs (nmol 

g
-1

) at 45 and 32 days after cover crop termination in 2009 and 2010, respectively. Error 

bars represent the standard error of the LS means. NC = no cover control; WD = weedy 

mixture; 2- and 8CC = 2 and 8 cover crop species mixtures, respectively (Table 3.1).
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Figure 3.2. Effects of cover crop mixture and termination method on the AMF biomarker 

C16:1(cis11) (nmol g
-1

) at 45 and 32 days after cover crop termination in 2009 and 2010, 

respectively. Error bars represent the standard error of the LS means. NC = no cover 

control; WD = weedy mixture; 2- and 8CC = 2 and 8 cover crop species mixtures, 

respectively (Table 3.1). 

2009

2.5

3.0

3.5

4.0

4.5
No Cover

Disk

Undercutter

2010

Cover crop mixture (no. of species)

NC WD 2CC 8CC

C
1
6
:1

(c
is

1
1
) 

(n
m

o
l 
g
-1

)

2.5

3.0

3.5

4.0

4.5 No Cover

Disk

Undercutter



114 

 

 

 

Figure 3.3. Discriminant score means for all cover crop mixture by termination method 

treatment groups (a), and standardized canonical coefficients for FAMEs (b) contributing 

to the two significant discriminant functions DA1 and DA2.  
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Chapter 4 

Cover crop mixtures and an alternative termination method for organic grain cropping 

systems: Influence on soil moisture and nitrogen, crop yield, and profitability 

 

Abstract 

 Many studies have demonstrated soil quality benefits and fertility contributions of 

individual cover crop species, but the value of diverse cover crop mixtures has received 

less attention. Moreover, there is increasing interest in conservation tillage strategies for 

cover crop termination. The objectives of this research were to determine the effects of 

spring-sown cover crop mixture diversity and mechanical cover crop termination method 

on cover crop productivity, soil moisture, soil nitrogen, crop yield and profitability in an 

organic cropping system. A field experiment was conducted between 2009 and 2011 near 

Mead, NE where mixtures of 2, 4, 6, and 8 cover crop species, or a summer annual weed 

mixture were included in a sunflower – soybean – corn crop rotation. Cover crops were 

planted in late-March, terminated in late-May using a field disk or sweep plow 

undercutter and main crops were planted within one week of termination. Aboveground 

biomass of cover crops and weeds was consistently greater in cover crop mixtures (307.3 

g m
-2

) compared to the weed mixture (87.6 g m
-2

), and in two of three years biomass 

increased with diversity of the cover crop mixture. Undercutting cover crops increased 

soil NO3-N (0 to 20 cm) by 1.0 and 1.8 µg NO3-N g
-1 

relative to disk incorporation at 32 

days after termination (DAT) in 2010 and at 55 DAT in 2011, respectively. Cover crop 

mixtures reduced soil moisture content (0 to 8 cm) by 0.15 cm
3
 cm

-3 
prior to main crop 

planting during an abnormally dry 2009 spring, while cover crop termination with the 
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undercutter increased soil moisture content by as much as 0.024 cm
3
 cm

-3 
compared to 

termination with the disk during early main crop growth. Crop yields were not influenced 

by cover crop mixture, but termination with the undercutter (relative to disk 

incorporation) increased corn and soybean yield by as much as 1.40 and 0.88 Mg ha
-1

, 

respectively. Despite differences in productivity between spring cover crop mixtures and 

weed communities, crop yield was not different among these treatments; thus, 

profitability of the weed mixture – undercutter treatment combination was greatest due to 

reduced input costs (i.e., no cover crop seed or planting costs). Short-term yield and 

economic benefits of using weed communities as cover crops may be offset by reduced 

environmental benefits of a less productive and more spatially heterogeneous spring plant 

community.  
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Introduction 

 Cover crops have been shown to provide many environmental and agronomic 

services within agroecosystems. These include reduced soil erosion, increased biological 

diversity (e.g., microbes, insects, and birds), increased nutrient cycling and biological 

nitrogen fixation, increased soil organic matter, improved weed control, and increased 

crop yield (Pimentel et al., 1992; Pimentel et al., 1995; Sainju and Singh, 1997; Williams 

II et al., 1998; Altieri, 1999; Reddy et al., 2003; Teasdale et al., 2007). While cover crops 

have traditionally been used as a soil conservation tool (Pimentel et al., 1995), there is 

increasing interest in using cover crops to enhance agronomic crop performance. 

However, maximizing agronomic benefits associated with cover crops will depend on 

appropriate cover crop choice and residue management (Ashford and Reeves, 2003; 

Wortman et al., 2012). Single species cover crops are often popular among farmers due to 

the ease of planting, and uniform development and predictable termination efficacy of the 

cover crop (Creamer et al., 1995; Mirsky et al., 2009). However, multi-species cover crop 

mixtures may increase productivity, stability, resilience, and resource-use efficiency of 

the cover crop community (Tilman, 1996; Tilman et al., 1997; Trenbath, 1999; Tilman et 

al., 2001; Wortman et al., 2012). 

 Despite the demonstrated benefits of cover crops, on-farm adoption remains 

limited due to farmer concerns about the cost and management implications of planting 

cover crops. One of the top concerns among farmers is the amount of soil water used by 

cover crops, potentially reducing available soil moisture for the cash crop (Corn and 

Soybean Digest, 2010). During seasons with average and above-average rainfall 

conditions, differences in available soil moisture among cover crop species and mixtures 

are often undetectable (Daniel et al., 1999). However, when cover crop productivity is 
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high and precipitation becomes limiting, cover crop species can differ greatly in their 

effects on soil moisture (Unger and Vigil, 1998; Daniel et al., 1999). While transpiration 

demands will undoubtedly vary among species, the method of cover crop termination and 

residue management may have a greater impact on available soil moisture during main 

crop growth. Daniel et al. (1999) found that volumetric soil moisture (%) was increased 

by as much as 2.4% to a depth of 61 cm when cover crops were terminated with 

herbicides in a no-till system compared to conventional termination with a field disk. Soil 

water savings associated with no-till practices have been well documented (Blevins et al., 

1983; De Vita et al., 2007), but the additional benefits of cover crop residue in a 

conservation tillage system are not as clear. Liebl et al. (1992) found that cover crop 

transpiration reduced available soil moisture during dry periods, but following no-till 

termination cover crop residue conserved soil moisture relative to a no-till system without 

cover crops. Given that the driest portion of the growing season in eastern Nebraska 

typically occurs after cover crop growth (i.e., June – August), potential soil moisture 

savings offered by cover crop residues (post-termination) throughout the growing season 

may negate moisture deficits observed during cover crop growth.  

 Despite concerns about water use, many farmers are interested in cover crops 

because of the potential for improved nutrient cycling and biological nitrogen fixation 

(Corn and Soybean Digest, 2010). As a result, species in the Fabaceae (legume) family 

are among the most popular and expensive cover crops. Legume cover crops (e.g., green 

manures) have been shown to reduce synthetic N input demands by 50 to 100% 

depending on species and the duration of cover crop growth (Biederbeck et al., 1996; 

Burket et al., 1997). While legume species have the potential to biologically fix nitrogen, 
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faster growing cover crop species (e.g., grass and mustard spp.) may be more useful in 

scavenging nitrates and nutrient cycling (Dabney et al., 2001). A mixture of legume and 

non-legume cover crop species may maximize the benefits of biological nitrogen fixation 

and nutrient cycling, as legumes can increase N availability to other species in mixture 

leading to increased productivity (Kuo and Sainju, 1998; Mulder et al., 2002). Consistent 

with impacts on soil moisture, termination method and residue management can influence 

nitrogen mineralization, soil availability, and crop uptake (Sainju and Singh, 2001). 

Incorporation of cover crop residue via field disk or plow often results in rapid nitrogen 

mineralization and plant availability, but management of residue on the soil surface has 

been shown to result in greater crop N uptake and yield (Sainju and Singh, 2001). 

Therefore, residue management on the soil surface with conservation tillage methods may 

be effective in syncing nitrogen mineralization and availability with crop demand and 

uptake (Parr et al., 2011). 

 Overall, the agronomic objective for cover crop management is to minimize soil 

water loss and increase the quantity and availability of soil nitrogen to promote increases 

in crop yield. However, improper management of cover crops can lead to substantial 

yield loss. The timing and method of cover crop termination have both been shown to 

affect yield influencing factors including: soil moisture availability, weed communities, 

cover crop and soil nitrogen content, and crop nitrogen uptake (Daniel et al., 1999; 

Mirsky et al., 2009; Parr et al., 2011; Wortman, 2012). Yield loss associated with cover 

crop use is typically attributed to incomplete cover crop control, soil moisture deficit, or 

nutrient immobilization and deficiency (Wagger, 1989; Unger and Vigil, 1998; Mischler 

et al., 2010); thus, management of cover crop residue should be focused toward 
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termination efficacy, moisture conservation, and optimum soil nitrogen availability 

during peak crop growth. To this end, conservation tillage implements like the sweep 

plow undercutter may have great potential (Creamer et al., 1995). In contrast to 

conventional tillage systems, the undercutter leaves intact cover crop residue on the soil 

surface, minimizes soil inversion, and presumably reduces evaporative loss from the soil. 

Moreover, the undercutter may be an improvement upon conservation implements like 

the roller-crimper, which is often inconsistent in termination efficacy (Mischler et al., 

2010). Despite these production challenges, many cover crop systems have been shown 

to maintain or increase crop yield (e.g., Clark et al., 1994; Davis, 2010; Mischler et al., 

2010). Indeed, demonstrating predictable yield and economic benefits associated with 

cover crop use will be necessary in increasing on-farm adoption (Corn and Soybean 

Digest, 2010).          

 The objectives of this research were to determine the effects of spring-sown cover 

crop mixture diversity and mechanical cover crop termination method on cover crop 

productivity, soil moisture, soil nitrogen, crop yield and profitability. We hypothesized 

that increasing cover crop diversity will increase total cover crop biomass, and 

subsequent grain yield, while soil moisture content will not differ among mixtures 

(despite differences in productivity). With regard to cover crop termination, we 

hypothesized that mulching cover crops with the sweep plow undercutter will increase 

soil moisture content, soil nitrate availability, crop yield, and profitability.  

 



121 

 

 

Materials and Methods 

Experimental Site and Design 

A field experiment was conducted in 2009, 2010 and 2011 at the University of 

Nebraska-Lincoln Agricultural Research and Development Center (ARDC) near Mead, 

Nebraska. Dominant soil type at the site is a Sharpsburg silty clay loam (fine, smectitic, 

mesic typic Argiudoll) with 0 to 5% slopes. The experiment was conducted in a 2.8 ha 

field that is certified for organic production (OCIA International, Lincoln, NE), and is 

managed without irrigation. This field was in organic alfalfa hay production between 

2004 and 2008. In the fall of 2008 the experimental area was amended with 50 Mg ha
-1

 of 

liquid beef feedlot manure and incorporated via field disk. In the spring of 2009, the 

entire field (excluding the weed-free control) was seeded with 8.1 kg ha
-1

 of velvetleaf 

(Abutilon theophrasti) seed, 2.6 kg ha
-1

 of common lambsquarters (Chenopodium album) 

seed, 1.2 kg ha
-1

 of redroot pigweed (Amaranthus retroflexus) seed, and 3.7 kg ha
-1

 of 

green foxtail (Setaria viridis) seed to establish a common weed seedbank throughout the 

field for a concurrent weed management study.  

The experiment was designed as a split-plot randomized complete block design 

within a 3-year crop rotation with 4 replications. The rotation sequence consisted of 

confectionery sunflower (Helianthus annuus L. ‘Seeds 2000 Jaguar’) – soybean (Glycine 

max L. Merr. ‘Blue River Hybrids 2A71’) – corn (Zea mays L. var. ‘Blue River Hybrids 

57H36’). Within each crop species, whole-plots (9.1 x 21.3 m; 12 crop rows spaced 0.76 

m apart) were defined by cover crop mixture, while split-plots (4.6 x 21.3 m; 6 crop rows 

spaced 0.76 m apart) were defined by cover crop termination method. Each “crop x cover 

crop mixture x termination method” treatment combination was replicated within each 
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block so that each phase of the 3-year crop sequence was present each year within each 

block. There were six whole-plot cover crop treatments: 1) two-species cover crop 

mixture (2CC), 2) four-species cover crop mixture (4CC), 3) six-species cover crop 

mixture (6CC), 4) eight-species cover crop mixture (8CC), 5) weedy mixture and cover 

crop-free (prior to main crop planting) (WD), and 6) weed-free and cover crop-free (prior 

to main crop planting) control (NC). The NC whole-plots were field disked and hand-

hoed twice prior to main crop planting, while the WD whole-plots were left unmanaged 

until cover crop termination. The goal for the WD treatment was to manage existing 

weed populations as a cover crop. Details on the individual species and seeding rates 

included in each cover crop mixture whole-plot are included in Table 4.1.  

Split-plot cover crop termination methods included either disking or undercutting. 

Termination method was randomized within the first replication (southernmost) and 

duplicated in the remaining three replications (north of the first replication) to facilitate 

adequate speed for effective tillage operations driving north-south through the field. 

Disking was conducted with a 4.6 m wide Sunflower 3300 (Sunflower Mfg., Beloit, KS, 

USA) disk to an approximate depth of 15 cm. Undercutting was conducted with either a 

Buffalo 6000 (Buffalo Equipment, Columbus, NE, USA) cultivator (modified for 

undercutting) with seven overlapping 0.75 m wide sweep blades (2009) or a Miller Flex-

Blade sweep plow undercutter (2010 and 2011) with three overlapping 1.5 m sweep 

blades. The undercutter sweeps are designed to cut a level plane through the soil at an 

approximate depth of 10 cm, severing plant roots and minimizing soil inversion, resulting 

in a layer of intact surface residue. Details on the design of the undercutter can be found 

in Creamer et al. (1995).   
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Cover crop mixtures were planted via hand-crank broadcast seeding followed by 

light incorporation with a John Deere 950 cultipacker (Deere and Company, Moline, IL, 

USA). Generally, cover crops were planted in late-March, terminated in late-May, and 

the main crop was planted within one week of termination. Specific dates for field 

operations across all years are detailed in Table 4.2. Seeding rates for confectionery 

sunflower, soybean, and corn were 62,000, 556,000, and 86,000 seeds ha
-1

, respectively. 

All crops were inter-row cultivated once (2009) or twice (2010 and 2011) approximately 

30 days after planting the main crop. Seeds of all legume cover crop and crop species 

were inoculated with appropriate rhizobia bacterial species prior to planting in 2009 and 

2010.   

Data Collection 

Monthly precipitation (mm) and temperature (°C) for April to September was 

determined for each growing season by summing daily precipitation and temperature 

measurements from the High Plains Regional Climate Center station located on the 

University of Nebraska Turf Farm near Mead, NE (41°10'12"N lat, 96°28'12"W long, 

elevation= 366 m), located 1 km northwest of the experimental site (Table 4.3). Climate 

data for the 30-year mean was obtained from a different climate center near Mead, NE 

(41°8'24"N and 96°28'48"W) between 1971 and 2000 (long-term data from the 

University of Nebraska Turf farm was unavailable). 

Three (2009) or four (2010 and 2011) aboveground biomass samples were taken 

from each whole plot experimental unit prior to cover crop termination to determine 

productivity of the cover crop mixtures and weed communities. Samples were combined 

within each experimental unit, dried at 60°C to constant mass and weighed. The biomass 
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harvest area included three 0.3 x 0.3 m samples per experimental unit in 2009, and was 

increased to four 0.3 x 0.6 m samples per experimental unit in 2010 and 2011.   

Surface soil moisture (0 to 8 cm) was measured weekly from cover crop planting 

through the vegetative growth of the main crop. Measurements were taken at three 

random points within each whole plot (prior to cover crop termination) or split-plot (after 

cover crop termination) experimental unit using a Theta Probe soil water sensor (SM 200 

Soil Moisture Sensor, Delta-T Devices Ltd, Cambridge, UK). Accuracy of the soil water 

sensor was verified against 21 gravimetric soil samples in 2010 and the ratio between 

method outputs was approximately 1:1. Indeed, linear regression analysis indicated a 

positive relationship between outputs from the two methods (p=0.003, F=11.68, dfn=1, 

dfd=19, R2=0.38; water sensor reading = 1.10 (gravimetric soil moisture) – 2.6).   

Soil samples were collected three times during the growing season: 1) prior to 

cover crop planting, 2) approximately 30 DAP, and 3) approximately 60 DAP. A 

composite soil sample of three (2009) or four (2010 and 2011) soil cores (3.18 cm 

diameter x 20 cm) per whole plot (prior to cover crop planting) or split-plot (30 DAP and 

60 DAP) experimental unit were taken. Composite soil samples were then air-dried and 

sent to Ward Laboratories (Ward Laboratories Inc., Kearney, NE, USA) for analysis of 

soil NO3-N. Soil extraction and analyses were conducted according to routine laboratory 

procedures at Ward Laboratories, Inc (Ward, 2011).  

Crop yield was determined for each main crop by harvesting seed or grain from 

the middle four rows of each split-plot experimental unit. Contents were weighed using a 

combine scale (Model 400, Weigh-Tronix, Fairmont, MN) and adjusted for moisture 
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content in the lab. Corn grain yields were adjusted to 0.155, soybean to 0.130, and 

sunflower to 0.10 g kg
-1

 moisture. 

Data Analysis 

Values for cover crop biomass, soil moisture, soil NO3-N, and crop yield were 

analyzed with a linear mixed model analysis of variance using the GLIMMIX procedure 

in SAS 9.2 (SAS Institute Inc., Cary, NC, USA). Fixed effects in the model included 

main crop, cover crop mixture, termination method, and all possible interactions of these 

effects. The random effects were block and the interaction of block by current crop by 

cover crop mixture. The model for data taken prior to cover crop termination (i.e., cover 

crop biomass and soil moisture) excluded fixed effects for main crop and termination 

method. In addition, models for soil NO3-N and soil moisture analysis included a fixed 

effect for day of year. Effects were often tested within individual years due to 

experimental changes in the cover crop mixture (buckwheat was replaced in all mixtures 

with Idagold mustard after 2009) and interactions with year when initially included as a 

fixed effect (data not shown). Least square means and standard errors were calculated for 

all significant fixed effects at an alpha level of 0.05. To aid in the visualization of 

statistical interactions, cover crop biomass data were plotted as lines with cover crop 

mixture on the x-axis (Sosnoskie, 2006). The cover crop treatments were arranged in 

order (left-to-right) of increasing cover crop species diversity (from zero in the WD 

treatment to eight species in the 8CC treatment) along the x-axis similar to the figures 

presented by Tilman et al. (2001). However, we recognize that these data are not truly 

continuous as is traditionally expected in line plots.  
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Results and Discussion 

Climate  

The average daily air temperature during the growing season for cover crops and 

summer annual cash crop crops (1 Apr. – 30 Sept.) was 17.8, 19.5, and 19.0°C in the 

years 2009, 2010, and 2011, respectively (Table 4.3). The 30-year mean (1971 to 2000) 

air temperature for the growing season near Mead, NE was 19.0°C. The 2009 growing 

season was exceptionally cool, especially during early cover crop growth (April) and 

vegetative crop growth (June through August; Table 4.3). Average total precipitation 

during the growing season for cover crops and summer annual cash crops was 432, 717, 

and 547 mm in 2009, 2010, and 2011, respectively. The 30-year mean total precipitation 

was 519 mm (Table 4.3). In addition to abnormally cool temperatures, the 2009 growing 

season was also relatively dry, especially during cover crop growth and early cash crop 

establishment. As a result, plant water stress (e.g., curling and cupping of leaves) was 

observed in all crops during June of 2009.  

Cover Crop Productivity  

Total cover crop mixture and/or weed biomass was greatest in the 6CC treatment 

(328.2 ± 21.0 g m
-2

), followed by the 4CC (287.6 ± 20.1 g m
-2

), 8CC (260.6 ± 20.1 g m
-

2
), 2CC (155.0 ± 20.1 g m

-2
) and WD (73.7 g m

-2
 ± 20.1 g m

-2
) treatments (LS mean ± 

standard error) when harvested 60 days after cover crop planting in 2009 (Figure 4.1). 

Cover crop productivity was not different among cover crop mixtures (ranging from 

367.2 to 409.3 ± 16.7 g m
-2

), but was lowest in the WD treatment (68.8 ± 16.7 g m
-2

) 

when harvested 55 days after cover crop planting in 2010 (Figure 4.1). Consistent with 

trends in 2009, cover crop productivity in 2011 was greatest in the 6CC, 8CC, and 4CC 
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treatments (309.6, 307.2, and 276.2 ± 14.3 g m
-2

, respectively), followed by the 2CC 

treatment (205.2 ± 14.3 g m
-2

), and lowest in the WD treatment (120.4 ± 14.3 g m
-2

). 

Biomass of weeds in the WD treatment was lower than biomass of cover crop mixtures 

primarily due to spatial heterogeneity of weeds growing in this treatment and variable 

emergence and growth of various species in the weed community. Though the 

productivity of cover crop mixtures was similar in 2009 and 2011, the cause for this 

response was different between years.  

Differences in cover crop productivity in 2009 were likely due to the presence or 

absence of a Brassicaceae (mustard) spp. in the mixture. Cover crop biomass was lowest 

in the 2CC mixture as it only included hairy vetch and buckwheat. Both of these species 

were slow-growing throughout the relatively cool and dry early growing season in 2009 

(Table 4.3), and buckwheat was moderately susceptible to early frost. Buckwheat is often 

used as a summer cover crop or later planted main crop due to its susceptibility to frost, 

especially during seedling growth (Kalinova and Moudry, 2003); thus, buckwheat may 

not be a suitable species for use as a spring-sown cover crop in the western Corn Belt. 

Given these results, buckwheat was replaced in all mixtures with Idagold mustard in 2010 

and 2011. Idagold mustard, a mustard spp., was selected as the replacement due to the 

high level of productivity of the three other mustard spp. used in the 4CC, 6CC, and 8CC 

mixtures in 2009. Mustard spp., including Idagold mustard, are well adapted to the cool 

climate of the northern Great Plains, and productivity is often maximized when planting 

between mid-March and mid-April (Chen et al., 2005). Given the productivity of the 

mustard spp. used in this study, it is not surprising that biomass was not different among 
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cover crop mixtures in 2010 when all mixtures contained a 1:1 ratio of mustard and 

legume spp. 

While cover crop productivity responded positively to the mixture adjustments in 

2010, it was a May 12, 2011 hail storm that led to 2011 treatment differences. The hail 

storm damaged all cover crop species within mixtures, but Idagold mustard was most 

susceptible to hail damage and did not recover well from this extreme disturbance 

(Wortman et al., 2012). Idagold mustard was a component of all four cover crop 

mixtures; thus, as the diversity of the cover crop mixture increased, the proportion of 

Idagold mustard in the mixture decreased. Therefore, we hypothesize that productivity of 

the mixtures increased with diversity due to decreased proportions of Idagold mustard. 

These results, in combination with the 2009 results, highlight an important benefit of 

diverse cover crop mixtures. By reducing the proportion of each species in a diverse 

cover crop mixture, we observed increased resilience and productivity of the cover crop 

community despite a management error (2009) and extreme weather disturbance (2011). 

Similar to a diversified investment portfolio, diverse cover crop mixtures seem poised for 

stable productivity and resilience despite potential management errors and an 

increasingly unstable climate (Doak et al., 1998). 

Surface Soil Moisture  

Surface soil moisture (0 to 8 cm) prior to cover crop termination was unaffected 

by cover crop mixture, but by day of year (DOY) 141 soil moisture content was greatest 

in the NC control (0.310 ± 0.007 cm
3
 H20 cm

-3 
soil), followed by the WD treatment (0.20 

± 0.007 cm
3
 cm

-3
) in 2009 (Figure 4.2). Soil moisture was lowest in the cover crop 

mixtures (0.161 cm
3
 cm

-3 
averaged across the four mixtures). The reduction in soil 
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moisture in cover-cropped and weedy treatments by DOY 141 was related to an 

exceptionally dry early spring in 2009. Between DOY 110 and 145 there were only two 

rainfall events totaling more than 10 mm in precipitation, and total precipitation during 

April and May was 62 mm. The 30-year mean for precipitation in April and May was 176 

mm (Table 4.3). These results highlight the risk associated with planting cover crops in 

non-irrigated grain-based production systems (Ewing et al., 1991). While average annual 

precipitation is typically sufficient for growth of both a cover crop and cash crop, 

exceptionally dry years may cause significant production challenges and potential yield 

loss. Following cover crop termination, surface soil moisture was affected by termination 

method in 2009. Surface soil moisture was greatest in the NC control (0.249 cm
3
 cm

-3 
± 

0.005), followed by the undercutter treatment (0.160 cm
3
 cm

-3 
± 0.002), and lowest in the 

disk treatment (0.153 cm
3
 cm

-3 
± 0.002) one week following termination (DOY 149; 

Figure 4.2). However, by DOY 183 surface moisture was greatest in the undercutter 

treatment (0.112 cm
3
 cm

-3 
± 0.002), followed by the NC control (0.103 cm

3
 cm

-3 
± 0.005), 

and lowest in the disk treatment (0.095 cm
3
 cm

-3 
± 0.002). At this point in the growing 

season, all crops were showing severe water stress. While soil moisture was exceptionally 

low among all treatments, it is interesting that soil moisture was greatest in the 

undercutter treatment at DOY 183 despite 56% less available moisture than the NC 

control at DOY 149.  

 Similar to 2009 results, surface soil moisture was unaffected by cover crop 

mixture prior to cover crop termination in 2010. However, surface soil moisture was 

greatest in both the NC control (0.259 cm
3
 cm

-3 
± 0.006) and the WD treatment (0.255 

cm
3
 cm

-3 
± 0.006) at DOY 126 (Figure 4.3). Variable soil moisture in the cover-cropped 
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treatments throughout cover crop growth was related to rainfall patterns in early 2010. 

While soil moisture content was reduced in cover-cropped treatments at DOY 126, four 

rainfall events totaling 33.8 mm in precipitation over the next six days was sufficient to 

eliminate soil moisture differences between cover-cropped and non-cover-cropped 

treatments by DOY 137 (Figure 4.3). Following cover crop termination, surface soil 

moisture was affected by termination method in 2010. Averaged across the first three 

sampling dates (DOY 158, 166, and 169), surface moisture was greatest in the undercut 

treatment (0.330 ± 0.003 cm
3
 cm

-3
) compared to both the NC and disk treatments (0.314 

± 0.006 cm
3
 cm

-3 
and 0.306 ± 0.002 cm

3
 cm

-3
, respectively; Figure 4.3). We hypothesize 

that greater soil moisture following termination with the undercutter in 2009 and 2010 

was due to the layer of cover crop mulch present on the soil surface for 14-21 days 

following termination with the undercutter. This is consistent with previous studies where 

management of cover crop residue on the soil surface led to increased soil moisture 

availability (Teasdale and Mohler, 1993; Kornecki et al., 2009; Davis, 2010). While soil 

moisture savings associated with the undercutter for fallow tillage have been discussed 

(Zaikin et al., 2007), to our knowledge this is the first report of increased soil moisture 

availability following cover crop termination with an undercutter. 

 Soil moisture content varied by cover crop treatment and day of year (DOY) prior 

to termination in 2011. During early cover crop growth, soil moisture was greatest in the 

WD and NC treatments (0.161 and 0.156 ± 0.006 cm
3
 cm

-3
, respectively), followed by 

the cover-crop mixtures (average of 0.127 ± 0.006 cm
3
 cm

-3
; Figure 4.4). However, by 

the end of cover-crop growth (DOY 153) soil moisture content was greatest in the 4CC, 

6CC, and 8CC mixtures (average of 0.288 ± 0.006 cm
3
 cm

-3
), followed by the 2CC 
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mixture (0.257 ± 0.006 cm
3
 cm

-3
), and the WD and NC treatments (0.243 and 0.235 ± 

0.006 cm
3
 cm

-3
, respectively; Figure 4.4). May 2011 was exceptionally wet (164 mm 

precipitation) compared to the 30-year mean for May (106 mm), leading to greater 

surface soil moisture content beneath cover crop canopies (Table 4.3). When there was 

sufficient soil moisture to meet cover crop transpiration demands, the dense cover crop 

canopy may have conserved soil moisture by reducing evaporative loss from the soil 

surface occurring in the relatively bare NC and WD treatments. Indeed, soil evaporation 

can be reduced through early crop canopy closure (Luening et al., 1994). Following cover 

crop termination, surface soil moisture was not influenced by termination method or 

DOY in 2011. Instead, soil moisture was influenced by cover crop treatment, where 

values were greatest in the 8CC mixture (0.275 ± 0.004 cm
3
 cm

-3
) and lowest in the NC 

and WD treatments (0.262 ± 0.006 cm
3
 cm

-3
 and 0.254 ± 0.004 cm

3
 cm

-3
, respectively) 

when pooled across the three post-termination sampling intervals (DOY 159 to 186; data 

not shown). Increased soil moisture in the cover-cropped treatments in the third year of 

this study may be related to improvements in soil physical structure. Cover-cropping in 

organic systems has been shown to increase soil water infiltration and soil water holding 

capacity (Colla et al., 2000; Lotter et al., 2003). 

Soil Nitrogen  

Soil NO3-N at 45 and 81 days after termination (DAT) was affected by the 

interaction of cover crop mixture and termination method in 2009. Soil NO3-N was 

greatest in the WD – undercut treatment combination (50.2 ± 6.1 µg NO3-N g
-1

), but 

differences among the remaining cover crop and termination treatments were inconsistent 

at 45 DAT (data not shown). At 81 DAT soil NO3-N was greatest in the NC control (30.0 
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± 2.4 µg NO3-N g
-1

), followed by the WD – undercut treatment combination (22.5 ± 2.4 

µg NO3-N g
-1

). Similar to the results at 45 DAT, differences among remaining treatments 

were inconsistent (data not shown). Increased soil NO3-N in the WD and NC treatments 

at 45 and 81 DAT in 2009 was likely the result of N-immobilization and delayed NO3-N 

mineralization following cover crop growth, termination, and decomposition. Previous 

studies have demonstrated delayed soil NO3-N release from cover crop residue especially 

following late termination (Wagger, 1989; Quemada and Cabrera, 1995; Kuo and Sainju, 

1998). Moreover, nitrogen immobilization is most pronounced when cover crop residue 

is comprised of over 60% non-leguminous residue (Kuo and Sainju, 1998). In this study, 

mustard spp. dominated the mixtures and typically accounted for over 60% of total 

mixture biomass (Wortman et al., 2012).  

Following the 2008 growing season, the experimental site was amended with 50 

Mg ha
-1

 beef feedlot liquid manure. While available soil NO3-N was greatest in the NC 

and WD treatments throughout the 2009 growing season, the immobilization of soil NO3-

N in cover crop residue likely reduced NO3-N leaching and surface runoff from the 

manure early in the growing season (Staver and Brinsfield, 1998). Moreover, lower levels 

of available soil NO3-N in the cover-cropped treatments early in the growing season may 

have aided in the suppression of weeds. High levels of available soil nitrogen have been 

shown to shift the competitive advantage to weed species especially following manure 

application (Barker et al., 2006; Wortman et al., 2010). 

Soil NO3-N at 32 DAT was affected by cover crop termination method in 2010, as 

soil NO3-N was greatest in the undercutter treatment (3.2 ± 0.2 µg NO3-N g
-1

), followed 

by both the disk (2.2 ± 0.2 µg NO3-N g
-1

) and NC treatments (2.2 ± 0.4 µg NO3-N g
-1

). 
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By 60 DAT, soil NO3-N levels were only influenced by main crop. Soil NO3-N was 

greatest in soybean (5.0 ± 0.2 µg NO3-N g
-1

), followed by corn (4.4 ± 0.2 µg NO3-N g
-1

), 

and sunflower (4.0 ± 0.2 µg NO3-N g
-1

). Results for soil NO3-N in 2011 were similar to 

2010, except that treatment differences were not observed until later in the growing 

season. Soil NO3-N was influenced by cover crop termination with the greatest levels 

observed in the undercutter treatment (11.4 ± 0.5 µg NO3-N g
-1

), followed by the disk 

and NC treatments (9.6 ± 0.5 µg NO3-N g
-1

 and 8.4 ± 1.3 µg NO3-N g
-1

, respectively) at 

55 DAT in 2011. Also consistent with 2010 results, soil NO3-N was greatest in soybean 

(12.4 ± 0.6 µg NO3-N g
-1

), followed by corn (11.3 ± 0.6 µg NO3-N g
-1

), and sunflower 

(7.1 ± 0.6 µg NO3-N g
-1

). As expected, soil NO3-N levels were generally lower in 2010 

and 2011 compared to 2009, presumably the result of grain N removal. As soil N 

becomes limiting with time, management focus should shift from minimizing NO3-N 

leaching and runoff towards maximizing availability. The lower soil NO3-N observed in 

the disk treatment compared to the undercut treatment at 29 DAP in 2010 was likely the 

result of strong N immobilization that is common following soil incorporation of cover 

crops (Wyland et al., 1995). In contrast, cover crop surface residue mulch achieved with 

the undercutter may result in lower immobilization and a more gradual release of soil 

NO3-N throughout the growing season (Groffman et al., 1987; Parr et al., 2011). 

Crop Yield  

Crop yield for corn, sunflower, and soybean were affected by cover crop 

termination method but not cover crop mixture in 2009. Corn grain yield was greater in 

the undercutter treatment (8.78 ± 0.36 Mg ha
-1

) compared to the disk treatment (7.37 ± 

0.36 Mg ha
-1

), while yield in the NC control was not different from either termination 
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treatment (8.40 ± 0.80 Mg ha
-1

; Table 4.4). Similarly, sunflower seed yield was greater in 

the undercutter treatment (2.11 ± 0.09 Mg ha
-1

) compared to the disk treatment (1.91 ± 

0.09 Mg ha
-1

), while yield in the NC control was not different from either termination 

treatment (2.18 ± 0.20 Mg ha
-1

). Soybean seed yield was greater in the undercutter and 

NC treatments (2.43 ± 0.09 Mg ha
-1

and 2.59 ± 0.21 Mg ha
-1

, respectively) compared to 

the disk treatment (1.50 ± 0.09 Mg ha
-1

; Table 4.4). 

Similarly, crop yield in 2010 was affected by cover crop termination method, not 

cover crop mixture. Corn yield was greatest in the undercutter treatment (7.75 ± 0.25 Mg 

ha
-1

), followed by the disk treatment (6.45 ± 0.25 Mg ha
-1

), and lowest in the NC control 

(5.29 ± 0.60 Mg ha
-1

; Table 4.4). Soybean yield was also greatest in the undercutter 

treatment (1.11 ± 0.09 Mg ha
-1

), but was not different between the disk and NC 

treatments (0.82 ± 0.09 Mg ha
-1 

and 0.72 ± 0.21 Mg ha
-1

, respectively). Sunflower yield 

was not affected by termination method in 2010 (Table 4.4). Yield trends in 2011 were 

similar to previous years, except that yield for corn was substantially higher than in 2009 

and 2010. Again influenced by the effect of cover crop termination, corn grain yield was 

greatest in the NC and undercutter treatments (11.12 ± 0.64 Mg ha
-1

 and 10.97 ± 0.28 Mg 

ha
-1

, respectively) and lowest in the disk treatment (10.16 ± 0.28 Mg ha
-1

). Soybean yield 

was greatest in the undercutter treatment (2.96 ± 0.08 Mg ha
-1

), followed by the NC 

control (2.51 ± 0.18 Mg ha
-1

), and lowest in the disk treatment (2.11 ± 0.08 Mg ha
-1

; 

Table 4.4). Consistent with 2010, there were not treatment effects on sunflower yield in 

2011. 

Difference in yield among years was the result of unique weather and pest 

incidence in each year of the study. The sharp decline in crop yield from 2009 to 2010 
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was the result of crop damage from a severe hail storm on 13 September 2010 at the 

experimental site. During this storm, all plants were completely defoliated (95 to 100%) 

and severely lodged (>50%) prior to physiological maturity. The timing of the hail 

damage was especially detrimental to soybean, as soybean yield can be reduced by as 

much as 57% after full defoliation in late reproductive stages (Caviness and Thomas, 

1980). Yield loss in corn and sunflower was more related to plant lodging and ear/head 

dropping (data not shown). Despite overall yield reduction, damage throughout the field 

was relatively uniform and comparisons among treatments were still informative. Corn 

yield loss in 2009 relative to 2011 was likely due to a reduction in grain quality in 2009. 

The test weight for corn grain was 650 ± 2 kg m
-3

 in 2009 compared to 724 ± 2 kg m
-3

 in 

2011. Lower test weight values in 2009 were the result of an early frost on 4 October 

2009 (low temperature of -1.7°C), which occurred prior to physiological maturity of the 

corn crop. When planting a spring-seeded cover crop in the western Corn Belt, it will 

often be necessary to delay traditional planting dates of corn and soybean. However, the 

yield loss observed in 2009 highlights the importance of selecting appropriate early-

maturing hybrids and crop cultivars to avoid further reductions in crop yield and quality 

associated with a later planting date.  

Sunflower yield loss in 2010 and 2011, relative to 2009 was primarily due to high 

incidence of banded sunflower moth (Cochylis hospes Walsingham) damage in 2010 and 

2011. The banded sunflower moth larvae feed on florets and seeds of sunflower, and are 

relatively common pests in the northern Great Plains (Charlet and Miller, 1993). Damage 

from the banded sunflower moth has been shown to affect up to 46.5% of sunflower 

seeds in a given sunflower head (Charlet et al., 2009). Yield loss in 2011 relative to 2009 
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ranged from 27 to 33% across termination treatments, which we hypothesize was related 

to banded sunflower head moth damage. Yield loss in 2010 relative to 2009 was far more 

severe (61 to 75%), presumably due to the additive effects of banded sunflower moth 

damage and the severe hail storm prior to harvest. High populations and damage from the 

banded sunflower moth in two of three years of this study indicate a major pitfall of 

growing sunflower in the western Corn Belt. This crop will be especially difficult to 

manage in organic cropping systems, where reactive chemical control options will be 

limited for the banded sunflower moth.  

Soil conservation, quality, and fertility benefits associated with cover crops have 

been well documented, but increases in crop yield are less commonly reported (Unger 

and Vigil, 1998; Kuo and Jellum, 2002; Reddy et al., 2003). The lack of yield benefits 

typically realized following cover crop plantings may be related to previous knowledge 

gaps regarding the most effective cover crop termination and residue management 

strategies. However, novel cover crop management systems, like the winter rye – 

soybean no-till cropping system, have created opportunities for increased crop yield and 

profitability (Mischler et al., 2010; Davis, 2010). Though unique from the roller-crimper 

system, results from this study provide support for another effective cover crop 

management strategy for organic cropping systems. Indeed, termination with the 

undercutter consistently maintained or increased crop yield relative to disk termination 

and the more traditional no cover crop organic cropping system. While the utility of the 

undercutter for cover crop termination and weed management has been previously 

documented (Creamer et al., 1995; Creamer et al., 2002), this is the first evidence of yield 

benefits associated with a “cover crop – undercutter” organic management system. 
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Cropping System Profitability  

 Throughout the study crop yield was consistently greatest following termination 

with the undercutter, although cover crop treatment did not influence yield in any crop or 

year of the study. This was a surprising result given that one of the “cover crop” 

treatments included a mixture of weeds (WD treatment) managed like a cover crop; thus, 

results from this study indicate that mixtures of common weed species may provide 

equivalent cropping system benefits relative to species commonly recognized as cover 

crops. This result is consistent with at least one previous study, where corn yield 

following winter annual weed “cover crop” was equal to or greater than yield following a 

crimson clover cover crop (Sainju and Singh, 2001). Similar to the results of this study, 

crop yield increase following weed growth occurred despite less than 50% biomass 

productivity of the weed community relative to cover crop communities (Sainju and 

Singh, 2001).    

The potential utility of weed communities as cover crops becomes increasingly 

evident after profitability analysis of each cover crop – termination method treatment 

combination. Indeed, the WD – undercutter treatment combination resulted in the highest 

net profit for all crops and the entire rotation ($1,212 ha
-1

 yr
-1

; Table 4.5). The 

“traditional” cover crop mixture – undercutter treatment combinations were also 

profitable ($1,035, $1,031, $991, and $986 ha
-1

 yr
-1

 for the 2CC – , 4CC –, 6CC –, and 

8CC – undercutter treatment combinations, respectively; Table 4.5), but less so than the 

WD treatment because of the added annual costs of cover crop seed, seedbed preparation, 

and planting (Table 4.6). Termination with a disk, regardless of cover crop mixtures or 
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weeds, was always less profitable than the traditional no cover crop organic cropping 

system (Table 4.5).  

 Large differences in the profitability of each crop in the rotation are also 

informative (Table 4.5). Corn was by far the most profitable crop in all experimental 

treatments ranging from $2,225 ha
-1

 yr
-1

 in the 8CC – disk treatment combination to 

$2,962 ha
-1

 yr
-1

 in the WD – undercutter treatment combination. Large economic returns 

on organic corn are not uncommon (Pimentel et al., 2005), but were especially lucrative 

in this cropping system due to relatively low input costs (e.g., fewer tillage passes and 

fertility inputs) and high grain prices (Table 4.6). Soybean production was only profitable 

in the undercutter management systems ranging from $361 to $587 ha
-1

 yr
-1 

in the 8CC – 

and WD – undercutter treatment combinations, respectively. Average annual profitability 

of soybean production was limited in this study due to the input costs associated with 

animal manure in the first year of the study (Table 4.6). While manure application can 

improve soil quality and fertility, yield response is typically less consistent in soybean 

due to the capacity for biological nitrogen fixation (Schmidt et al., 2001). Sunflower 

production in this study was only profitable in the WD – undercutter treatment 

combination ($87 ha
-1

 yr
-1

), but profits were modest compared to those for corn and 

soybean (Table 4.5). Sunflower profitability was limited by incidence of the banded 

sunflower moth in 2010 and 2011 and also by a relatively low market value for sunflower 

seed (Table 4.6). While price premiums for organic sunflower seed may exist in the 

market, it is often difficult to identify a consistent market value for organic specialty 

crops (USDA Market News Service, 2012). A guarantee of substantial price premiums 

would be necessary to make organic sunflower production profitable in eastern Nebraska.      
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Conclusions 

 Increasing diversity of the cover crop mixture generally increased biomass 

productivity in two of three years, highlighting the resilience of diverse cover crop 

mixtures following management error and severe weather disturbance. Despite 

differences in productivity, cover crop mixture composition and diversity did not 

influence soil moisture, soil nitrogen, or crop yield. Instead, differences within these 

factors were driven by termination method. Cover crop mixtures paired with the 

undercutter for termination did increase yield and profitability compared to a traditional 

no cover crop organic cropping system (NC control), but undercutter termination of weed 

mixtures (WD – undercutter treatment combination) proved to be the most profitable 

cropping system in this study. Although weeds are consistently a top management 

concern (Walz, 1999; MNDA, 2007), dense weed communities are a common 

characteristic of organic cropping systems; thus, it may be useful to identify and develop 

potential uses for these weed communities (Wortman et al., 2010).  

Results of this study demonstrate the potential for weeds to provide crop yield 

benefits and farm profitability in excess of that achieved with traditional cover crop 

species. Despite the short-term yield and economic benefits of the WD – undercutter 

treatment combination, there are potential pitfalls associated with using weeds as cover 

crops. For example, if using weeds as a cover crop farmers should take extra caution to 

prevent weed seed production and replenishment of the seedbank (Davis, 2006). 

Moreover, many weed species can harbor pests between cropping seasons (Venkatesh et 

al., 2000). While yield and economic benefits were observed, substantially lower biomass 
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productivity and spatial heterogeneity of weeds relative to cover crop mixtures will 

potentially limit the soil conservation benefits typically expected of cover crops.  
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Tables and Figures 

Table 4.1. Cover crop species and seeding rates used in individual cover crop mixtures for 2009 and 2010-11 (2CC = 2 species 

mixture; 4CC = 4 species mixture; 6CC = 6 species mixture; 8CC = 8 species mixture). 

    Cover Crop Seeding Rate 

Common Name Scientific Name 2CC 4CC 6CC 8CC 

  

____________ 
 kg ha

-1  _____________
 

Hairy Vetch Vicia villosa 22.4 11.2 7.5 5.6 

Buckwheat (2009) Fagopyrum sagittatum 28.0 14.0 9.3 7.0 

Idagold Mustard (2010-11) Sinapus alba 6.7 3.4 2.2 1.7 

Field Pea Pisum sativum 

 

28.0 18.7 14.0 

Pacific Gold Mustard Brassica juncea 

 

2.2 1.7 1.1 

Oilseed Radish Raphanus sativus 

  

2.8 2.1 

Crimson Clover Trifolium incarnatum 

  

4.7 3.5 

Dwarf Essex Rape Brassica napus 

   

1.7 

Chickling Vetch Lathyrus sativus       8.4 

1
4

7
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Table 4.2. Timing of field operations and data collection for each year of the study. 

  Year 

 

2009 2010 2011 

Operation 

   Cover crop planting 20 March 30 March 21 March 

Cover crop sampling 19-21 May 24 May 1 June 

Cover crop termination 22 May 28 May 3 June 

Main crop planting 28 May 1-3 June 6 June 

1st interrow cultivation 1 July 28 June 30 June 

2nd interrow cultivation 

 

1 July 8 July 

1st soil sampling  6-7 July 29-30 June 28 June 

2nd soil sampling 11-12 August 26-27 July 27-28 July 
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Table 4.3. Monthly precipitation total (mm) and average air temperature (°C) for April to September in 2009, 2010, and 2011, and the 

30-year mean from the University of Nebraska Turf Farm near Mead, NE (41°10'12"N lat, 96°28'12"W long, elevation= 366 m). 

  2009 2010 2011 30-year mean 

Month Temp. Precip. Temp.  Precip. Temp.  Precip. Temp. Precip. 

April 9.0 28 12.8 85 9.9 76 10.1 70 

May 16.9 34 15.6 53 16.2 164 16.3 106 

June 21.4 135 22.5 217 22.3 139 22.0 101 

July 21.1 68 24.4 156 26.5 80 24.3 84 

August 20.9 135 24.3 71 23.2 78 22.9 85 

September 17.2 31 17.4 134 15.7 9 18.2 73 

Total 17.8 432 19.5 717 19.0 547 19.0 519 

 

 

 

1
4
9
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Table 4.4. Crop yield (Mg ha
-1

) ± 1 standard error for corn, soybean, and sunflower as 

influenced by termination method in the years 2009, 2010, and 2011. Different letters 

within a particular year and crop indicate differences among termination methods.  

Crop 2009 2010 2011 

Corn 
__________

 Mg ha
-1 __________

 

No cover 8.41 ± 0.64  a 5.29 ± 0.64  c 11.12 ± 0.64  a 

Disk 7.37 ± 0.28  b 6.45 ± 0.28  b 10.16 ± 0.28  b 

Undercutter 8.78 ± 0.28  a 7.75 ± 0.28  a 10.97 ± 0.28  a 

Soybean 

   No cover 2.59 ± 0.18  a 0.72 ± 0.18  b 2.51 ± 0.18  b 

Disk 1.58 ± 0.08  b 0.82 ± 0.08  b 2.11 ± 0.08  c 

Undercutter 2.46 ± 0.08  a 1.11 ± 0.08  a 2.96 ± 0.08  a 

Sunflower 

   No cover 2.18 ± 0.15  a 0.55 ± 0.15  a 1.46 ± 0.15  a 

Disk 1.91 ± 0.07  b 0.74 ± 0.07  a 1.40 ± 0.07  a 

Undercutter 2.11 ± 0.07  a 0.74 ± 0.07  a 1.52 ± 0.07  a 
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Table 4.5. Economic costs, returns, and average annual profit (US dollars ($) ha
-1

) for the 11 different cover crop mixture by 

termination method treatment combinations in corn, soybean, and sunflower for the years 2009, 2010, 2011, and for the entire 

rotation. NC = no cover control; WD = weedy mixture; 2-, 4-, 6-, and 8CC = 2, 4, 6, and 8 cover crop species mixtures, respectively 

(Table 4.1); D = disk termination; U = undercutter termination.

1
5

1
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  Cover crop mixture and termination method  

 
NC WD 2CC 4CC 6CC 8CC 

    D U D U D U D U D U 

Costs  
________________________________

 US dollars ($) ha
-1 ________________________________

 

2009 1,514 1,472 1,470 1,667 1,665 1,656 1,653 1,690 1,688 1,690 1,688 

2010 771 731 729 900 897 912 909 954 951 961 959 

2011 771 731 729 899 897 912 909 954 951 961 959 

Returns  

           Corn 

           2009 3,884 3,404 4,055 3,404 4,055 3,404 4,055 3,404 4,055 3,404 4,055 

2010 2,193 2,674 3,212 2,674 3,212 2,674 3,212 2,674 3,212 2,674 3,212 

2011 4,609 4,211 4,547 4,211 4,547 4,211 4,547 4,211 4,547 4,211 4,547 

Soybean 

           2009 1,933 1,179 1,836 1,179 1,836 1,179 1,836 1,179 1,836 1,179 1,836 

2010 508 578 783 578 783 578 783 578 783 578 783 

2011 1,755 1,475 2,069 1,475 2,069 1,475 2,069 1,475 2,069 1,475 2,069 

Sunflower 

           2009 1,591 1,394 1,540 1,394 1,540 1,394 1,540 1,394 1,540 1,394 1,540 

2010 401 540 540 540 540 540 540 540 540 540 540 

2011 1,065 1,021 1,109 1,021 1,109 1,021 1,109 1,021 1,109 1,021 1,109 

Avg. annual profit 

           Corn 2,543 2,451 2,962 2,274 2,785 2,270 2,781 2,230 2,741 2,225 2,736 

Soybean 380 99 587 -78 410 -82 406 -122 366 -127 361 

Sunflower 1 7 87 -171 -90 -175 -94 -214 -134 -219 -139 

3-crop rotation 975 853 1,212 675 1,035 671 1,031 631 991 626 986 

1
5
2
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Table 4.6. Price estimates and information source for costs and returns associated with 

each experimental management system. 

Costs and returns US dollars ha
-1 

Source 

Costs   

Cover crop seed   

Idagold mustard 83 L.A. Hearne
b 

Buckwheat
a 

178 Johnny's Selected Seeds
c 

Hairy vetch
a 

118 L.A. Hearne
b  

Pacific gold mustard 51 L.A. Hearne
b 

Field pea
a 

195 L.A. Hearne
b 

Oilseed radish 115 Johnny's Selected Seeds
c 

Crimson clover
a 

363 Johnny's Selected Seeds
c 

Dwarf essex rape 52 Johnny's Selected Seeds
c 

Chickling vetch
a 

298 Johnny's Selected Seeds
c 

Land rent 445 UNL Extension (2011) 

Cover crop planting   

Seedbed preparation 17 Jose and Janousek (2010) 

Drill planting 30 Jose and Janousek (2010) 

Cover crop termination   

Disking 25 Jose and Janousek (2010) 

Undercutting 22 Jose and Janousek (2010) 

Main crop planting   

Seedbed preparation 17 Jose and Janousek (2010) 

Organic crop seed 74 Delate et al. (2003) 

Planting 34 Jose and Janousek (2010) 

Weed management   

Interrow cultivation 22 Jose and Janousek (2010) 

Combine harvest 69 Jose and Janousek (2010) 

Fall tillage   

Moldboard plow 22 Jose and Janousek (2010) 

Feedlot manure 741 Delate et al. (2003) 

Certification costs 40 NCSU Extension (2008) 

Returns   

Corn
a 

$433 Mg
-1 

USDA Market News Service (2012)  

Soybean
a 

$698 Mg
-1 

USDA Market News Service (2012)  

Sunflower $295 Mg
-1 

National Sunflower Association (2012) 
a 
Certified organic    

b 
L.A. Hearne Co., Monterey County, CA, USA 

c 
Johnny's Selected Seeds, Fairfield, ME, USA 
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Figure 4.1. Cover crop and/or weed biomass combined (g m
-2

) for each cover crop 

mixture treatment in years 2009, 2010, and 2011 of the study. Mixtures are arranged on 

the x-axis in order of increasing cover crop community diversity. WD = weedy mixture; 

2-, 4-, 6-, and 8CC = 2, 4, 6, and 8 cover crop species mixtures, respectively (Table 4.1). 
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Figure 4.2. Volumetric soil water content (cm
3
 H20 cm

-3
 soil) during cover crop growth 

(top left) and following cover crop termination (top right) in 2009. Daily precipitation 

totals (mm) for DOY 110 to 210 are included (bottom left and right). NC = no cover 

control; WD = weedy mixture; 2-, 4-, 6-, and 8CC = 2, 4, 6, and 8 cover crop species 

mixtures, respectively (Table 4.1).
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Figure 4.3. Volumetric soil water content (cm
3
 H20 cm

-3
 soil) during cover crop growth 

(top left) and following cover crop termination (top right) in 2010. Daily precipitation 

totals (mm) for DOY 100 to 185 are included (bottom left and right). NC = no cover 

control; WD = weedy mixture; 2-, 4-, 6-, and 8CC = 2, 4, 6, and 8 cover crop species 

mixtures, respectively (Table 4.1). 
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Figure 4.4. Volumetric soil water content (cm
3
 H20 cm

-3
 soil) during cover crop growth 

(top) and daily precipitation totals (mm) for DOY 129 to 155 (bottom). NC = no cover 

control; WD = weedy mixture; 2-, 4-, 6-, and 8CC = 2, 4, 6, and 8 cover crop species 

mixtures, respectively (Table 4.1). 
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EPILOGUE 

 Often the most important findings in a research project are the new research 

questions that arise, and this project is no exception. Overall, we were successful in 

accomplishing our initial objectives and testing our central hypotheses, but it is hard to 

feel satisfied when so many interesting and important questions remain. Throughout this 

epilogue I will address some of the questions I believe this research helped to answer, and 

other questions this research has spawned. Developing sustainable cropping systems 

founded in ecological principles is a work in progress, and hopefully the results of this 

study will serve to advance the science of sustainable agriculture.  

Are spring-sown cover crops a feasible option for corn – soybean farmers in the western 

Corn Belt?  

 This study has certainly demonstrated that spring-sown cover crops are a realistic 

option for corn – soybean farmers in the western Corn Belt. However, our results also 

demonstrate the potential pitfalls of this cover cropping strategy. The most obvious short-

coming of this strategy is the lack of soil coverage achieved from late-fall through the 

winter months typically achieved with a more traditional winter annual cover crop 

species. However, this study demonstrated two additional production pitfalls. First, a 

primary objective for planting the cover crops was to increase soil nitrogen through 

biological nitrogen fixation. While nodules were observed on most legume roots prior to 

termination of cover crops in all years (data not shown), the amount of soil N derived 

from biological nitrogen fixation was probably negligible as soil nitrate did not differ 

between cover crop mixtures and the WD treatment (ambient weed communities 

managed as cover crops) in any year of the study or at any sampling interval. While soil 

nitrate is not a direct measure of biological nitrogen fixation, if “new” nitrogen was being 
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added to the soil system via fixation one could expect greater levels of mineralized soil N 

upon decomposition of the leguminous cover crop biomass (which was not observed 

here). Combined with the reduced potential for biomass productivity (Chapter 1), 

legumes are likely not an appropriate cover crop choice for spring planting in the western 

Corn Belt.  

The second major pitfall of the spring-sown cover crop option is the potential for 

yield loss associated with delayed planting of corn and soybean. For a spring-planted 

cover crop to achieve a substantial level of productivity, it will need to be grown until at 

least mid-May in most years. A late-May planting date for soybean, and especially corn, 

can lead to a substantial loss in yield (Lauer et al., 1999). This was observed in 2009 

when an early-fall frost terminated the corn crop prior to physiological maturity, reducing 

grain test weight and yield. The corn hybrid used in this study (BRH 57H36) is a 107 day 

hybrid, which is shorter than the typical 111-116 day hybrids used in this region of the 

Corn Belt. This early-maturing hybrid was selected to compensate for the planting dates, 

but the 2009 yield loss highlights the risk associated with delayed planting even when 

adjusting crop maturities. Regardless of planting in the fall or spring, if cover crops are to 

be planted there will need to be some deviation from the traditional corn – soybean 

rotation and the full season crop varieties often found in the field from April until 

November. The spring-seeded option tested here is possible, but like all options is 

accompanied by several challenges and potential pitfalls. Ultimately, the farmer must 

weigh these challenges against the array of potential benefits offered by cover crops and 

cover crop mixtures demonstrated here and elsewhere. 
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Are cover crop mixtures better than a single species cover crop? 

 The answer to this question, as is the case for many research questions, is “it 

depends”. In this study we demonstrated the potential for increased productivity, stability, 

and resiliency in cover crop mixtures compared to the respective monoculture species 

(Chapter 1). However, the difference in productivity observed among cover crop 

mixtures rarely led to biologically significant changes in the cropping system. For 

example, cover crop biomass had no effect on weed suppression, soil nitrogen, or crop 

yield. While cover crop mixtures may be the most productive and stable option, our 

results also suggest that cover crop species and community composition may have unique 

impacts on cropping system properties. This was evident where early-season weed 

suppression varied among cover crop mixtures, despite no relationship between cover 

crop biomass and weed biomass. Thus, a single species cover crop may be appropriate 

when a specific management objective, unrelated to cover crop productivity, is desired. 

However, farmers should use caution when choosing a single species cover crop as this 

increases risk of establishment failure associated with management errors and extreme 

perturbations (Chapter 1; Chapter 3).  

Is the undercutter the best tool for mechanical termination of cover crop mixtures? 

 This study demonstrated that cover crop termination with the undercutter was far 

superior to termination with the disk. Termination with the undercutter consistently 

reduced weed biomass throughout the growing season, increased early season soil 

moisture content, increased soil nitrate availability, and increased crop yield and 

profitability, relative to termination with the disk. However, many other mechanical 

termination methods exist and have been tested elsewhere (Creamer et al., 2002). 
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Currently, the most popular of the mechanical termination methods is the roller-crimper. 

Development of the roller-crimper and its performance has received a great deal of recent 

research attention (e.g., Kornecki et al., 2009; Davis, 2010). The roller-crimper is 

advantageous because it eliminates soil disturbance, but the undercutter is beneficial 

because of its potential to terminate a wide range of species at different growth stages. 

The biggest pitfall of the roller-crimper, especially when planting a spring-sown cover 

crop, is that most species need to reach full-bloom reproductive stages before termination 

can be achieved. While the undercutter was not always effective against small weed 

seedlings (Chapter 2), it was generally effective in killing all cover crop species 

regardless of cover crop growth stage. Thus, the undercutter may be a more appropriate 

tool for termination of cover crop mixtures, whereas the roller-crimper may be most 

appropriate for termination of single species cover crops planted in the fall (e.g., winter 

rye before soybean; Davis, 2010). The merits and short-comings of both implements have 

now been demonstrated, and the “best” tool will ultimately depend on the management 

objective, cover crop species/mixture, and cropping system.  

How can this experimental cover crop system be improved? 

 Given the low productivity of legume spp. grown alone and in mixture (Chapter 

1), combined with the lack of soil nitrogen contributions from the cover crop mixtures 

(Chapter 4), it would seem legume spp. could be removed from spring-sown cover crop 

mixtures in the western Corn Belt. Moreover, legume spp. are typically among the most 

expensive cover crop options, so removal from the mixture will likely increase the 

profitability of this cover crop strategy. In contrast, the mustard spp. tested in this 

experiment were all quite productive and well adapted for early-spring growth in eastern 
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Nebraska. To replace the legume spp., it would be interesting to include several grass 

species in the mixture – especially those that have demonstrated allelopathic potential. 

Potential grass species might include oat (Avena sativa L.), cereal rye (Secale cereale L.), 

or wheat (Triticum aestivum L.), all of which have demonstrated allelopathic potential 

(Einhellig and Leather, 1988). The results of this study demonstrated the potential 

importance of plant and mixture biochemical composition on early-season weed 

suppression (Chapter 3), but the addition of grass species to a spring-seeded mixture will 

also increase the C:N ratio of the mixture and delay decomposition of surface residues. 

Thus, grasses may contribute physical mechanisms of weed suppression to the existing 

allelopathic mechanisms observed in this study. 

What are the long-term consequences of using ambient weeds as cover crops? 

 Given the results of these studies, especially with regard to cropping system 

profitability, it would be tempting to suggest that farmers should adopt the use of ambient 

weeds as cover crops. There may be some merit to this practice, but there are several 

biological and social implications that should be considered. When weeds were managed 

as cover crops in this study, there were substantial effects on soil microbial community 

structure. Some aspects of this community shift have management implications. For 

example, the WD treatment reduced ratios of FAME biomarkers commonly associated 

with AM fungi (Chapter 3). Reduced AMF populations may not have affected crop yield 

in this relatively short-term study, but a long-term reduction in AMF root colonization in 

crops like corn or wheat, may cause significant yield loss. There were other detectable 

shifts in community structure in the WD treatment, but unfortunately less is known about 

the agronomic function and relative value of many microbial groups (e.g., 
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actinomycetes). Further studies regarding soil microbial group and ecosystem function 

will provide insight about the potential agronomic effects of using these weedy species as 

cover crops. I believe the link between soil microbial community structure and ecosystem 

functions is fascinating, and remains one of the “great frontiers” in agricultural science. 

 Perhaps more important than the biological implications, are the social 

implications of using weeds as cover crops. While some have proposed a paradigm shift 

in our thinking about weeds (Marshall et al., 2003; Wortman et al., 2010), a large 

negative stigma will always be attached to weeds and their role in agroecoystems. Even if 

a farmer were to change their perspective on the role of weeds, it is unlikely that their 

neighbors would experience a similar conversion. Farmers are undoubtedly driven by 

social forces at work on the community level, and allowing ambient weed communities to 

reach reproductive stages would likely draw negative attention in many rural 

communities. However, this negative attention is not entirely unfounded as the 

persistence of mature weed communities could have serious biological implications on a 

landscape level. 

One of the most serious weed management issues facing farmers in the Corn Belt 

right now is the increased incidence and spread of herbicide resistant weed populations. 

Managing ambient weed communities as a cover crop may not provide additional 

selection pressures that lead to the incidence of resistant populations, but it may 

contribute to the spread of resistant populations as pollen and seed dispersal are not 

confined to individual fields. It is possible that cross pollination would occur with 

herbicide resistant weeds of neighboring fields; thus, if weedy cover crops were 

inadvertently allowed to reach full maturity and set seed this practice could potentially 
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accelerate an already rapidly-growing problem. A similar example, more pertinent 

perhaps to organic farmers, is the potential for ambient weed communities to promote the 

incidence of soil pathogens like soybean cyst nematode. Many winter annual weeds like 

henbit, field pennycress, and purple deadnettle, are alternative hosts for soybean cyst 

nematode (Venkatesh et al., 2000), which is a difficult soil pathogen to control, especially 

in organic cropping systems where reactive control options will be limited. These issues 

(e.g., herbicide resistance and soil pathogens) are often localized to individual farmer 

fields, but can quickly spread across landscapes if “best management practices” are not 

used. With regard to these management issues, the persistence of ambient weed 

communities as a cover crop would not be considered a best management practice by 

most standards (e.g., social and scientific). 

Are the results of this project only applicable to organic farmers? 

 There are aspects of this project and the results that will be of most use to organic 

farmers in the western Corn Belt. For example, differences in mechanical termination 

strategies may not be relevant to conventional farmers in this region who primarily 

practice no-till agriculture. However, some of the more general findings in this study 

should be relevant to both organic and conventional farmers. First, evidence for increased 

productivity, stability, and resiliency with increasing diversity observed in Chapter 1, has 

implications beyond cover crop mixtures. Increasing the diversity of any aspect of 

cropping systems or farming enterprises, should provide opportunities to realize the same 

benefits observed here in our diverse cover crop mixtures. For example, temporal or 

spatial diversification of the traditional corn – soybean rotation by adding a small grain 
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like winter wheat to the rotation may increase the long-term productivity and yield 

stability of the system (Smith and Gross, 2006).  

While the specific mechanical termination methods tested in this study may not be 

adopted by conventional farmers, the results should be relevant to conventional farmers 

looking to use cover crops. Conventional farmers are often curious about when they 

should spray their cover crops relative to corn or soybean planting. The best answer to 

this question will depend on a variety of factors (e.g., herbicide chemistry, soil type, 

climate, planting dates, and cover crop species), but the agronomic response to the 

undercutter may provide insight about this question. The undercutter leaves cover crop 

residue fully intact on the soil surface, whereas chemical termination will result in fully 

intact residue still standing in the soil. The soil surface to plant contact surface area will 

be greater following undercutter termination, presumably increasing decomposition rates, 

but these two methods are likely similar in their agronomic response. Thus, if an 

appropriate herbicide is used (one that does not have residual planting restrictions) it 

would seem cash crops can be planted as early as three days after chemical termination of 

similar cover crop mixtures without adverse agronomic effects (e.g., mustards and 

legumes; relatively low C:N ratio). Corn, soybean, and sunflower were all planted within 

3 to 7 days of undercutter termination without adverse agronomic effects often associated 

with cover crop decomposition (e.g., N immobilization and reduced crop stands). This is 

contrary to many anecdotal recommendations that exist within the cover crop community, 

where 7 to 14 days prior to planting is the usual suggestion for termination. However, this 

recommendation is based on the assumption that corn will be planted in early-May, not 

late-May as practiced in this study. If a cover crop is terminated in late-April, soil and 
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weather conditions may require a longer planting interval due to slower herbicide activity 

and decomposition rates. While this study contributes new information regarding cover 

crop termination timing, determination of the most appropriate timing method remains a 

complex issue that requires consideration of many management factors.  

What is the future of cover crop mixture research? 

 The science of cover crop mixtures is still in its infancy. While multi-species plant 

community dynamics have been well-studied in the field of ecology, the design of multi-

species plant mixtures to meet specific management objectives is unique in many ways. 

In a natural ecosystem the objective for multi-species plant communities is to maximize 

net primary productivity and fecundity. However, in a managed agroecosystem farmers 

may seek to maximize plant characteristics like biological nitrogen fixation or 

allelopathic chemical synthesis. Indeed, two areas of future research opportunity include 

the design of cover crop mixtures to maximize biological nitrogen fixation of legumes 

and also the design of mixtures that will stimulate accumulation of effective phytotoxic 

compounds. Plant stress has been shown to increase the production of allelopathic 

compounds in several plant species (Hall et al., 1983; Williamson et al., 1992), and 

appropriate interspecific competitive interactions in a cover crop mixture may help to 

maximize allelopathic mechanisms of weed control.  

 If the objective for the cover crop is to maximize productivity, there are research 

questions that remain regarding appropriate species composition. Specifically, how do 

root and canopy architecture contribute to mixture productivity? Is a mixture of species 

with similar morphology best (i.e., simulated intraspecific competition), or should a range 

of species with very different morphologies be used in mixture? In this study we assumed 
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that a mixture of low growing legumes and upright mustards with variable root 

architectures (e.g., branched, fibrous, and tap) would maximize productivity, but this 

hypothesis was not directly tested. A great deal of interest and uncertainty remains 

regarding the most appropriate mixture composition and selection.  

 Studying the theories of ecological resilience with regard to cover crop mixtures 

is another area of potential future research. We observed anecdotal evidence of increased 

resilience in cover crop mixtures relative to monocultures following a 2011 hail storm, 

but no formal hypotheses were tested regarding the concept of ecological resilience 

(Chapter 1). The concept of maximizing ecological resilience for stable cover crop 

productivity is interesting because strong resilience may become problematic when one 

seeks to terminate the cover crop mixture. This distinction highlights the difference 

between natural multi-species plant communities and those managed in agroecosystems. 

The challenge for researchers is to develop cover crop mixtures that are resilient to 

extreme natural factors like wind, hail, and drought, but are then susceptible (not 

resilient) to management factors like undercutting, roller-crimping, or broad-spectrum 

herbicide application.  

 Though still a management practice used by a minority of farmers, cover crops 

and cover crop mixtures are increasing in popularity especially among organic farmers. 

This study provides science-based information and practical solutions for more informed 

cover crop management decisions, but many knowledge gaps remain. Given the growing 

enthusiasm and funding opportunities for sustainable agricultural practices at the local, 

regional, and federal level, it is my hope that we can continue to answer some of these 

remaining cover crop research questions. Furthering the science of cover crop 
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management will be essential for increased adoption on organic and conventional farms 

throughout the western Corn Belt.   
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