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West Greenland has had multiple episodes of human colonization
and cultural transitions over the past 4,500 y. However, the
explanations for these large-scale human migrations are varied,
including climatic factors, resistance to adaptation, economic mar-
ginalization, mercantile exploration, and hostile neighborhood
interactions. Evaluating the potential role of climate change is com-
plicated by the lack of quantitative paleoclimate reconstructions
near settlement areas and by the relative stability of Holocene
temperature derived from ice cores atop the Greenland ice sheet.
Here we present high-resolution records of temperature over the
past 5,600 y based on alkenone unsaturation in sediments of two
lakes in West Greenland. We find that major temperature changes
in the past 4,500 y occurred abruptly (within decades), and were
coeval in timing with the archaeological records of settlement
and abandonment of the Saqqaq, Dorset, and Norse cultures,
which suggests that abrupt temperature changes profoundly im-
pacted human civilization in the region. Temperature variations
in West Greenland display an antiphased relationship to tempera-
ture changes in Ireland over centennial to millennial timescales,
resembling the interannual to multidecadal temperature seesaw
associated with the North Atlantic Oscillation.

anthropology ∣ Arctic ∣ biomarker ∣ paleoclimatology

The Baffin Bay region, comprising West Greenland and the
eastern coast of Baffin Island, has a rich and dynamic history,

with multiple episodes of human migration and cultural transi-
tions during the mid to late Holocene (1–8) (SI Appendix,
Fig. S1). Human occupation in Greenland began with the Saqqaq
culture, which arrived ca. 4,500 y B.P. and soon colonized the
island (3–5). Beginning ca. 2,800 y B.P., the Saqqaq were replaced
by the Dorset culture, which persisted in West Greenland from
ca. 2,800–2,200 y B.P., when records of their occupancy end
abruptly (3). Archaeological evidence indicates the region re-
mained unpopulated until the arrival of the Norse settlers ca.
1,000 y B.P. (3, 6). The Norse occupied the western settlement
(Fig. 1 and SI Appendix, Fig. S1) until the middle of the 14th cen-
tury (ca. 650 y B.P.) and the eastern settlement until ca. 550 y B.P.
(6), whereas the Thule, ancestors of the modern Greenlandic
Inuit who arrived two to three centuries after the Norse (7), re-
main in Greenland to the present day. Human migrations can
result from numerous factors, including social change, conflict
with neighbors, the search for better hunting grounds, response
to shifting resources, economic stress, and climate change (2, 3,
6–8). Although it is difficult to determine how social factors may
have influenced migrations, paleoclimate reconstructions offer
the opportunity to examine the changing climatic conditions ex-
perienced by human populations inWest Greenland. The existing
lines of evidence for evaluating the impact of climate change on
past human populations in West Greenland are generally quali-
tative and indirect. Greenland ice cores offer quantitative records
of temperature from atop the ice sheet (9); however, climate did
not change uniformly across Greenland during the late Holocene
(10) and quantitative temperature estimates from locations
adjacent to and representative of settlement sites are required

to assess the influence of climate on observed patterns of human
migration.

An Alkenone-Based Paleotemperature Record for West
Greenland
Here we present a record of temperature variability with decadal-
scale resolution for approximately the past 5,600 y from two
independently 14C dated, finely laminated sediment cores from
two meromictic lakes, Braya Sø and Lake E (approximately
10 km apart) in Kangerlussuaq, West Greenland (67° 0′ N,
50° 42′ W; Fig. 1 and SI Appendix, Section 1). Our paleoclimate
time series are based on measurements of alkenone unsaturation
(UK

37), a well-established method for reconstructing sea-surface
temperatures from marine sediment cores (11) (SI Appendix,
Section 2) and whose utility has been demonstrated in lakes from
Europe, China, and North America (12–14). The alkenone pro-
ducers in Braya Sø and Lake E are a newly discovered member of
the algal class Haptophyceae (15, 16) and bloom between mid-
June and mid-July (Fig. 2A). Air temperature has been shown
to exert primary control on lake water temperature in the Søndre
Strømfjord region (17). Furthermore, instrumental temperature
measurements indicate that Kangerlussuaq air temperature is
well correlated with the air temperature of other sites on West
Greenland (18) (Pearson correlation coefficients decrease gradu-
ally from 0.83 to 0.52 as distance from Kangerlussuaq increases
from 130 to 1,200 km for the period 1961–1990 AD). Therefore,
Kangerlussuaq lake water temperature primarily reflects air
temperature in the Kangerlussuaq area, which is correlated to
that of other West Greenland sites as a function of distance.
We developed a UK

37-temperature calibration for the lakes in
Kangerlussuaq (Fig. 2B) by combining a calibration from Braya
Sø, based on UK

37 of filtered alkenones and in situ water tempera-
ture, with a previously published lacustrine alkenone calibration
from sites containing alkenones of similar molecular composition
to those in the Greenland lakes (12, 15) (SI Appendix, Fig. S2).
The in situ calibration approach has been successfully employed
in North American lakes (14). Our calibration (Fig. 2B; T ¼ 40.8
UK

37 þ 31.8, r2 ¼ 0.96, n ¼ 34), which has a mean standard error
of estimation of 1.3 °C (SI Appendix, Section 3), implies that mid-
June to mid-July lake water temperature in the Kangerlussuaq
region varied by as much as 5.5 °C over the past 5,600 y (Fig. 3A).
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Alkenone production began approximately 500 y earlier in Braya
Sø than in Lake E, and this interval (approximately 6,100–5,600 y
B.P.) includes the warmest reconstructed lake water temperatures
from either time series (Fig. 3A). Because this time interval is
not represented in Lake E, we cannot determine whether this re-
flects a local period of extreme mid-Holocene warming, if the
high UK

37 values reflect non-temperature-related factors (e.g.,
nutrients, growth rates) as the haptophyte algae colonized and
exploited a new habitat, or if the temperature sensitivity of the
alkenones becomes nonlinear at warm temperatures (a possibility
that would be undetectable with our calibration approach). We
therefore do not interpret this 500 y time period in the Braya Sø
record. During the 5,600 y where they overlap, the Braya Sø
and Lake E alkenone records show very similar trends on multi-
decadal to millennial timescales (Fig. 3A; r ¼ 0.53, p < 0.001).
After adjusting the two records within 2σ of their calibrated
14C ages, they were resampled at 20-y intervals and averaged
to generate a single record that best estimates past lake water
temperature variability in the Kangerlussuaq region of West
Greenland (Kanger Stack; Fig. 3B).

Kangerlussuaq lake water temperatures cooled by approxi-
mately 4 °C between 5,600 and 5,000 y B.P., followed by warming
of approximately 5.5 °C that culminated between 3,200 and
3,000 y B.P. and then another sharp temperature drop of approxi-
mately 5 °C by 2,800 y B.P. (Fig. 3B). The temperature history
from alkenone paleothermometry is consistent with previous
qualitative temperature inferences for West Greenland from pol-
len (19, 20) and loss-on-ignition analyses (Fig. 3C) from lake
sediments (21) that indicate peak warmth between 4,000 and
3,000 y B.P., followed by Neoglacial cooling ca. 3,000 y B.P.
The Greenland Ice Sheet Project Two ice core from Summit
(9, 22, 23) (Fig. 1A) also depicts similar trends for millennial-scale

Fig. 1. (A) Site map identifying Kangerlussuaq and other locations inWest Greenlandmentioned in the text. (B) Map of the Søndre Strømfjord region showing
locations discussed in the text. (C) Map of the North Atlantic region noting the locations of Kangerlussuaq, Crag Cave (38), and the Bermuda Rise (39). Colora-
tion indicates the modern temperature pattern observed during the positive mode of the North Atlantic Oscillation, where red is warm and blue is cool.

Fig. 2. (A) C37 alkenone flux to Braya Sø lake bottom determined using in-
terval sediment traps. (B) Temperature calibration developed for this study
using in situ UK

37 from Braya Sø water filters collected during summer
2007 (red diamonds) and 2009 (blue squares) and a previously published cali-
bration (12) from Europe (black circles).

Fig. 3. (A) Alkenone-based lake water temperature reconstruction for Lake
E (gray) and Braya Sø (red), Kangerlussuaq, West Greenland. The time series
have been visually aligned within the 2σ error of the calibrated 14C dates.
Error bars show standard error of estimation (S.E.) from the calibration
and the analytical uncertainty (2σ) (B) The Kanger Stack was developed by
resampling and calculating the arithmetic mean of the individual tempera-
ture reconstructions from Braya Sø and Lake E at 20-y intervals. Blue shading
represents uncertainty from averaging the two records. (C) The loss-
on-ignition paleoproductivity record from lake SFL4-1 (21), near Kangerlus-
suaq. (D) Temperature reconstruction from the Greenland Ice Sheet Project
Two ice core, Summit, Greenland (23).
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temperature variability (Fig. 3D). The large cooling event cen-
tered at 2,000 y B.P. in the alkenone record (lake water tempera-
tures dropped by 2–3 °C) corresponds to the greatest Neoglacial
advance of inland ice near Kangerlussuaq (24). A cooling trend
from 3,000–2,800 y B.P. and the cold interval from 2,200–1,800 y
B.P. also coincide with proxy-inferred episodes of increased
eolian activity in the region, indicating enhanced windiness
and aridity (25). Diatom-inferred lake salinity and lacustrine
carbonate δ18O records (26, 27), plus 14C-dated paleo-shorelines
from Kangerlussuaq (28) document an arid phase from 6,500–
4,500 y B.P. followed by an interval of increased moisture from
4,500–3,500 y B.P. These intervals correspond to cooling and
warming trends, respectively, in the alkenone temperature data
(Fig. 3 A and B). Over the modern instrumental period, corre-
spondence between aridity (humidity) and cold (warm) tempera-
tures in West Greenland is largely due to the effects of the North
Atlantic Oscillation (NAO) (18, 29). Although it has been pre-
viously suggested that the NAO influenced the climate of West
Greenland throughout the mid to late Holocene (30) and there
is some evidence (31, 32) for multi-centennial-scale mode dom-
inance of the NAO (periods during which the NAO spends more
time in either the negative or positive mode), it remains uncertain
whether or not the NAO truly exhibits mode dominance over
multicentennial to millennial timescales and we are thus hesitant
to ascribe the observed climatic shifts to the NAO.

The History of Human Occupation of West Greenland
Related to Climate Change
A comprehensive explanation of the human migration history of
West Greenland over the past 4,500 y requires integration of the
combined effects of climatic change, environmental degradation,
economic stress, social conflict, and a variety of cultural factors.
Although such a detailed assessment of West Greenland’s settle-
ment history is beyond the scope of this paper, our study allows
evaluation of human migration in West Greenland in the context
of Holocene temperature variability. Arriving in Greenland ca.
4,500 y B.P. (3–5), the Saqqaq would have experienced an interval

of warmth identified in our temperature reconstruction (Fig. 4A).
They survived transient episodes of warming and cooling, espe-
cially between 4,100–3,400 y B.P. A cooler interval in the later
phase of their occupation at about 3,400 y B.P. coincides with
a contraction in the Saqqaq population toward West Greenland
(3–5) and a shift from subarctic to arctic conditions in the Disko
Bugt region (33) (approximately 250 km north of Kangerlussuaq;
Fig. 1A) that likely affected resource availability (34). There is
evidence from the Nipisat site near Sisimiut (Fig. 1B) that the
Saqqaq developed new adaptive strategies around this time (4, 5).
It is possible that climate variability during this period encour-
aged the diversification of the Saqqaq resource base with, for
example, walrus becoming a more important food source. It is
uncertain whether local climate conditions, increased contact
with other members of the Arctic Small Tool tradition, or other
factors are responsible for the adaptations observed in the
archaeological record, but with the new strategies, the Saqqaq
remained active near Sisimiut (approximately 100 km west of
Kangerlussuaq; Fig. 1 A and B) until ca. 2,800 y B.P. (3–5). Per-
haps the persistence of warm temperatures in Kangerlussuaq
and Sisimiut afforded the Saqqaq adequate access to marine
and terrestrial resources (4). Furthermore, large caribou popula-
tions in the Sisimiut region would have provided a terrestrial food
source as marine resources became more difficult to procure (3).
The Saqqaq departure from Sisimiut ca. 2,800 y B.P. is coincident
with the culmination of a pronounced cooling trend recognized in
our temperature reconstruction (approximately 4 °C in 200 y;
Fig. 4A). The cooling that took place during this climate transi-
tion was no more abrupt than the transient cooling episodes that
took place during the previous approximately 1,500 y of Saqqaq
occupation and suggests that the magnitude was more important
than the rate of change to the Saqqaq abandonment of the region.

The Dorset occupation of West Greenland began ca. 2,800 y
B.P. (3) and their tool inventory, which included sledge shoes,
soapstone vessels for burning seal fat, and snow knives, suggests
they were better adapted to sea-ice hunting than were the Saqqaq
(3, 35). The Dorset lifestyle appears therefore well adapted to the
colder conditions from 2,800 and 2,000 y B.P. observed in the
Kangerlussuaq temperature reconstruction (Fig. 4A). Like the
brief warming and cooling episodes experienced by the Saqqaq,
the period of Dorset occupation was also characterized by high-
amplitude centennial-scale temperature variability, but their con-
tinuous occupation in the region indicates that their livelihood
strategies allowed them to cope with these temperature fluctua-
tions. These observations prompt the question whether abrupt
climate change played a role in the Dorset abandonment of West
Greenland. Given the complexity of human behavior, archaeolo-
gical approaches alone cannot answer this question, but paleocli-
matological investigations can help address it. Moros et al. (33)
inferred warm sea-surface temperatures and limited sea ice in the
Disko Bugt region (Fig. 1A) from 2,000–1,800 y B.P. and sug-
gested that these conditions would have been unfavorable to
the Dorset, given that they were predominantly sea-ice hunters.
The progressive warming of Kangerlussuaq lake waters to nearly
pre-Neoglacial temperatures at this time (2,000–1,800 y B.P.;
Fig. 4A) represents a strongly amplified feature of the centen-
nial-scale variability. These temporal data reinforce Moros et
al.’s (33) evidence for increased temperature and support the
idea that dramatic regional climate change could have greatly
impacted the Dorset culture at this time. However, it seems
unlikely that there was an extant Dorset population in West
Greenland to experience it because archaeological evidence
places the latest population at ca. 2,200 y B.P. (3), two centuries
prior to the observed warming (33) (Fig. 4A). Moreover, faunal
remains from the Dorset Malmquist site, which is located
between Kangerlussuaq and Sisimuit (Fig. 1B), are dominated
by caribou, indicating that the resource base was diverse and
not solely tied to sea-ice hunting (3). In addition, there is an

Fig. 4. (A) Alkenone-based Kangerlussuaq lake water temperature recon-
struction (blue curve). Error bars depict the standard error of estimation
(S.E.) from the calibration and the analytical uncertainty (2σ) (B) δ18O record
from speleothemCC3, southwestern Ireland (38) (red curve; lower δ18O values
reflect colder temperatures). (C) δ18O record from Sargasso Sea (39) (black
curve, lower δ18O values reflect warmer temperatures). (D) Difference be-
tween normalized time series (Greenland-Ireland) after 21-point smoothing.
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absence of archaeological evidence for a northward migration of
the Dorset at this time, which would seem likely if warming tem-
peratures forced them from West Greenland. Thus, the Dorset
disappearance may not be directly related to the intense warming
from ca. 2,000–1,800 y B.P. Perhaps their disappearance is related
to the particularly cold interval observed in the Kangerlussuaq
temperature reconstruction beginning ca. 2,200 y B.P. and cen-
tered at ca. 2,000 y B.P., except that it is difficult to explain
why the impact on Dorset livelihood during this particular cool
episode was sufficient to cause the abandonment of the region in
contrast to two previous comparable cooling episodes (ca. 2,800
and 2,500 y B.P.; Fig. 4A).

The temperature reconstruction also reveals warming from
ca. 1,100 to 850 y B.P., coincident with Norse migration to
Greenland. The abrupt temperature decline beginning ca.
850 y B.P. (4 °C in approximately 80 y; Fig. 4A) coupled with
the persistence of cooler temperatures until approximately
630 y B.P. yielded a progressively unfavorable climate over several
decades with a cumulative adverse effect on the sedentary Norse
farming population in West Greenland (36). Thus, a shift toward
lower temperatures likely contributed to the abandonment of the
western Norse settlement near Nuuk (Fig. 1A) at ca. 650 y B.P.,
which supports arguments that climatic deterioration played a
critical role in the demise of Norse settlements in Greenland
(6, 36, 37) (Fig. 1A).

Spatial Patterns of Temperature Change Across the North
Atlantic
How did temperature variability in Kangerlussuaq compare
with other regions around the North Atlantic? Remarkably, the
Kangerlussuaq temperature record shows a strong antiphased
relationship at centennial to millennial timescales with the δ18O
record from speleothem CC3 at Crag Cave, southwestern Ireland
(38) (Figs. 1C and 4 A and B). The Crag Cave record is not simply
temperature (moisture source and precipitation amount may also
play a role), but provides a qualitative record of climate variability
with higher δ18O corresponding to warmer conditions (38).
Together the records indicate multicentennial to millennial
length intervals of anticorrelation between temperature in West
Greenland and southwestern Ireland over the past 5,600 y (Fig. 4
A andB). When the normalized records are differenced (Fig. 4D),
the intervals 5,200–4,600; 3,000–1,900; and 1,200–0 y B.P. are
shown to be characterized by cold Kangerlussuaq temperatures
and warm temperatures in southwestern Ireland, whereas the in-
tervals 4,600–3,000 and 1,900–1,600 y B.P. depict warm tempera-
tures in Kangerlussuaq and cold temperatures in southwestern
Ireland. Furthermore, cross-spectral analysis reveals that the
records are highly coherent (above the 95% confidence level)
at periods of 252–278, 211–231, and 122–124 y (SI Appendix,
Fig. S7). If such coherence in temperature variability across
the North Atlantic were observed at known periods of NAO
variability (which are too short to resolve from this dataset),
we would likely attribute forcing to the NAO (29). Although there
is no clear evidence that the NAO operates at the periods iden-
tified from our coherency analysis, multicentennial persistence

of NAO mode dominance has previously been suggested from
paleoclimate records spanning the Holocene (31) and the past
millennium (32). It is possible that the intervals identified in
Fig. 4D correspond to periods during which the NAO spent more
time in one mode, and we note that a δ18O-based qualitative
sea-surface temperature (SST) record from the Bermuda rise
(39) (Fig. 4C) supports this interpretation, depicting millen-
nial-scale warming of western Atlantic SSTs corresponding to
cold intervals in West Greenland and warm intervals in southwes-
tern Ireland, and fitting the expected NAO spatial pattern
(Figs. 1C and 4 A–C). However, although the spatial temperature
patterns are suggestive of the NAO, the available data are insuf-
ficient to constrain the observed temperature patterns to NAO
forcing. Consideration of volcanic and solar forcing is necessary
to explain temporal patterns of climate variability over the past
1,000 y (40) and the influence of these climate drivers likely pre-
date the past millennium. Our results indicate that the ice-free
region ofWest Greenland experienced much greater temperature
variability during the Holocene than the top of the Greenland ice
sheet, probably as a result of interactions among oceanic, atmo-
spheric, solar, and volcanic forcing, and that climatic changes
were important in influencing cultural transitions and human
settlement patterns in West Greenland.

Materials and Methods
Sediment cores were sampled at 0.5-cm intervals. Samples were freeze-dried
and homogenized by mortar and pestle and extracted with dichloromethane
using an ASE200 (Dionex). Total lipid extracts were dried under N2 gas and
quantified by gas chromatography-flame ionization detection (HP6890
Series). UK

37 was measured with a precision of �0.01, using an alkenone stan-
dard run once every 10 sample injections, and yielding analytical precision of
±0.4 °C. Alkenones from representative samples were identified by compar-
ison of mass-spectral data with previously reported standards and GC reten-
tion times (15). To evaluate the timing of alkenone production, sediment
trap material in Braya Sø was collected in 10-d intervals at approximately
20 m water depth during the summer of 2006 using a Technicap PPS 3∕3
automated cylindroconical sediment trap (collecting area ¼ 0.125 m2). Mate-
rial collected in sediment trap bottles was filtered through precombusted
(550 °C) Whatman© glass microfiber filters, freeze-dried, and processed as
sediment samples (described above), without homogenization. To establish
an in situ UK

37-temperature calibration, lake water samples from Braya Sø (ap-
proximately 1 L each) were collected from various water depths in late-June
2007 and 2009 and filtered through precombusted (550 °C) Whatman© glass
microfiber filters, which were freeze-dried and processed as sediment sam-
ples (described above), without homogenization. Water temperatures at
each depth were determined by direct measurement using a YSI, Inc., sonde.

Total organic carbon for core BS01-01 (E-01) was measured at Brown Uni-
versity (University of Nebraska-Lincoln) on a Carlo-Erba elemental analyzer
after acidification of samples with HCl to remove carbonates.
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Appendix: Supporting Information 

Abrupt Holocene climate change as an important factor for human migration in 
West Greenland 
 
D’Andrea et al. 
 
SI Text 
 
1) Radiocarbon dating and chronology  
The sedimentation rates of the lakes average 28 and 21 cm kyr-1 during the past 5,600 yr. 
The age model for Braya Sø is based on 8 AMS (accelerator mass spectrometry) 14C 
dates of bulk sediment, 3 of wood fragments and 1 of a gastropod shell, and the age 
model for Lake E is based on 6 AMS 14C dates of bulk sediment. Dating errors are all 
less than ±75 yr for bulk sediment and ±160 yr for macrofossils within the 1σ interval of 
the AMS 14C method. Braya Sø and Lake E lie 10 km apart, ~170 m above sea level, 
have water depths of 24 and 22 m, respectively and are meromictic, resulting in bottom 
water anoxia and finely laminated sediments. Ten 14C dates were used to establish 
chronological control for core BS01-01 from Braya Sø (Fig. S3A). Radiocarbon dates 
were calibrated to years before present (BP; years before 1950 AD) using the 
Fairbanks0107 calibration curve (41). Core BS01-01 was taken with a single drive piston 
corer, maintaining the sediment water interface and allowing the core top to be assigned a 
modern age of 2005 AD, the year prior to core recovery. Five of the radiocarbon dates 
were from core BS01-01 (AMS 14C analysis performed at Woods Hole Oceanographic 
Institution) and five were from an overlapping core (AMS 14C analysis performed at the 
University of Aarhus, DK) that was stratigraphically aligned to BS01-01 using loss-on-
ignition and total organic carbon measurements (Fig. S4). Three paired macrofossil and 
bulk sediment dates yielded a reservoir correction of 360 years, which was applied to the 
14C dates prior to calibration. The “reservoir effect” in these meromictic lakes is likely 
caused by 1) deposition of old carbon from the water column due to lack of complete lake 
overturn resulting in incomplete exchange of CO2 with the atmosphere (42), and 2) 
deposition of 14C-depleted organic matter from the lake catchments, due to the low rates 
of decomposition typical of Arctic environments (26). Age reversals in the meromictic 
lakes of this region after ~1000 yrs BP have been previously noted (26, 27) and two 14C 
dates from this time period were excluded from the age model. Another erroneously old 
14C date at 2982 ± 61 yrs BP was excluded from the age model. A 4th order polynomial 
was fit to the ten remaining calibrated dates and the core top date to establish an age 
model.  
 
Chronological control for the Lake E core (E-01; Fig. S3B) was established using six 
AMS 14C dates of bulk sediment (analysis was performed at the Arizona Accelerator 
Mass Spectrometry Lab). A seventh date that was erroneously old was excluded from the 
age model. Core E-01 was taken with a Russian Corer, which does not preserve the 
sediment water interface. To identify the depth of the core top, the % organic carbon 
record from core E-01 was compared to the % organic carbon record from an overlapping 
freeze-core (Fig. S5). This allowed identification of the E-01 core top to a depth of 9 cm 
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in the freeze-core. The top of the freeze-core represents the sediment water interface and 
was assigned an age of 2000 AD, the year the freeze-core was recovered. This approach 
allowed us to assign an age of 2000 AD to a theoretical -9 cm in the E-01 core, providing 
chronologic control for the top of the core. No macrofossils were isolated from the E-01 
core, prohibiting the establishment of a carbon reservoir age for Lake E. Therefore, the 
reservoir age of 360 years determined in Braya Sø was applied to Lake E. A 4th order 
polynomial was fit to the six radiocarbon dates and the core top to establish the age 
model.  
 
Braya Sø and Lake E are both oligosaline (3-4 psu), meromictic lakes with fully 
developed chemoclines. The lack of hydrologic outflow along with locally negative 
precipitation minus evaporation has led to evaporative concentration of salts in the lakes. 
Braya Sø is ~ 170 m above sea level (a.s.l.) and Lake E ~150 m a.s.l., well above the 
regional marine limit (~60 m ), precluding seawater entrapment during isostatic uplift as 
a source of elevated salinity in the lakes. Braya Sø has an area of 73 ha and a maximum 
depth of 23 m. Lake E has an area of 22 ha and a maximum depth of 22 m.  
 
2) Unsaturation index  
The unsaturation index (U ) as defined by Brassell et al., 1986 (43): 
 

€ 

37
KU = 37:2C[ ] − 37:4C[ ]

37:2C[ ] +
37:3C[ ] +

37:4C[ ]
 

 
where, [C37:x] is the concentration of the alkenone with 37 carbon atoms and x carbon-
carbon double bonds.  
 
3) Standard error calculation 
The standard error of estimation for the U -temperature calibration was calculated with 
the following formula: 
 

€ 

SE =
1

(n −2)
[ (y − y)∑

2
−
[ (x − x)(y − y)]2∑

(x − x)2∑
]  

 
where, n = sample size; 

€ 

x  and 

€ 

y  are sample means. 
 
4) Correlation of paleoclimate time series data 
Correlation between Braya Sø and Lake E 

€ 

U37
K  time series data was determined by 

visually aligning the resampled time series’ within 2σ of their chronological uncertainty, 
resampling each data set at 20-yr intervals using the linear integration interpolation 
function in the Analyseries 2.0 program, and performing linear regression analysis (Fig. 
S6). The calculated correlation coefficient of 0.53 (p < 0.001) indicates a strong 
agreement between the records and implies a common forcing mechanism for 

€ 

U37
K  at both 

lakes.  
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6) Supporting Figures 
 

 

Figure S1.   Occupation history of Greenland. Maps depicting the timing and extent 

of the occupation by different cultures in Greenland (after SILA: The Greenland Research 

Centre at the National Museum of Denmark; www.natmus.dk). White coloring represents 

the inland ice sheet. Green represents areas for which there is no archaeological evidence 

for presence of the specified culture.  (A) Dark red depicts the regions with the largest 

number of Saqqaq sites, while light red indicates regions with archaeological evidence 

for Saqqaq presence. (B) Yellow shading represents the extent of Dorset occupation in 

Greenland. Following the convention of Grønnow and Sørensen, 2006 (44), Dorset here 
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comprises the cultures previously recognized as Dorset I (early Dorset) and Independence 

II.  (C) Dark blue indicates the locations of the Norse western and eastern settlements. 

Light blue indicates areas of Norse influence, as determined by Norse archaeological 

remains. (D) Purple indicates the geographic extent of the Thule culture, the ancestors of 

the modern day Greenlandic Inuit.  
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Figure S2.   Molecular composition of lacustrine alkenones. (A) The molecular 

composition of alkenones from the Braya Sø and Lake E show dominance of the tetra-

unsaturated alkenones and contain both methyl and ethyl C38 ketones (15). This 

molecular composition matches that of the lakes studied by Zink et al., 2001 (12). (B) For 

comparison, alkenones from Medicine Lake, South Dakota (14) do not contain C38 

methyl ketones and are apparently produced by a haptophyte belonging to a separate 

phylotype (45).  
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Figure S3.   Sediment core age models. (A) Core BS01-01 from Braya Sø, and (B) 

core E-01 from Lake E. Open circles are calibrated 14C dates used in the age model. Pink 

squares are core tops, assigned a modern age and used in the age model. Open up-

triangles are erroneously old ages that were excluded from the age model. Closed circles 

(upper plot only) are erroneously old ages from a sedimentary interval previously shown 

to have age reversals (26, 27) and were excluded from the age model. Red down-triangles 

and the blue diamond (upper plot only) are calibrated dates from terrestrial wood 

fragments and a gastropod shell, respectively.  
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Figure S4.  Organic carbon content in overlapping cores from Braya Sø. Percent 

organic carbon from core BS01-01 (top curve) and loss-on-ignition for an overlapping 

core (bottom curve) were used to stratigraphically align the overlapping cores, allowing 

five radiocarbon dates from the overlapping core to be transferred to core BS01-01.  
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Figure S5.   Organic content in overlapping Lake E cores. Black circles are percent 

organic carbon measurements from core E-01 (Russian core from Lake E). Red triangles 

are % organic carbon from an overlapping freeze-core. (A) The entire % organic carbon 

record from E-01 aligned with the % organic carbon records from the freeze core. (B) 

The top 50 cm, highlighting the excellent match between the overlapping records used to 

assign a core top age to core E-01.   
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Figure S6.  Correlation between 

€ 

U37
K  records. Correlation between Braya Sø and 

Lake E U measurements was evaluated by visually aligning the two series’ within 2σ of 

their chronological uncertainty and resampling each data series at 20-yr intervals using 

the linear integration interpolation function in Analyseries 2.0. (A) Linear regression of 

the resampled data sets. R2 = 0.28. (B) The 20-yr resampled U data from Braya Sø and 

Lake E after visual alignment within 2σ of the chronological uncertainty.  
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Figure S7.   Cross-spectral analysis of Kanger Stack and Crag Cave δ18O. 

Blackman-Tukey cross-spectral analysis, performed with a Bartlett window and 30% lag. 

Periods with coherence greater than the 95% confidence level (blue line) are labeled.  
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