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ABSTRACT

Approximate Agreement is an important issue in fault-
tolerant distributed computing where non-faulty processes
exchange and vote upon their local values, to arrive at values
which are within the range of the initial values of the non-
faulty processes and within a predefined tolerance of each
other. Results to date in Approximate Agreement, however,
are not capable of exploiting omission faults. Omission faults
are presumed not to occur or a predefined default value is
substituted for those values not received, or they are globally
discarded before the voting algorithm executes. As a result,
hybrid fault models can not differentiate between omissive
and transmissive faults.

The performance and fault tolerance expressions for com-
pletely connected networks, in the presence of omission faults,
have recently been obtained. This paper develops a method-
ology which logically converts partially connected networks
into completely connected networks. Hence, the results of
completely connected systems can be applied to obtain the
local convergence and fault tolerance expressions for par-
tially connected systems.

T+ 1

Digital computers are essential to critical applica-
tions such as aerospace systems, air traffic control sys-
tems, nuclear power systems, computer manufacturing
systems, etc. Common to all of these applications is the
demand for maximum reliability and high performance
from computer components. This requirement is neces-
sarily stringent because a single component failure in
these applications can lead to disaster. Because of such
a stringent requirement, the fault-tolerant computing
plays a significant part in the design of reliable and
safe computers.

One way of making these applications ultra-de-
pendable is to employ hardware/software redundancy,
which brings into being many issues. One is synchroni-

zation and coordination among different computer com-
ponents to achieve the expected services. The synchrony,
in turn involves the creation of algorithms which en-
sure that the good components stay in synchrony in
spite of faulty ones. For example, many applications in
distributed systems require the clocks of processors to
be synchronized so that the distributed events can be
properly monitored and executed in the proper order.
However, the clocks cannot stay in perfect harmony, as
they cannot operate exactly at the same speed and the
messages sent between processors incur uncertain de-
lays. In such a situation, an Approximate Agreement
algorithm can be used, where processors iteratively
exchange their local clock values and vote until all non-
faulty clocks converge into values within a prespecified
range of each other. Agreement can easily be achieved
if the system is fault-free, but it becomes very complex
when faulty computers send wrong or even conflicting
values to different computers. Formally, Approximate
Agreement (Dolev et al. 1983, 1986) is defined by the
following conditions:

Al: AGREEMENT — The voting algorithms executed
by all non-faulty processes eventually halt with
voted values that are within € of each other.

A2: VALIDITY — The voted value held by each non-
faulty process is within the range of the initial
values held by the non-faulty processes.

Many Approximate Agreement algorithms employ
multiple rounds of message exchange. In each round,
each process sends its value to all receiving processes.
On receipt of a collection of values, each process ex-
ecutes an approximation function F to obtain its latest
voted value, which is used in the next round of message
exchange. The objective of Approximate Agreement
can be achieved by ensuring that each round is conver-
gent, i.e. the range of the correct values is reduced in
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each round. This property, called single-step conver-
gence, guarantees that the range of values will eventu-
ally be less than ¢, given enough rounds.

Section 2 gives the definitions for different failure
modes. Section 3 describes the limitations of the exist-
ing voting algorithms and the motivation for this re-
search. Section 4 introduces partially connected net-
works, and their impact on convergence properties.
Section 5 describes the impact of omissive faults on
voting algorithms. It also shows how a partially con-
nected system can logically look like a completely con-
nected network. Section 6 defines two sub-families of
algorithms called dynamic-c and fixed-c. Sections 7
and 8 show the convergence rate and fault tolerance for
the two sub-families of algorithms. Section 9 provides
an example to better understand the process of deter-
mining whether convergence is possible, using the ex-
pressions obtained in the previous sections. Finally
Section 10 concludes the paper and comments on future
research prospects.

2. FAULT MODE DEFINITIONS

Recent research has addressed convergent voting
in the presence of multiple fault modes (Azadmanesh
and Kieckhafer 1995, Kieckhafer and Azadmanesh 1993,
1994). This work uses the hybrid fault model of
Thambidurai and Park (1988), which partitions faults
into three modes: benign, symmetric, and asymmetric.
Benign faults are defined as those which are self-in-
criminating or self-evident to all processes. A symmet-
ric fault is defined as a fault whose value is perceived
identically by all receiving non-faulty processes. An
asymmetric fault is the one which is capable of sending
conflicting (arbitrary) messages to different non-faulty
processes. Using this hybrid fault model, the total
number of faults, containing ¢ asymmetric, s symmet-
ric, and b benign faults, is # =a + s + b. Under this fault
model, simple expressions were derived for the perfor-
mance and fault-tolerance of a broad family of conver-
gent voting algorithms called Mean-Subsequence-Re-
duced (MSR) algorithms (Kieckhafer and Azadmanesh
1993, 1994).

Hybrid analysis of MSR produced more accurate
bounds on the properties of the algorithms than pos-
sible with any single-mode fault model. However, these
algorithms along with other traditional algorithms
(Dolev et al. 1986, Kieckhafer and Azadmanesh 1994,
Lamport and Melliar-Smith 1985, Meyer and Pradhan
1987, Thambidurai and Park 1988) cannot exploit the
omission failure mode. An omission occurs when a
process does not receive a value from a faulty process.
These algorithms either assume that omissions do not
occur or replace the omission with a predefined default

value. However by a similar observation that Byzan-
tine faults were partitioned into asymmetric and sym-
metric, asymmetric and symmetric faults can each be
further subdivided into transmissive and omissive
modes. A transmissive fault occurs when one or more
processes receive erroneous values. An omissive fault
occurs when a faulty process does not deliver its value
to one or more processes. An asymmetric fault can be
either transmissive, i.e. when a faulty process delivers
conflicting values to all receiving processes, or it can be
simultaneously transmissive and omissive, i.e. when a
faulty process delivers a value to one or more processes
and no value to others. On the other hand, symmetric
faults, by definition, are either transmissive, i.e. the
same erroneous value is delivered to all receiving pro-
cesses, or are omissive when no value is delivered to
any process.

Several failure modes can be classified under
omissive faults, such as a crash fault or a fail-stop fault,
where a process fails to transmit any messages, or a
timing fault, where a process does not respond within
the specified time frame (Cristian et al. 1985, 1986,
1989; Schneider 1984). In addition, by a modest amount
of internal self-checking or using authenticated mes-
sages (Cristian et al. 1985, Wakerly 1978), the locally
diagnosed benign errors can be transformed into
omissive errors, increasing the count of the latter dra-
matically.

3. MOTIVATION

The existing voting algorithms can not take advan-
tage of omissive faults because each process must deal
with exactly the same number of messages in each
round of voting. This number is fixed and is known a
priori. This assumption creates the following negative
consequences:

1. Omissive errors are transformed into more se-
vere fault modes such as symmetric or asym-
metric,

2. Locally diagnosed benign errors can not be dis-
carded,

3. The voting algorithms become less fault-toler-
ant.

For completely connected systems, Azadmanesh and
Kieckhafer (1996, 1998) have shown that the inclusion
of omissive faults improves fault-tolerance, and that
the need to globally diagnose benign errors is decreased,
thus reducing the overhead of running a voting algo-
rithm to recognize the global benign faults. Two sub-
classes of omissive faults were considered: strictly
omissive asymmetric and omissive symmetric. A pro-
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cess which behaves in a strictly omissive asymmetric 1. To treat omissive errors as omissive in order to

manner sends the same “correct” value to some pro- improve fault-tolerance rather than converting

cesses and no value to others, whereas, in omissive them into more severe failure modes,

symmetric, the process value is received by no pro-

cesses. 2. There are no general methods for synchronous,

partially connected systems to measure the per-

Our research will employ five types of failure modes: formance of different voting algorithms in the

benign, transmissive symmetric, omissive symmetric, presence of omissive faults,

transmissive asymmetric, and strictly omissive asym-

metric. Based on this fault model a new family of 3. Omissive faults can be a predominant mode of

voting algorithms, called Omission-MSR will be intro- failure in partially connected networks,

duced. The analysis will be done for synchronous sys-

tems (Dolev et al. 1983) with partial connectivity. The 4. A partially connected system appears like a

motivation for OMSR algorithms for partially connected completely connected system with appropriate

systems is based on the following simple observations: links behaving in omissive manner.

4. PARTIALLY CONNECTED SYSTEMS

The vast majority of research in convergent voting has considered only completely connected systems (Dolev et
al. 1983, 1986, Kieckhafer and Azadmanesh 1994, Lamport and Melliar-Smith 1985, Vasanthavada and Marinos
1988, Vasanthavada and Thambidurai 1989). If the physical connectivity of the system is not complete, then it is
assumed that messages are relayed by intervening processes to achieve complete “logical” connectivity. As a
system grows large, so does the number of communication links, or the traffic required for message relays. Thus,
the assumption of complete connectivity restricts the application of convergent voting to relatively small systems.
In this research, however, the relay of messages is prohibited. As a result, each node receives only those messages
initiated by its immediate neighbors. Global convergence must then occur with each process acting only on local
information. This approach has the disadvantage that the system will converge more slowly than a completely
connected system. However, it has the advantage that the overhead of messaging becomes independent of the
number of nodes in the network.

While local convergence is a prerequisite to global convergence, it does not guarantee single step global
convergence. Two immediate neighbors such as processes i and j may receive values from their respective
neighbors that are not shared with each other. Since these values change with every round, processes i and j may
diverge with respect to the previous round. Hence, during the course of global convergence a cluster of local nodes
may go through a period of convergence and divergence before they finally converge. As a result, global
convergence is asymptotic rather than monotonic (Kieckhafer and Azadmanesh 1993).

It is assumed that the system is a large, regular, sparsely connected network of N processing nodes, each with
degree d. The following describes the relationships between values received by two arbitrary non-faulty processes
¢ and j:

P, = The set of processes adjacent to process i, including process i.

P, = P;N P, the set of processes adjacent to processes i and j, including processes i and j.

P,,; = P;UP; the set of processes adjacent to either or both of processes i and j.

Ui = The multiset of correct values generated in P,.

Ui = The multiset of correct values generated in P; ;. Thus U, is the multiset of correct values in U;~; plus

the multiset of values generated in P,\P; and P\ P;.

X = |P\P,y| = |Pj\P;;|, the number of processes adjacent to i or j but not to both. In a completely
connected system, since each node is adjacent to all nodes, y = 0.

f = The maximum number of faulty processes in either P;\P;; or P\P;;, regardless of their failure
modes. Since these processes could behave omissively, f; < f, where f;is the number of erroneous
values in P;\ P, received by i.
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Figure 1. An Octagonal Mesh showing the link connections for nodes i and ;.

As an example, in Fig. 1, the solid lines represent the link connections for two processes ¢ and j for a portion of
alarge octagonal mesh. yisthe number of processes in the top or the bottom row, so y = 3. In the top or bottom row,
at most f processes are assumed to be faulty. Thus, < y. P; consists of the top three rows of processes, while P;
consists of the bottom three rows. Thus, P;_; consists of all nodes in the figure, while P;~; consists of only those
nodes within the dashed box.

In contrast to completely connected systems, where U,~; = U, ;, in partially connected systems U,~; < U, ,.
Therefore, convergence properties are impacted as to whether convergence is obtained with respect to the
intersection or the union of the non-erroneous values for two arbitrary non-faulty processes. For instance, in Fig.
1, Intersection Convergence (IC) between processes i and j is obtained with respect to the values held by processes
P, ;. Whereas, Union Convergence (UC) includes all the values held by processes shown in the figure, i.e. the
values used in the IC plus those values in the top and the bottom rows. It will be shown that UC is less restrictive
than IC simply because it will require less connectivity among processes. Furthermore, the effect of UC diffuses
across the overlapping regions of local convergence faster than that of IC because it covers a larger subgraph than
IC, ie. |Uiuj| = |Uir\j| + (x—f)

Given a voting algorithm F(V), two processes i and j are Union Convergent if the following conditions are both
true in every round of voting:

F(V)) e p(U, ), and F(V)) € p(U;),

|F(V,) - F(V))| <C3(U;_ ), where 0 <C < 1,

where:

C = Convergence rate; it shows the effectiveness of a convergent voting algorithm.

V; = (vj1,...Vjyy; the multiset of real numbers received by process i sorted such that v;, <v;;,1 Vk €
{1,...,Vi- 1}. Vi is the size of V,.

p(U;) = [min(U, ), max (U; )] p(U;) is called the range of U, .

3U; ) = max (Uy,) - min(U; ;). U, is called the diameter of U, ;.

The conditions for IC are the same, except that U, is replaced with U;.;. Another major difference between
completely connected and partially connected systems is their handling of benign faults. We distinguish between
local and global benign faults. A global benign error is recognized by all non-faulty processes in the system. In
contrast, local benigns are recognized by only a subset of processes. In a completely connected system, global
benign faults can be ignored because all processes can delete the benign errors from V and vote with a smaller sized
multiset (Kieckhafer and Azadmanesh 1994). Thus, the multiset size V is the same for all non-faulty processes.
However, in a partially connected system without message relays, no value is received by all processes. Thus, no
fault is self-evident to all non-faulty processes as required in the definition of a benign fault (Meyer and Pradhan
1987). Therefore, in partially connected systems, only symmetric and asymmetric faults are considered.
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Figure 2. Completely connected view of Figure 1 with respect to nodes i and j.

5. CONVERGENCE WITH OMISSION FAULTS

In previous studies of synchronous Approximate Agreement, |V;| = |Vj| Vi, j e {1,..., N}. Thus, if an
omissive error occurred, a default value was substituted for the missing value. Similarly, a process could not
simply disregard its locally diagnosed transmissive errors. This is to ensure the equality of | V| for all non-faulty
processes. As a result, the previous voting algorithms could not exploit the omissive behavior of malicious faults.

A variant of the MSR family (Kieckhafer and Azadmanesh 1994) of voting algorithms will be exploited. The
new family of algorithms, called Omission MSR, or OMSR algorithms, differ from MSR algorithms in that the size
of voting multiset V is no longer fixed and may change in every round of voting. During a voting round, omissive or
self-evident transmissive errors are simply discarded. No defaults are substituted into the voting multiset V.
Thus, omissive errors remain omissive, and self-evident errors become omissive.

5.1. Conversion to complete connectivity
The voting algorithms for partially connected systems use the same approximation function as that used for
completely connected systems (Azadmanesh and Kieckhafer 1997, Dolev et al. 1986, Kieckhafer and Azadmanesh

1994): F(Vi) = mean [Sel;(Red® (V;))]. The “Reduction” function Red® removes the 1 largest and 1 smallest

elements from multiset V;, in order to produce the medial multiset M;. The “Selection™ function Sels then selects
o; elements from M;, to produce the selected multiset S;. The final voted value F(V;) is the arithmetic mean of the
selected multiset.

With respect to two arbitrary neighbors such as i and j, a partially connected system can look like a completely
connected system. Figure 2 shows how the partially connected network in Figure 1 is converted to look like a
completely connected network.

The network is completely connected because every node connected to i is also connected toj. The dashed lines
are logical rather than physical, so that any data sent on them are lost. In essence, these lines are the source for
omissive faults. It is assumed that A and D are faulty, so = 1. Since A and D each sends erroneous values to
processes i and j respectively, they can be combined logically to form a single faulty node sending conflicting data
to 7 and j. This node is shown as AD. With respect to nodes B and C, they are behaving in strictly omissive

asymmetric manner. Their correct values are received by i but not by j. A similar situation exists for nodes E and
F.

Azadmanesh and Kieckhafer (1996, 1997) have obtained the expressions for convergence rate and fault
tolerance for completely connected systems. Therefore, by logically converting partial connectivity to complete
connectivity, their results can be applied to partially connected networks. In Azadmanesh and Kieckhafer (1996,
1997), the parameters used to represent different fault modes are:

Wy, = The number of strictly omissive asymmetric values received by process i but not received by process j.
@, is the number of such faults in the network.
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a’; = The number of transmissive asymmetric faults received by process i, i.e. the number of faults
displaying any form of asymmetric behavior other than strictly omissive. a” is the number of such
faults in the network.

s’ = The number of transmissive symmetric faults in the network.
Ws = The number of omissive symmetric faults in the network.
b = The number of benign faults in the network.

Let tcomplete be the total number of faults in a truly completely connected network. Then:
Leomplete = (@ + @) + (s"+ wg) + b.

The relationships between this new and the previous fault partitionings (Dolev et al. 1986, Kieckhafer and
Azadmanesh 1994, Thambidurai and Park, 1988) which cannot exploit omissive faults are specified by the
relations: a=a¢"+ w, ands =s"+ @, .

As indicated, benign faults are not applicable to partially connected systems, so & = 0. For the other fault
modes, by closely looking at Figure 2:

Wy =0 +2(x-f) (5.2)
0, =0, (5.4)
where
a;~; = The number of transmissive asymmetric faults in P;~;.
W, =~ = The number of strictly omissive asymmetric faults in P;;.
Sinj = The number of transmissive symmetric faults in P;;.
sy = The number of omissive symmetric faults in P;~;.

In (5.2), 2(y — /) is justified because processes i and j each does not receive (y — #) of the values received by the
other process. Let ¢partiql be the total number of faults in the partially connected network. Then, replacing the
parameters in teomplete With the expressions in (5.1) — (5.4) yields:

t

partial ~ (aimj + waimj)'*'(sinj + ﬂ)simj)+21—f

Note that £partiqr is the total number of local faults with respect to two arbitrary processes i and j, and not the
total number of faults in the system.

In completely connected networks, benign faults can be discarded a priori before the voting algorithm
executes, because they are globally diagnosed and thus every process is aware of them. Furthermore, a process

does not receive values from those processes which behave in symmetric omissive manner, i.e. @, . Thus, in a truly
completely connected network, the total number of values received by a process i from faulty processes is:

t

. ’ ’
i,complete — (ai + wal- )+s

Mapping this equation to Figure 2 yields:
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a;= @injt+ /i (5.5)
Wy = a)ai,inj + (X —fi) (56)
S, = siﬁj (5-7)

where a; j~j is the number of transmissive asymmetric faults in P;j~; received by process i, and wg,; i is the
number of strictly omissive asymmetric faults in P;~; received by process i. Applying the expressions n (5.5) —
(5.7) to tj complete , Shows that, in a partially connected network, the total number of values received by process i
from faulty processes is:

tipartial = (Qiin i+ Qg i i+ (X =S+ Sin

=0 inj+ Og; i+ Sinj T X

Herein, an “error” is defined as any value received from a faulty process that does not behave in strictly
omissive asymmetric manner because, even though, a strictly omissive asymmetric process is faulty, its values are
“correct.” Hence, the maximum number of erroneous values received by any non-faulty process is (@’ + s’ + f). As
aresult, 7>(a’+ s’ + f) ensures that p(Red*(V,))cp(U,, ), so that F(V) generates a value within the range of
correct values.

With respect to the total number of faults in a partially connected network, two alternatives can be identified.
One is to place a limit on the number of faults in the entire system, as done in Ramanathan et al., 1990. However,
in a large distributed system, it may not be practical to place such a limit. The other approach is to place a limit on
the number of faults received by a process, as done in this paper. This approach is more realistic but has the
disadvantage that if a non-faulty process becomes divergent, due to the diffusion of local faults into other areas of

the system, the entire system may become divergent. The example at the end of the paper sheds more light on this
issue.

5.2 Definition of y

Let s; g be any element of the selected multiset S;, and let m; k;(g) be the corresponding element in the medial
multiset M;. Then, for each g € (1,...,0;} there exists exactly one k;(g) € {1,...,|Mi|} which guarantees that s; g =
mi k(g) for all possible M;. Given two indices into S;,g and k € {1,...,0;}, where g < h, define Ak;(g,h) = k;(h) — k;(g)
as the number of elements in M; spanned by elements (s; g»--Si,h) In S;.

Now, define the parameter 7, , as the minimum value which ensures that Ak;((g,g + Y;.) 22z, forallg € {1,...,0
— %) By this definition, y,, exists only if IMiI >z. Furthermore, if 7, , exists then y; , < ;. It will be shown that
the expression for convergence rate will depend on this parameter.

6. FIXED AND DYNAMIC VOTING ALGORITHMS

Asindicated, in OMSR, the size of V for each process can be different. This implies that medial multisets might
be of different sizes. Accordingly, depending on the selection function, each processing node may deal with a
different number of selected elements. This, and the fact that not all selection functions belong to the same family
of algorithms, created the need to distinguish among different families of algorithms. There are two general
families of selection functions: Fixed-o and Dynamic-o. A Fixed-o selection function always selects the same
number of entries from the multiset M, regardless of the size of M. By contrast, in a Dynamic-o selection function,
the number of entries selected from M depends on the size of M, i.e. o is a function of |M|. Each family of
algorithms could contain many sub-families. Two sub-families, one from each family, are considered in such a way
to ensure that together they encompass all commonly used voting algorithms (Dolev et al. 1983, Kieckhafer and
Azadmanesh 1994).
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6.1 Dynamic-o selection functions
The study of Dynamic-o selection functions is limited to the sub-family of enumerative selection functions.

Define the medial multiset M4y = <m1m1M |>, and Sp,qx = Selg,  (Mpmax), where Gpmay is the number of

elements selected from M;,,4,. Also, define the enumerative selection set as a set of integers £ = {e1,...,egmax} whose
elements are the indices of all elements of M,,,,, where e; j<ej+l Vje {1,...,0max— 1}. For any process i, the selected
multiset S; is then: Sel5(M;) = (mj e ,....Mje ) where gj is the largest value such that eq, < [M;|. In other words,
the elements selected from M; are those whose indices appear in E.

6.2 Fixed-o selection functions
For this family of algorithms, o; = oj, for any pair of M; and M ; Hence, the convergence rate expression
becomes simpler because Gyqx = Omin. The subfamily of selection functions adopted has the following properties:

M2 M=
Ak(g.g+1D)2Ak;(g,8+1), Vge{l..,0-1}

Informally, these properties state that as | M| increases the number of elements between each pair of selected
elements and the index of any selected element in M does not decrease.

7. DYNAMIC-0c CONVERGENCE RATE

7.1 Union convergence
Theorem 1: Given an enumerative dynamic-o selection function, and two multisets V; and Vj, such that F(V;) >
F(Vj), the UC rate is:

Yj,aj’mj +wa-- ; +Z

AN .
o ’ i J
Cc< J (7.1)

G0t %jinj +w“f-mf+x: 0,20

(o F

l

Proof: It has been shown (Azadmanesh and Kieckhafer 1998) that the convergence rate for a completely connected
network is:

Yj,a} +waj
lo J
C< /
O'i—O”j+}’j’a}+a)aj GLZGJ
o

l

Since we indicated that a partially connected system, from the perspective of two non-faulty nodes i and j, can
be viewed like a completely connected systems, where each missing link is behaving like an omissive fault, we can

safely use (5.5) and (5.6). Thus, by replacing aj with a; ;. ;+ f; and @, ~with O +(x - f;), the convergence rate

Jin
in (7.1) is obtained. []

Theorem 2: Given an enumerative dynamic-o selection function, and two multisets V; and Vj, such that F(V;) 2
F(Vj), the voting algorithm can be convergent only if:

Vi22t+max(a;;n;+ @, +X+1L0)),  T20;j+8;+f (7.2)
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Proof: For a completely connected system, it has been shown that (Azadmanesh and Kieckhafer 1998):
Vj221+max(a;-+coa!+1,oj), T2a’+s’ (7.3)
Applying the expressions in (5.5) — (5.7) and (5.1) to (7.3) yields:

Vi 22t+max(a;;+fi+ 0, +(X—F)+10).  T2(an+)+sin,
=27+ max(a

jinj T @, +x Lop, 7120 ;+s,+f O

Theorem 3: Given an enumerative dynamic-o selection, a Union convergent voting algorithm exists if the follow-
ing is true:

P, 23a,;+2s,. t0, +o

inj 2 inj t @, T, +27+1 (7.4)
Proof: Let the number of nodes in Fig. 1 be Npqrtiq;. When this figure is converted to the completely connected
form, i.e. Fig. 2, the number of nodes is Neomplete = Npartial — /- It has been shown (Azadmanesh and Kieckhafer
1998) that a completely connected network with Neomplete nodes must satisfy the following inequality for the
algorithm to be convergent: Neomplete 23a’+ 25’ + @y + w5 + b + 1. Using equations (5.1) —(5.4) , and the facts that
b = 0 and Neomplete = Npartial — f, changes the inequality to:

Npartial _f23(aif\j +f)+2siﬁj + wamj +2(X_f) + wsinj +1

After simplification, we get:

N partial 2 304 23mj+wamj to, +2(x+/)+1 (7.5)

Now, since Pj~j = Npqartial — 2%, (7.5) becomes:

P, ;23a,,,;+2s,;+t0

o, t O, +27/+1 [

inj

MSR algorithms in partially connected systems do not distinguish between transmissive and omissive faults.
As a result, all strictly omissive asymmetric and omissive symmetric faults are treated as transmissive faults. If

we use the notation Qi + Wajry and sg;; + iy to represent all asymmetric and symmetric faults within P;~;
respectively, Kieckhafer and Azadmanesh (1993) have shown that a convergent voting algorithm exists if:

P, ;23a, ., +2s

i j+ Dayir,

s o, T2f+1 (7.6)

inj Sinj

Applying the same notation to the result of Theorem 3 yields:

P, j23a,,;+2s,;+ W, + 05 +2f+1

=3(ajnj+ g, )+ 28, + o, )+2f+1-Qw, +o, ) (7.7)
= 3aam,»+wam, + 2ssin,-+wsm, +2f+1- (2“’a,-n,- to, )

Comparing (7.7) to (7.6), it is observed that including omissive faults into a fault model reduces P;~j by

20, + o, ) Since omissions can be the dominant mode of failure in large geographically distributed networks,

inj
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saving (20’%/ + wsm) nodes can be very significant.

Another advantage of OMSR over other voting algorithms, including MSR algorithms, is that self-evident
errors need to be diagnosed only by the local processes. A process, upon the detection of an error, can simply drop
the erroneous value from its voting multiset V. If the error is detected by every process, the effect will be the same
as a globally diagnosed benign error. However, if the error is detected by just a subset of processes, then diagnosis

at the global level will be of no help. As a result, employing OMSR algorithms reduces the need to globally diagnose
errors.

7.2 Intersection convergence

IC requires a more restrictive criterion than UC. Specifically, F(V) must be within the range Uj~;. Therefore,
the (y — /) correct nodes in P;\P;~; and P;\P;~; must be treated as faulty, regardless of their health, and thus 7
must account for these nodes to ensure that the nodes in P;~, after applying the voting algorithm, will generate

values in p(Uim j). Accordingly, T2 aj~j + sinj + X

The conditions to ensure two processes [ and j are Intersection convergent can be derived as a variant on UC
described previously. In Theorems 1-3, the results are valid for any /< y. By setting f = y, it follows that p(U;~;)
= p(Ujj). Thus, the convergence rate and fault-tolerance expressions for IC are the same as those of UC except
that fis replaced with y.

It should be noted that, although the expressions for UC and IC rates are the same, they may not produce the
same results because 7 for the two environments are different. This will affect the medial multisets and in turn
different o values will be produced for each environment.

8. FIXED-0 SELECTION FUNCTIONS

In fixed-o, the number of elements selected is fixed, regardless of the size of V. The method to obtain the

expressions for convergence rate and fault-tolerance is the same as that of dynamic-o, except that for any st

selected element, the equality k;( /) = k;( /) may no longer be true. The next two theorems obtain these expressions
only for UC. As in the dynamic-o case, the results for IC are the same except that fis replaced with y.

Theorem 4: Given qa fixed-o selection function, the UC rate is:

Vo 40, TX

C=_"n""anj (8.1)
o

Proof: For a completely connected system, it has been shown (Azadmanesh and Kieckhafer 1998) that:

c=Ye (8.2)
o

where orepresents the maximum effective number of asymmetric values seen by any non-faulty process. Consider
two processes i and j as in Fig.1. The maximum effective number of asymmetric values seen by a process i in P;;

is ;. +®, . The maximum number of asymmetric values seen by the same process from those processes whose
inj

values are not received by process j is y. Thus, the total number of effective asymmetric values is (a;j~; + g
By replacing this expression for ¢ in (8.2), (8.1) is obtained. [

)

iry

Theorem 5: Given a fixed-o selection function, a Union convergent voting algorithm exists if the following is true:

P, ;230 j+2s, j+w, +©

o, T2F+1

Proof: The proof is similar to Theorem 3. []
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Figure 3. A partially connected network.

9. APPLICATION EXAMPLE

This example uses different values for the fault modes to show when UC is possible. A portion of a regular
network is shown in Fig. 3. In this network, four nodes are labeled i, j, k2, and [. The link connections are shown
only for the nodes i, j, and k. For readability sake, let us use the notation y; ; torepresent the number of periphery
processesin P\ P, ;, and use f; ; to show the faulty processesin P;\ P, ;. By inspection, P, ; = 12, P;_, =10,
Xij = 7,and x;, =9. According to Theorem 3,7 andj are convergentif: P;; > 3a;.; + 25, + 0, + o, + f;;
+1,andjand k are convergentif P, , >3a;., + 2s;, + W, , + @5 + fj,+1. Thus, convergencebetweeni and
J, and between j and & is possible if:

tnJ Ui j

12230, +25,,;+ 0 +0, +2f; ;+1 (9.1)

1023a,,,+2s,,+0, +0, +2f;,+1 (9.2)

@ik Sink

Using these conditions, the examples in Table 1 show whether convergence exists between i and j, and between
J and k. While a pair of nodes is convergent with respect to each other’s correct values, a different pair of nodes may
not be convergent. For instance, in row 2 of the table, processes i and j are convergent, whereas j and k are not.
This peculiarity does not exist with completely connected systems, i.e. if a pair of nodes are convergent, every pair
in the network is convergent. This, however, is not necessarily an indication that the entire network is divergent.
Aslong as 7> a’ + s’ + f, voted values will be within the range of the correct values. As the voted values of the
convergent nodes diffuse across the network, they will eventually force the divergent nodes to become convergent.
As a result, nodes may be divergent with respect to each other for more than a round of voting before reaching the
point where the range of the voted values is smaller than the range of the correct values in the entire network.

In row 4, there are 3 transmissive asymmetric faults in P, ; and also 3 such faults exist in P; ., . To make the
situation worse, assume there are 3 transmissive asymmetric faults in P,,. For this distribution of faults, the
pairs (i, ), (7, k), and (k, [) are all convergent. This accounts for 9 faulty processes in the network. However, if any
process encounters that many faults, i.e. ainy = 9, there is no guarantee for the process to produce values within the
range of the correct values. Once a non-faulty process becomes divergent, it may never again generate values
within the range of the initial correct values. The process would then act exactly like a faulty process, even though
it is not faulty. It may thus infect other processes which in turn may infect others. As a result, the entire network
may never become convergent. The point is that global convergence is very dependent upon the distribution of
faults within the network. One solution is to set a limit on the number of faults in the network while making sure
that every process stays convergent within this limit of faults by adjusting 7 accordingly. This is however
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Table 1. Examples of convergence between processes (i,7), and between (j,k).

G j Sinj wamj ws,m- f ij

Example and and and and and 9.1) 9.2)
# @k Sjnk @y, , o Fik true? true?
1 1 2 0 2 1 Yes No
2 0 3 0 3 1 Yes No
3 0 0 0 9 0 Yes Yes
4 3 0 0 0 0 Yes Yes
5 3 0 1 1 0 Yes No
6 2 3 0 0 0 No No

restrictive because in a large network the limit will then be determined by the density of the connections between
each pair of processes rather than the number of nodes in the network.

10. CONCLUSIONS

This paper considered two subfamilies of algorithms called dynamic-o and fixed-¢. Since in OMSR, voting
multisets are no longer of the same size, and the fact that not all common voting algorithms belong to the same
family of algorithms, it was not possible to employ a single family of algorithms encompassing all such algorithms.
For instance, Fault-Tolerant Midpoint belongs to fixed-o but not to dynamic-o, or Fault-Tolerant Mean belongs to
dynamic-o but not to fixed-o. Using these two subfamilies, it was shown that the inclusion of omissive faults
improves fault tolerance in comparison to other models such as MSR.

Obtaining convergence rate directly from partial connectivity is a very tedious process (Azadmanesh and
Kieckhafer 1995b) because the voting multisets are not of equal sizes, which introduces a number of difficulties.
But it was shown that, from the perspective of two adjacent non-faulty nodes, partially connected systems can be
viewed like completely connected systems. This made obtaining the expressions for convergence rate and fault
tolerance manageable. It is conjectured that the methodology developed herein can be extended to any two nodes

Table 2. Summary of necessary dynamic-o and fixed-o convergence parameters.

Union Intersection
T20;;+8jt S T=0inj+5~;tX
P, ;23a;.;+2s;; + W, O, +2f+1 P, ;230 +2s;+ W, FO + 2x+1

Yia,mto,, +x 0 =0t Yja,+w,, +x
dynamic-o: C <|—="—40f © 0;<0;, P Hing . 0,20

Yamj+wamj +x

o

fixed-o: C<
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in the network. This is already under investigation. If this conjecture is true, then the performance of global

convergence can be obtained.

Table 2 summarizes the convergence bounds for fixed-o and dynamic-o selection functions under the OMSR
fault-model. In this table, if omissive faults are presumed not to occur or are treated as parts of asymmetric and
symmetric faults, then OMSR model will converge into the three-mode MSR fault model, because then all

multisets will be of the same size.
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