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Advisors: Elizabeth Jones and Atorod Azizinamini 

The behavior of integral abutment systems and the extension of their application to 
curved bridges are investigated. First, the stresses in the elements of a typical integral 
abutment are studied by conducting nonlinear finite element analysis using the software 
package Abaqus. The results are design recommendations for the details of such 
abutments. The effect of integral abutments on the responses of bridges is also 
investigated. Steel and concrete bridge systems are studied separately.  

The studied steel bridge systems are composed of composite I-girder superstructures 
and integral abutments supported on steel H-piles. A series of finite element studies for 
different bridge lengths and radii are conducted and the effects of several load cases on 
the bridges are studied. In these bridges, the stresses in the abutment piles are of critical 
importance from the design standpoint. The results show that horizontal curvature 
mitigates these stresses. The bridge movement is also studied and a procedure to find the 
end displacements of curved bridges is presented. Pile orientation is another significant 
design factor that is studied elaborately. The results indicate that, for straight bridges, the 
strong-axis pile bending yields lower levels of stress. A method for finding the optimum 
pile orientation in curved integral bridges is developed. The effect of different bearing 
types is also investigated. This investigation reveals the superior structural performance 
of elastomeric bearings compared to other bearing types. 

The concrete bridge systems that are studied consist of voided slab superstructures, 
integral abutments and concrete drilled shafts. A matrix of finite element studies is 
performed for different lengths and curvatures. Similar to steel I-girder bridges, it is 
concluded that horizontal curvature mitigates the internal forces of the abutment 
elements. The orientation of the concrete shafts is also examined which again shows the 
advantage of strong-axis orientation. Integral abutment bridges can have flexible piers 
integrally connected to the superstructure to eliminate all the bridge bearings. The effect 
of such integral piers on the internal forces of integral abutments is also examined. In 
these flexible piers, moment magnification can be of crucial significance. It is shown that 
choosing the integral abutment system reduces the magnification effects in the slender 
pier columns compared to jointed bridge systems. 
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Chapter 1    

Introduction, Background 

and Objectives 

1.1 Introduction 

Bridges have been built since thousands of years ago by human beings. From 

prehistoric times to the Renaissance bridges had two main characteristics: The main 

construction materials were stone and natural cement and the spans were less than 100 

feet. Despite the limitations that the architects and engineers of those times had, long 

bridges up to a total length of 1000 feet can be found among ancient bridges. After the 

Renaissance, modern bridges came into existence in the seventeen and eighteen century. 

The greatest differences of these modern bridges and the old ones were the material and 

span length. The material changed to iron (or steel) and later concrete. The span length 

gradually increased up to 3000 feet in the early twentieth century. So, the engineers were 

in charge of designing longer and longer bridges. 

This trend in building bridges caused new approaches to appear in bridge industry. To 

accommodate the movements of long bridges, the designers adopted new techniques in 
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their designs. Moveable expansion joints and bearings were among those techniques. 

These devices have been used in bridges for more than 200 years. But, their performance 

has affected the long term performance of new bridges. Expansion joints have different 

designs which all of them have some sort of dysfunction. Even though they have high 

quality in the first months or years of service, after a longer time, most of them have 

problems such as leakage and poor ride quality due to wear or fracture. Bearings also 

have shown their intrinsic problems. In most bearing types, elastomeric layers are used. 

These elastomers lose their original properties in time. Ozone can damage the elastomer, 

even if there is no load or movement applied to the elastomer. That’s why most of 

bearings should be replaced after some years. 

The deficiencies of expansion joints and bearings drew the bridge designers to some 

new concepts of bridge design in the past years. Elimination of joints and bearings was 

the new target. This led to the introduction of a new type of structural system known as 

Integral bridges. These bridges are composed of: 

- Abutments at the two ends 

- Approach slabs that rest on abutments and their backfill 

- Intermediate piers 

- And finally a “jointless” superstructures built integral to the abutments 

Note that there are no joints from the end to end of approach slabs. This bridge system 

is an ideal one which has no bearings and no joints. But, based on the needs, some other 

structural systems have also developed. First is an integral bridge that has rigid piers with 

movable and/or fixed bearings. In this type of bridges, all expansion joints and also the 
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abutment bearings are eliminated. But, piers still have bearings. If the durability of the 

pier bearings is guaranteed, these bridges can survive for a long time without any major 

deterioration. The second system has integral piers, but it has bearings in the abutments. 

In these bridges, the piers are flexible to be able to accommodate the movements, and the 

abutments are rigid, so they are isolated from the superstructure. A third system is a 

jointless bridge that has bearings both in the abutments and piers. Those jointless 

structural systems that have bearings in the abutments are called semi-integral. Table 1.1-

1 shows different types of jointless bridges.   

Bridge Type Joint 
Bearing 

over Piers 

Bearing in 

Abutments 

Integral with Flexible Piers No No No 

Integral with Rigid Piers No Yes No 

Semi-integral with Flexible Piers No No Yes 

Semi-integral with Rigid Piers No Yes Yes 

Table 1.1-1. Different Types of Jointless Bridges 

As described before, integral bridges do not have joints whether they have bearings or 

not. Therefore, a better name for these bridges is “Jointless”. These two terms have been 

used interchangeably in the literature and also in the present study. The integral bridges 

with no bearing in the abutments are sometimes called “integral Abutment Bridges”. 

Figure 1.1-1 illustrates typical integral and semi-integral abutment details. 
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Figure 1.1-1. A Typical a) Integral Abutment  b) Semi-Integral Abutment 

Integral bridges have several advantages compared to jointed ones. The main 

advantages include: 

- Lower initial and maintenance cost 

- Longer service life 

- No water leakage from superstructure down to substructure 

- Improved riding quality 

- Easier and faster construction  

- Easier inspection 

- More resistant to pavement growth/pressure phenomenon 

- Reduced number of bearings (except for semi-integral with rigid piers) 

- Easier embankment compaction 

Span

Girder

Span

a) b)

Girder

Elastomeric
Bearing
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- No need to cofferdams for abutment excavation and pile driving 

- Small excavation for abutments 

- No need to battered piles for flexible abutments or piers 

- Increased factor of safety for buoyancy 

- Simple formwork for abutments and piers pile caps 

- Fewer joints (just two joints at the ends of approach slabs) 

- Broader construction tolerance 

- Reduced removal of existing substructure (new configuration to straddle old 

foundations) 

- Simple beam seat details 

- Elimination of bearing anchor bars 

- Broader end to intermediate span ratio 

- No risk of superstructure falling during major earthquakes and eliminating seat 

width requirements in seismic design  

- More distribution for live load 

- Simpler Design (if the bending stiffness of abutment piles is ignored) 

In the present study, both types of integral abutment bridges, with flexible and rigid 

piers, are studied. The abbreviations used for these bridges depending on the context are 

IA for “integral abutment” and IAB for “integral abutment bridges”. 
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1.2 Background 

The first integral abutment bridge in the United States was built in 1938. Since then 

building integral bridges has spread throughout the country. Construction of integral 

bridges has also been adopted in Europe, Australia, New Zealand, Japan, South Korea 

and some other countries. 

 In the first decades, integral bridge systems were used for bridges with concrete 

superstructure. These bridges had a length between 50 to 100 feet. It was not until early 

1960’s that this concept was adopted for steel girder bridges. After that, several steel 

bridges with a skew angle less than 30 degrees and lengths not more than 300 feet were 

constructed using this method. Jointless steel bridges of length less than 300 feet have 

had an excellent performance in some states like North Dakota, South Dakota and 

Tennessee. Such bridges with concrete superstructures have been constructed and served 

with lengths of less than 800 feet in other states like California, Kansas and Colorado. 

In 1987, eleven states of the US reported construction of jointless integral bridges with 

lengths of about 300 feet. Among those states, Tennessee and Missouri implemented the 

approach to longer bridges. Missouri reported concrete and steel integral bridges with the 

length of 500 and 600 feet, respectively. Tennessee DOT is leading the way in 

construction of long integral bridges. They have constructed a prestressed concrete 

integral abutment bridge with a length of 1175 feet. 

The same tendency is seen in other countries. In Europe, European Commission is 

spreading the integral bridge concept among bridge designers. In the UK, integral and 

semi-integral bridge systems are recommended for relatively short bridges with less than 
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30 degrees skew angle. In Canada, integral construction is encouraged among designers 

where each province has its own provisions for these bridges. Ontario recommends 

jointless technique for bridges shorter than 328 feet. 

The above mentioned trend shows that making use of integral bridges will become 

standard among the bridge designers and responsible agencies like DOT’s in the near 

future. But, the use of this type of bridges becomes even more popular when 

comprehensive design guides are available and if their enhanced long term performance 

and durability is more proven. On the other hand, as thousand of existing bridges are 

jointed and during years are deteriorated, converting them into jointless integral bridges 

appears to be a reasonable solution if the design provisions and details of such bridges are 

documented. That will ensure the designers and owners of their decision and there will be 

more justification for adoption of such methodology. 

1.3 Literature Review 

To have a detailed study on curved integral abutment bridges, three different subjects 

should be considered: curved bridges, integral bridges and curved integral bridges. This is 

attributed to the fact that the problems associated with a curved jointed bridge or a 

straight integral bridge may be inherited by a curved integral bridge. Therefore, the 

literature review on curved integral abutment bridges is carried out in three steps. First, 

the previous research on integral abutment straight bridges is reviewed. These studies 

mainly include the investigations on thermal response and examination of the available 

field monitoring data related to integral bridges. Then, the studies that have been 

conducted on curved bridges are examined. This part presents a summary of decades of 
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research on the behavior of curved I- and box-girder bridges, their design requirements 

and the approaches to evaluate their strength. And then, the previous studies on curve 

integral abutment bridges are briefly summarized. 

1.3.1 Straight IA Bridges 

Straight integral bridges have been the subject of several studies. National Steel 

Bridge Alliance of American Iron and Steel Institute has published a report on integral 

abutments for steel bridges (American Iron and Steel Institute, Tennessee, Dept. of 

Transportation, Structures Division, & National Steel Bridge Alliance, 1996). This report 

authored by Wasserman and Walker was one of the first ones discussing the details and 

basic design requirements of steel integral bridges. As an almost old report, it has been a 

conservative guideline for designing integral bridges. The report discusses the practices 

of design agencies, the geometrical and construction limitations of jointless bridges and 

also provides an elementary example for design of piles.  

Arsoy et al. have prepared a report for Virginia Transportation Research Council that 

presents the results of their works in a literature review, field trip and a finite element 

analysis related to integral bridges (Arsoy et al., 1999). They have concluded that the 

important factors regarding the integral bridges are the settlement of the approach fills, 

loads on the abutment piles, abutment displacement characteristics, the earth pressure 

distribution, the effects of secondary loads and the soil-structure interaction. They have 

discussed the techniques of reducing the approach fills settlements and have made some 

recommendations to enhance the performance of these bridges. 
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Fennema et al. have studied the response of an integral abutment bridge through 

analysis and field monitoring (Fennema, Laman, & Linzell, 2005). Their research 

verified that the inclusion of multi-linear soil springs resulted from p-y curves is a valid 

method of soil-pile interaction analysis. It is also shown that superstructure thermal 

movement is accommodated through rotation of the abutment about its based rather than 

pure longitudinal translation of the wall. They have also indicated that soil pressures are 

between active and at-rest pressure values. Also, it is demonstrated that the maximum 

soil pressure is at a point approximately 1/3 of the abutment height below the road 

surface.  

Pugasap et al. have studied long-term response of integral abutment bridges (Pugasap, 

Kim, & Laman, 2009). They have continuously monitored three Pennsylvania integral 

abutment bridges for about two years and shown that the bridge movement progresses 

year to year and the long term response is significant with respect to static predictions. In 

this study, seasonal cyclic ambient temperature and equivalent temperature derived from 

time-dependent strains using the age-adjusted effective modulus have been employed. To 

model the hysteretic behavior of soil-pile and soil-abutment interaction and the abutment-

to-backwall connection, the elastoplastic p-y curves, classical earth pressure theories and 

moment-rotation relationships with parallel unloading path were used. In their study, the 

predicted earth pressures have been similar to the measured pressures. They have shown 

that the ratios of long-term to short-term abutment displacements vary from 1.5 to 2.3 

which indicate the importance of considering the long-term response of integral abutment 

bridges. 
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In 2009, Vermont Agency of Transportation published a guideline on design of 

integral abutment bridges (VTrans, 2009). The guideline discusses general design and 

location features, loads, structural analysis methods, the needed guideline to design 

concrete and steel elements of such bridges, foundation, abutments and pier requirements 

and several other subjects. The format of presenting the subjects is in accordance to 

AASHTO LRFD. But the problem with this report is the comprehensiveness of the 

discussed problems. It seems that this guideline follows the previous codes and reports 

and lefts several problems about jointless bridges unanswered. 

There are also several other studies on the behavior of integral abutment straight 

bridges. Although, there is not an all-inclusive design guide for straight integral bridges, 

but it seems there is enough research, tests and data available to be compiled for 

composition of a design guide. 

1.3.2 Curved Bridges 

In geometrical design of roads, tendency to use smooth transitions forces the designers 

to employ curved paths and inevitably demand for curved bridges in their designs. The 

use of curved bridges has increased drastically over the past 30 years so that these bridges 

constitute about one-third of all bridges being built today (Linzell, Leon, & Zureick, 

2004).  

Until 1960s there was not a major research project on understanding the behavior of 

curved bridges. The need for curved bridges, because of their advantages to chord 

bridges, led to development of the specifications for these bridges. The first official 

attempt was creation of the Consortium of University Research Teams (CURT) project in 
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1969 which was funded by 25 states under the direction of the Federal Highway 

Administration (FHWA). The consortium collected all existing data on curved bridges, 

conducted analytical and experimental research and developed analysis and design 

methods for curved bridges (Linzell, Hall, & White, 2004). But, all the results were based 

on the available information and techniques of those days. 

The research on curved bridges continues in 1970s leading to publication of the first 

AASHTO design guide in 1980 when AASHTO issued the Guide Specifications for 

Horizontally Curved Bridges (American Association of State Highway and 

Transportation Officials, 1980). The guide was incomplete and conservative on the 

presented provisions. The reason for the conservative approach was the uncertainties on 

the response of curved bridges during construction and service. Therefore, more research 

was required to enhance the available recommendations. AASTHO revised the guide 

several times after first publication through the interim revisions and published a second 

edition of the specifications in 1993 (American Association of State Highway and 

Transportation Officials, 1993). 

In 1992, another project was started by FHWA to study curved steel bridges. The 

project called Curved Steel Bridge Research Project (CSBRP) was conducted by Zureick 

et al. (Zureick et al., 1994). The project had several aspects ranging from reviewing 

existing research to providing new design recommendations. Another goal was to study 

curved bridges from constructability point of view. One of the major steps in the project 

was to conduct an experimental research on a large scale curved bridge. The main 

difference of the experiments in this project and the previous ones was the size of the test 

specimens and providing more realistic boundary conditions in the laboratory. The test 
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bridge in this project was a single span three-girder bridge with the mean span of 90 feet 

and mean radius of 200 feet. So, the span was a representative of the existing bridge 

spans and the radius was the lower bound for the real curved bridges. Based on the results 

of that experiment, Zureick et al. presented the state-of-the-art analysis methods for 

horizontally curved steel I-girder bridges (Zureick & Naqib, 1999). Also the capabilities 

of analysis tools to predict the behavior of girders during erection and the significance of 

erection sequence on the initial stresses of the girders were discussed by Linzell et al. 

(Linzell, Leon et al., 2004). Based on this research project, several other problems have 

been studied by the involved researchers like the research conducted by White et al 

(White, 2001). 

In 1993, National Cooperative Highway Research Program (NCHRP) started a new 

project, NCHRP 12-38, conducted by Hall et al. to offer improved specifications 

compared to previous research. The results of this study were published in NCHRP report 

424 (Hall et al., 1999). It includes an overview of curved bridge research, the US curved 

bridge design practice, a summary of Load Factor Design specifications by Hall and Yoo 

(Hall, National Research Council (U.S.), Transportation Research Board, National 

Cooperative Highway Research Program, & Bridge Software Development International, 

Ltd, 1998). The outcome of this project is reflected in AASHTO through the Guide 

Specifications for Horizontally Curved Bridges published in 2003 (American Association 

of State Highway and Transportation Officials, Subcommittee on Bridges and Structures, 

2003). 

Another project on curved bridges was the joint project of AISI and FHWA in 1999 to 

develop unified equations for curved and straight I-girder bridges for the LRFD code. 
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The results of this great project are presented by White et al. (White, 2001). This 

document includes a review of the curved I-girder strength equations and the required 

modifications to the AASHTO LRFD 2001. All of these efforts resulted in valuable 

outcomes in less than a decade (White et al., 2008). 

One more great research project by NCHRP is the project 12-52 which revised the 

2003 AASHTO Guide Specifications and provided valuable design examples for both I- 

and Box-girder curved steel bridges. These example are prepared by Kulicki et al. (J. M. 

Kulicki, National Cooperative Highway Research Program, & Modjeski and Masters, 

2005a; J. M. Kulicki, National Cooperative Highway Research Program, & Modjeski and 

Masters, 2005b). 

The research on uniting the design equations for straight and curved bridges was 

continued by White et al. and the most updated strength equations was first reflected in 

the AASHTO LRFD published in 2007 (American Association of State Highway and 

Transportation Officials, 2007). 

In addition to these national bridge research projects, several other projects have been 

conducted by different researchers. For example, Bell and Linzell have studied the effects 

of different erection procedures on the deformations and stresses of a horizontally curved 

I-girder bridge. In this study that was on a three-span bridge, despite the large radius of 

the curvature of the bridge, the original erection scheme resulted in large deformations 

yielding a misaligned geometry. Their study shows the important effect of pair girder 

erection, lateral bracing and temporary shoring during construction (Bell & Linzell, 

2007). 
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In addition to the general studies on curved bridge behavior, several researchers have 

studied more specific subjects in this field (J. M. Kulicki, National Cooperative Highway 

Research Program., American Association of State Highway and Transportation 

Officials, & United States, Federal Highway Administration, 2006). In the following 

subsections, some of these studies are summarized. 

[In other countries, other than the US, it seems that Japan is one of the only countries 

which have published their own design guides for curved bridges. Japan Road 

Association has published the Guidelines for the Design of Horizontally Curved Girder 

Bridges.] 

A) Analysis 

There can be several different levels of analysis for curved girder bridges including 

hand calculations like V-Load method, 1D line girder analysis, 2D planar analysis and 

finally 3D analysis. 1D line girder analysis is any analysis method which extracts a girder 

out of the rest of structure and analyzes that girder individually. Employing such a 

method for curved bridges may result in huge approximations. 2D planar analyses 

methods have several varieties. Any analysis that includes just superstructure elements 

and incorporates the effects of substructures by means of boundary conditions lies in this 

group. Cross frames and diaphragms may or may not be modeled in a planar analysis. 

The components may be modeled using only frame elements. Plate or shell elements also 

may be used in such an analysis. On the other hand, a 3D finite element analysis includes 

all the components of super- and substructure. In 3D analyses, there can be different 

levels of refinement. Truss, frame, plate, shell or solid elements may be employed based 

on the needed accuracy. Some elements may be replaced by the boundary conditions in 
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the analysis. In this case, the results are valid provided that correct boundary conditions 

are chosen. Any analysis method for curved bridges that does not include the depth of the 

girders can’t be considered as a full 3D analysis. Any 3D space frame analysis is not a 

full 3D analysis because of inability to account for the effect of deck slab or girder web in 

the third dimension.  

Evaluation of the different analysis levels capabilities was a valuable outcome of the 

NCHRP Project 12-38. The evaluated analysis levels include 1D line girder analysis, 2D 

planar grid analysis and 3D finite element analysis that are compared through examples 

by Hall et al. (Hall et al., 1999). They have shown that there is a close correlation for 

dead load results among all three levels of analysis. For live load, the results of 2D and 

3D analyses are fairly correlated, but 1D analysis results are noticeably different. The 

reason for the discrepancy may be attributed to the load distribution factors. 

Nevling et al. have also examined the accuracy of different levels of analysis for 

curved I-girder bridges. In their study, a field test on a three-span bridge has been 

performed to evaluate different methods results. It is concluded that 2D grillage models 

and 3D finite element models predict girder vertical bending moments more accurately 

than a line girder analysis. Also, it is resulted that the girder vertical bending moment 

distributions of a 3D analysis are not significantly more accurate than those of a 2D 

analysis (Nevling, Linzell, & Laman, 2006). 

B) Elastic lateral torsional buckling capacity 

As the curved bridges have an intrinsic imperfection, the usual bifurcation type lateral 

torsional buckling moment may not be seen in such bridges. An eigenvalue analysis 
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yields buckling moments for the girders of these bridges. Davidson performed several 

analyses on hypothetical curved bridges which resulted in a fitted equation for such 

problems (J. S. Davidson, 1996). 

C) Cross-Frame Spacing 

Several finite element analyses conducted by Davidson et al. (J. S. Davidson, Keller, 

& Yoo, 1996) on a series of hypothetical curved bridges has ended in an equation for the 

spacing of the cross frames as follows: 

 ln
1.965

.

 Eq. 1.1 

In which  is the cross frame spacing,  is span length of girder,  is the warping 

stress in the girder,  is the bending stress in the girder,  is the radius of curvature and 

 is the width of the compression flange of the girder.  

D) Effect of Cross Frames 

Addition of lateral bracing to the flanges of I-girders makes them to act like a box 

girder. One of the main structural roles of the cross frames in curved I-girder bridges is to 

increase the stiffness of the superstructure and so to reduce the deflection of the bridge. 

The other important effect of cross frames is the reduction of the girder bending and 

warping stresses. 
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E) Flange Local Buckling of Curved Girders 

Eq. 1.2 was proposed by Davidson and Yoo which was the result of a number of 

analyses on curved I-girder bridges to limit the width to thickness ratio of the 

compression flange (J. S. Davidson & Yoo, 1996). 

 √   Eq. 1.2 

Where  

 1.05 4   1.0  Eq. 1.3 

1.3.3 Curved IA Bridges 

In the section on curved bridges, it was states that the trend to have optimum 

transitions in design of roads and highways urges the employment of curved paths and 

roads. These optimized geometrical designs necessitate construction of curved bridges. 

On the other hand, the request for elimination of joints directs the bridge designers to a 

solution called “Curved Integral Abutment Bridges”. Regarding their superior 

performance, this type of bridges is getting more and more popularity among the 

designers and also bridge owners. But, as there is not enough information on the 

structural behavior of these bridges, some DOT’s have restricted the application of 

curved IA bridges. 

A limited number of investigations have been carried out on curved integral abutment 

bridges. Among them is a dissertation by Thanasattayawibul that is done in the 

University of Maryland, College Park in 2006 (Thanasattayawibul, 2006). In this 
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dissertation, several finite element analyses have been performed on curved steel I-girder 

IA bridges. The effects of dead, live and temperature loads have been considered. In this 

research, the main studied subjects have been the abutment pile stresses and the bridge 

lateral displacements. 

Another study on curved integral abutment bridges is a master’s thesis by Kalayci 

from the University of Massachusetts Amherst (Kalayci, 2010). In this thesis, the 

Stockbridge Bridge in Vermont is used as a baseline model which based on that five 

other models have been generated with the same length and different degrees of 

curvature. The effects of dead and temperature loading on the models have been studied. 

The weak-axis bending is chosen for the abutment piles. Reducing the restraint against 

bridge movement is stated as the reason for such a pile orientation. The finite element 

models have been studied for bridge displacements and pile and superstructure moments. 

In the modeling process it is tried to use simplified models which could have been 

resulted in errors in the responses. Again, it is stated that based on NCHRP Report 563, 

these simplified analysis methods cannot be considered full 3-D finite element analyses. 

In the above-mention studies, there are some major problems. One of the problems is 

the practicality of the presented results. In some cases, just the “relative” values of the 

some important results, such as pile stresses or displacements, are given. Some of the 

results are absolutely weird.  Several problems of great practical significance have not 

been investigated. For example, longer spans, like the spans close to 200 feet, have not 

been studied. The effects of several loads other than dead, live and temperature have not 

been considered. These loads include earth pressure, centrifugal force, braking force, 

wind load and concrete shrinkage. Based on the design codes, the internal forces should 
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be studied in load combinations. In the previous studies, the internal forces in those load 

combinations have not been studied. A mechanistic solution for the displacements of the 

curved integral abutment bridges has not been presented. The optimum orientation of the 

piles has not been discussed. Also other problems such as the effects of different types of 

bridge bearings or pier-to-superstructure connections have not been investigated. 

1.4 Scope 

In the present dissertation two different types of jointless bridges are studied: 

i- Integral abutment steel I-girder bridges with rigid piers 

ii- Integral abutment concrete bridges with flexible piers 

 The studied steel IA bridges have bearing over the intermediate piers and the studied 

concrete IA bridges do not have any type of bearings. 

The other point to mention on the scope of this study is the radius of curvature of the 

bridges. In highway design manuals, the radius of curvature of roads is determined as a 

function of design speed, superelevation and coefficient of friction using the following 

equation: 

15  Eq. 1.4 

In which  is the minimum radius of curvature in feet,  is the design speed in 

mile per hour,  is the superelevation and  is the side friction coefficient. This equation 

comes from equating the centrifugal force  and the summation of friction force and 

tangential component of weight on a slope.  The constant 15 comes from the different 
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units used in the equation. Plugging a velocity of 25 mph, a superelevation of %6 and a 

side friction coefficient of 0.15, yields a radius of about 200 feet. If the design speed is 

changed to 30 mile per hour, the minimum radius increases to about 300 feet. These tight 

radii are in agreement with the radius chosen for the great experimental research of 

CSBRP project of FHWA which was the base of the works of leading researchers of this 

area in the US. Another research was conducted by Disantiago et al. who also chose a 

radius of 191 feet for their investigation (DeSantiago, Mohammadi, & Albaijat, 2005).   

In the present study, as it is assumed that steel bridges practically cannot have radii 

less than 300 feet, the minimum radius of curvature used for studied steel bridges is 300 

feet. And since the concrete bridges are assumed to have cast-in-place slab type 

superstructures in which the radius of 200 feet or even smaller is possible, a minimum 

radius of 200 feet is chosen for the studied concrete bridges. In each case, larger radii up 

to infinity which correspond to straight bridges are also studied. 

1.5 Objectives of the study 

The objective of the present study is to comprehend the behavior of curved integral 

abutment bridges. Because of existing uncertainty on the response of such structures, 

transportation agencies have limited their application. The conservative approach of the 

bridge designers and owners comes from inadequate past research on these bridges. As 

horizontal curvature induces a large amout of complexity in the response of curved 

bridges, lack of knowledge about their complicated behaviour has urged the bridge 

design code providers to adopt such conservatism. For example, Burke M. P., the author 

of several references on interal bridges,  limits the curvature of such bridges to 5 degrees 
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(Burke, 2009). Also, Maruri and Petro set a limitation of 10 degrees on the curvature of 

steel and concrete bridges (Maruri and Petro, 2005). Arockiasamy et al. have limited the 

application of curved integral bridges to those bridges that have an angle subtended by a 

30 meter arc-length greater than 5 degrees (Arockiasamy & Sivakumar, 2005). This 

means that the radius of such bridge should be larger than 1100 feet. One of the main 

targets of the present study is to check the validity of such limitations. 

In this dissertation, curved integral steel I-girder and also concrete slab bridges are 

studied. The effect of bridge horizontal curvature and bridge length are investigated. The 

effect of different loads applied to an integral bridge is examined. These loads include 

gravity loads, lateral loads either longitudinal or transverse, temperature effects, concrete 

shrinkage and earth pressure.  

Different opinions can be found in the literature about pile orientation in integral 

bridges. As the maximum pile stress is a limiting factor for the length of the integral 

bridges, optimum orientation for the pile is of critical importance. Although in several 

reports at least a section is devoted to pile orientation, the existing opinions are not based 

on a scientific reasoning. Those opinions are mainly based on a sense to make the integral 

bridges more flexibile which is deeply discussed in present study.  

Bridge end displacement is a major concern for bridge designers. This end 

displacement is of great significance from bridge structural design and pavement design 

standpoints. A sophisticated study is conducted on this problem in the case of steel 

bridges. The factors affecting the bridge movement are discussed. The effect of different 

participating causes such as bridge width are also included. It is tried to present a step by 

step procedure to calculate the curved bridge movement. 
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The other problem that is studied is the effect of bearing devices on the response of 

curved integral bridges. It is observed that due to lack of correct understanding of the 

response of curved integral bridges, wrong types of bearing devices are used in these 

bridges. The improper selection of the type of bearing devices creates overwhelming 

internal forces in the structure. In this study, the bearing devices are categorized based on 

the available degrees of freedom, and then their effects on bridge structural behavior are 

investigated. 
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Chapter 2     

Mechanistic Study of 

Curved IAB  

2.1 Introduction 

The response of curved bridges to horizontal and gravity load is different than that of 

straight bridges. This difference is because of torsional actions due to the curvature of the 

longitudinal axis of the bridge. If the torsional forces are replaced by equivalent forces on 

equivalent straight girders, an approximate solution can be obtained. The equivalent 

forces are developed from equilibrium and are a function of bridge radius, spacing 

between the girders and the spacing between the cross frames. The following subsections 

explain the method of analysis. First a curved girder under gravity loads is analyzed to 

have a better understanding of the internal forces developed in such an element. The main 

outcome of this analysis is the torsional moment created in curved girders due to gravity 

loads. Then, the problem of torsional response of an I-girder is analyzed, which is divided 

into Saint-Venant’s torsion and warping torsion. Next, the bridge systems with horizontal 

curvature are studied. For this purpose, first a two-girder bridge unit is analyzed, and then 
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a multi-girder system is studied. At the end, a method to calculate the spacing of the cross 

frames is presented. 

2.2 Analysis of a Curved Girder 

A curved girder with a horizontal radius of curvature of  is considered. The girder is 

assumed to have a fixed support at one end and a free support at the other end. This 

assumption for the boundary conditions does not hurt the generality of the problem. Also, 

it is assumed that the girder is under the uniform gravity load of . The length of the 

girder is  and the angle subtended by the girder is Ѳ. The origin of the coordinate axes is 

located at the fixed end of the girder. Figure 2.2-1 shows the general picture of the 

assumed girders. 

 

Figure 2.2-1. Plan View of a Curved Girder Under Gravity Loads in z Direction 
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To find the support reactions, the equilibrium equations about the axes ,  and  are 

written: 

0 Eq. 2.1 

 Eq. 2.2 

 Eq. 2.3 

 Eq. 2.4 

0 Eq. 2.5 

As can be observed there is no reaction forces in the x and y directions, also no 

moment about z direction and the reaction along z direction is nothing other than the 

applied vertical load, which in this case is the weight of the girder. In order to calculate 

the moment reaction about x and y directions, an infinitesimal element of the girder with 

the length of  and location coordinates of ,  is considered. The position of the 

element in the polar coordinates can be written as: 

1 cos  Eq. 2.6 

sin  Eq. 2.7 

The integrals are calculated as follows: 

  sin
Ѳ

sin
Ѳ

 1 cos Ѳ  

Eq. 2.8 
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   1 cos
Ѳ

1 cos
Ѳ

 Ѳ sin Ѳ  

Eq. 2.9 

Hence 

 1 cos Ѳ  Eq. 2.10 

 Ѳ sin Ѳ  Eq. 2.11 

The moment  is the bending moment of the curved girder at the support and the 

moment  is the torsional moment developed in the cross section of the girder at 

support. The noticeable fact is creation of torsional moment due to just gravity load, such 

as self weight, which is unheard in the case of straight girders. To verify the above 

equations, the values of  and  are evaluated for a special case of ∞ which is a 

straight girder: 

 Lim . lim  1 cos Ѳ . limѲ Ѳ
1 cos Ѳ

 . limѲ
Ѳ

Ѳ
 . limѲ

Ѳ
Ѳ

. limѲ
Ѳ  

Eq. 2.12 

.  Ѳ Ѳ .
Ѳ Ѳ Ѳ sin Ѳ

 .
Ѳ

Ѳ sin Ѳ
Ѳ  .

Ѳ

1 cos Ѳ
2Ѳ  

.
Ѳ

sin Ѳ
2  0

Eq. 2.13 

In the above calculations, the third and forth limits are evaluated using the L’Hopital’s 

rule. The conclusions from this special case are in compliance with the common 

understanding of the behavior of straight girders.  But, the major result of this part of 
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study is for curved girders; development of torsional moment in the girder due to gravity 

loads in the absence of any external lateral or torsional loads.  

2.3 Analysis of an I-Girder under Torsion 

When a section is under torsional moment, the response of the section can be divided 

into Saint-Venant’s torsion and warping torsion. The participation of each of these two 

types of response depends on the stiffness of each of them. In an I-section, as the Saint-

Venant stiffness is less than the warping stiffness, the role of section warping becomes 

important. When the end of an I-girder is restrained by a rigid support like an integral 

abutment, warping is prevented in that end of the girder. Therefore, torsion of a girder 

with such boundary conditions results in longitudinal stresses in the girder. In this 

section, the analysis of a one-end restrained I-girder under torsion is presented according 

to the formulations given by Boresi et al. (Boresi & Schmidt, 2003). 

Consider an I-girder connected to the abutment wall at one end such as the I-girder 

shown in Figure 2.3-1. If the girder undergoes a torsional moment, balance of the section 

of the girder adjacent to the wall develops horizontal shear forces in the flanges. As the 

flanges are restrained at the end, the shear forces produce longitudinal stresses like a 

cantilever beam. As the distance of the section to the wall increases, the torsion is resisted 

partly by these shear forces and partly by Saint-Venant shear stresses in the section. At 

sections far away from the abutment, the warping shear forces in the flanges become 

smaller and smaller and the torsion is resisted mainly by Saint-Venant shear stresses. 
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Figure 2.3-1. Effect of Torsional Moment Applied to a Cantilever I-Girder (Boresi et al.) 

If the torsional moment of the section is , part of that which develops warping shear 

forces in the flanges is that is equal to: 

 Eq. 2.14 

The other part of  is  which is the Saint-Venant torsion of the section. 

 Eq. 2.15 

In the above equations, the parameters , the distance of the flange centroids, , the 

torsional constant and , the shear modulus of elasticity are known. The flange horizontal 
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shearing force  and the angle of twist per unit length  are unknown. The angle  is 

equal to  , where the coordinate axes  and  are defined in Figure 2.3-1. To find these 

two unknowns, the first equation that can be written is static equilibrium of the section: 

 Eq. 2.16 

Or 

 Eq. 2.17 

The other equation can be found from bending of the flange of girder: 

  Eq. 2.18 

in which  is the lateral bending moment of the flange,  is the modulus of elasticity 

and  is the moment of inertia of the section with respect to the vertical axis z, so that  is 

approximately equal to the moment of inertia of the flange about z axis. The above 

equation does not have any of the unknowns of the problem,  and . The following 

geometric relation is used to introduce  into Eq. 2.18: 

2   Eq. 2.19 

Which related the lateral deflection of the flange  and the angle of torsion . Two 

differentiations yields: 

2  Eq. 2.20 

And as , the following equation is obtained: 
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2  Eq. 2.21 

Substitution of Eq. 2.21 into Eq. 2.18 gives: 

4   Eq. 2.22 

On the other hand, . So, 

4   Eq. 2.23 

Substituting  from Eq. 2.23 into Eq. 2.17 gives: 

4   Eq. 2.24 

If the parameter α is defined as: 

2  Eq. 2.25 

Then the Eq. 2.24 may be written as 

  Eq. 2.26 

The solution for the above second order ordinary differential equation is as follows: 

⁄ ⁄  Eq. 2.27 

To find the values of A and B boundary conditions of the problem should be defined. The 

boundary conditions are as follows: 
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0     at             0 Eq. 2.28 

0            at              Eq. 2.29 

Finding the values of A and B results in the following values for  and β: 

1
cosh

cosh
 Eq. 2.30 

 Eq. 2.31 

Substituting Eq. 2.30 into Eq. 2.15 yields the moment  at any section. 

1
cosh

cosh
 Eq. 2.32 

The maximum torsional shear is calculated as: 

2
 Eq. 2.33 

And the lateral bending moment of the flange is calculated as: 

sinh

cosh
 Eq. 2.34 

So, the maximum lateral bending moment of the flange is equal to: 

  Eq. 2.35 
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As the length of the girders are relatively large, the value of  is approximately 

equal to unity and the following values are obtained for  and : 

 Eq. 2.36 

  Eq. 2.37 

Using the above equations, an approximate method for analyzing a one-end restrained I-

girder can be derived. In this method, it can be approximately assumed that in a length of 

 from the abutment, the torsion is carried by the shear forces in flanges that are equal to: 

 Eq. 2.38 

This shear force bends the flanges laterally so that the maximum normal stress can be 

obtained from Eq. 2.37 as: 

 
1
2

1
12

6
 Eq. 2.39 

In the remaining length of the girder away from abutment, it can be assumed that the 

whole torsion is carried by the Saint-Venant torsion of the girder and so classical torsion 

equations can be implemented to find the resulted shear stress.  

2.4 Analysis of Two-girder Bridges 

A method known as V-Load method which is based on static equilibrium is used to 

analyze a curved bridge with two girders (Fiechtl, 1987). If the spacing between the 

girders are assumed to be D, the angle of curvature of the bridge to be , the radius and 
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arc length of the outer girder to be  and  and the radius and arc length of the inner 

girder to be  and , then the vertical forces on the girders can be obtained using the 

static equilibrium. Figure 2.4-1 shows a plan view of the considered bridge. 

 

Figure 2.4-1. Plan View of  the Two-Girder Bridge 

If it is assumed that the bending moment in each girder is just resisted by the 

compression and tension of the top and bottom flanges and if the depth of the outer and 

inner girders are  and  respectively, then the flange forces due to moments and 

will be /  and / . Figure 2.4-2 shows the flange forces of the girders resulted 

from equilibrium. 

 

Figure 2.4-2. Flange Forces of the Girders 
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On the other hand, as the girders are curved, the horizontal forces of the flanges will 

not be in equilibrium. If a segment of the outer girder which has a diaphragm in its center 

is considered, as shown in Figure 2.4-3, because of curvature of the girder a horizontal 

force along the line of the diaphragm is needed to guarantee equilibrium. This force is 

similar and in the opposite direction for the top and bottom flanges. This force is 

calculated by setting the summation of the forces in the diaphragm line equal to zero. If 

the subtended angle of the neighboring diaphragms is Ѳ, the horizontal force of the 

diaphragm will be: 

  Eq. 2.40 

Knowing that for the outer girder /  where is its diaphragm spacing and 

substituting into Eq. 2.40 results in: 

  Eq. 2.41 

 

Figure 2.4-3. Equilibrium of  a Segment of the Girder Flange 
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The corresponding force of the diaphragm for the inner girder  is calculated in the 

same way as the method used for outer girder, with this difference that  is in the 

opposite direction. 

  Eq. 2.42 

Figure 2.4-4 illustrates a three dimensional picture of the forces acting on the two-

girder bridge. 

As can be seen, the moment equilibrium of the diaphragm necessitates existence of the 

vertical shear forces that can be calculated from the following equation: 

 Eq. 2.43 

in which  is the equal depth of the inner and outer girders. 

 

Figure 2.4-4. 3D View of the Two-Girder Bridge 
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 Eq. 2.44 

Since 

  Eq. 2.45 

The vertical reaction of the diaphragm will be: 

 Eq. 2.46 

These vertical loads which are applied to the girders in the opposite directions are the 

effect of curvature on the bridge girders.  

The bending moments and are the final moments produced in the girders of the 

bridge due to effects of applied loads and curvature. In this analysis, these two sources of 

producing moments are tried to be separated. If the moments due to applied loads are 

shown by subscript L and the moments due to curvature are shown by subscript C, then it 

can be written that: 

 Eq. 2.47 

 Eq. 2.48 

To calculate the moments due to curvature, first it should be assumed that the 

moments in the girders are just due to applied loads. Then, the shear forces of the 

diaphragms can be calculated from Eq. 2.40. Then, the equivalent straight girder should 

be analyzed under application of the shear forces so that the moment due to curvature is 

obtained. The sum of the moments of applied load and curvature is the moment of the 
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girder. This method can be used iteratively so that more exact evaluations of the effect of 

curvature can be reached. 

2.5 Analysis of Multi-girder Bridges 

As shown in the previous section, in curved two-girder bridges the moment and shear 

force of the outer girder increases (compared to equivalent straight bridge) due to the 

effect of curvature while the forces of the inner girder decreases. The same approach as 

two girder bridges is used to analyze multi-girder bridges in horizontal curvature. 

A bridge with  girders, girder spacing of  and girder depth of  is considered. 

Figure 2.5-1 illustrates a cross section of such a bridge. Equilibrium of the diaphragms 

leads to a relation between horizontal flange forces and vertical shears that the 

diaphragms apply to the girders: 

 Eq. 2.49 

 

Figure 2.5-1. Cross Section of the Multi-Girder Curved Bridge 
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in which  is the shear in the i-th diaphragm and   is the applied force to the flange of 

the ith girder. On the other hand, the horizontal force that is applied to each flange is a 

function of the bending moment of the girder : 

 Eq. 2.50 

where d is the cross frame spacing on the girder and R is the radius of curvature of the 

girder. Substitution of the Eq. 2.50 into Eq. 2.49 yields: 

 Eq. 2.51 

Considering the free body diagram of the bridge leads to a relation between the shear 

in jth diaphragm  and the vertical forces applied to the girders 1 to j: 

 Eq. 2.52 

in which  is the vertical force applied to the ith girder. Now, if a linear distribution is 

assumed for the vertical forces applied to the girders, then the force applied to the girder i 

can be written as a function of the force applied to the outer girder, : 

1
2 1

1  Eq. 2.53 

From the last two equations, it can be concluded that: 

1
2 1

1  Eq. 2.54 

And from Eq. 2.51 it is resulted that: 
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  Eq. 2.55 

in which 

1
2 1

1  Eq. 2.56 

In other words 

∑
 /  Eq. 2.57 

This equation is similar to the equation derived for two girder bridges with a single 

difference which is . Expansion of the obtained expression for  clarifies what this 

coefficient is. 

1
2

1
6 2 1  Eq. 2.58 

If a new coefficient  is defined as  / 1 , then the vertical load on the 

outer girder will be 

∑
 /  Eq. 2.59 

Evaluation of coefficient c results in the following expression for that. 

1
6 1  Eq. 2.60 
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The value of the above equation for 2 is equal to unity which is in compliance 

with the result of the study on two-girder bridges. The value of the coefficient  for 

different number of girders is tabulated in Table 2.5-1. 

: Number of Girders C Factor 

2 1.000 

3 1.000 

4 1.111 

5 1.250 

6 1.400 

7 1.556 

8 1.714 

9 1.875 

Table 2.5-1. C Factor for Different Number of Girders 

As the first approximation, the summation of the girders moments can be estimated by 

the sum of the moments due to applied loads. So, the Eq. 2.59 can be estimated by 

∑
 /  Eq. 2.61 

which directly gives the load applied to the outer girder at diaphragm location. The loads 

on the other girders can be obtained by the linear variation assumption for the loads. In 

this way, first based on the external loads that are applied to the bridge a set of additional 

shear forces on the girders is calculated. Then, the girders are analyzed to obtain the 

additional moments due to curvature. 
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2.6 Cross Frame Spacing 

A criterion for cross frame spacing can be obtained from the equilibrium of horizontal 

forces as stated in Eq. 2.41: 

  Eq. 2.62 

in which  is the horizontal force of cross frame with a spacing of  due to bending 

moment . Therefore, if the force of the cross frame is assumed to be distributed over 

the spacing S, the magnitude of that force is: 

  Eq. 2.63 

Since in a bridge, usually there are several cross frames along the length of the bridge, 

if the force  is assumed to be uniform between adjacent cross frames, the maximum 

moment about the vertical axis in the flanges of the girder is: 

12  12  Eq. 2.64 

The moment  tends to bend the flanges of the girder about the vertical axis. But the 

direction of bending is different for top and bottom flanges, so that it causes some sort of 

warping in the bridge girders. The longitudinal stress due to this lateral moment is equal 

to the moments  divided by the section modulus of the flange under consideration: 

 Eq. 2.65 

where  is the elastic section modulus of the flange equal to: 
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6  Eq. 2.66 

On the other hand, the bending moment  causes longitudinal stresses in the flanges 

of the girder which can reasonably estimated as: 

 Eq. 2.67 

Substitution of the above three equations into Eq. 2.64 results in: 

2  Eq. 2.68 

The ratio of the stresses due to lateral bending of the flange can be presumed by 

designer in order to find an approximate spacing for the cross frames. Using the above 

equation, the designer can find the optimum spacing of the cross frames after one or two 

iterations. 
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Chapter 3             

Detailed Study of Connections 

in an Integral Abutment  

3.1 Introduction 

In this chapter, the behavior of the connections in the integral abutment of a steel 

bridge is studied in details. For this purpose, first the general configuration of a typical 

integral abutment is discussed. A picture of the details for this type of abutments which is 

in practice in the US is presented. Then, the material models considered for steel and 

concrete elements are investigated. Next, the finite element modeling of the abutment is 

explained. And at the end, the results of the analysis are brought. 

In order to study the integral abutments, finite element modeling is conducted using 

the software package Abaqus 6.9.1. This general-purpose program is able to analyze such 

structural details in the finest possible way. In the following sections, the method of 

analysis is explained step by step.  
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3.2 Abutment Configuration 

A general picture of an integral abutment of a steel I-girder bridge is depicted in 

Figure 3.2-1.  As can be seen, the concrete mass of the wall is continuous with the deck 

slab. This is maybe the first reason that this type of abutment is called integral. In these 

abutments, the steel girder is embedded in the concrete wall in a length of about half of 

the wall thickness. It is supposed that the bond between steel and concrete which is 

poured on it develops enough stresses for attaching the girder to the wall. Although the 

horizontal rebars of the wall are continued through the web of the girder. There may also 

be some shear studs attached to the bottom flange of the girder in the embedment length. 

The purpose of installing such studs is to increase the reliability of the connection to 

carry negative moments. The top flange of the girder is connected to the reinforced 

concrete deck by shear connectors which altogether provide the tension component for 

the presumed negative moment. 

In these abutments, the piles are embedded in the concrete mass of the wall. The 

connection is assumed to be provided by the bond of concrete and steel. The length of 

embedment is typically between 2 and 4 feet. The wall rebars are so arranged that they do 

not intersect with the piles. 

The approach slab is attached to the abutment wall by means of a pin connection 

detail. Therefore, it just applies a vertical load to the abutment wall and does not 

participate in the overall response of the abutment. Because of that, it can be eliminated 

from the study.  



45 
 

 

Figure 3.2-1. General Configuration of an Integral Abutment 

3.3 Steel Material Modeling 

The steel components of this connection include flanges and web of the girder, 

stiffeners, steel pile and reinforcement of the concrete elements. ASTM Grade 50 steel is 

assumed to be used in the girder and stiffeners. The H-piles are supposed to be of ASTM 

Grade 36 steel and the rebars of concrete elements are of ASTM Grade 60 steel.  

The strain-stress data of steel components are obtained from standard tension tests. 

The results of such tests are the applied force and the strain of the specimen throughout 

the time span of the test. So, having the initial cross sectional area of the specimen, the 

resulted stress data would be based on that initial area. As for most practical engineering 

purposes, the strains are so small that change of area is negligible; calculating the stress 

based on initial area has adequate precision. The stress calculated using this method is 
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called “engineering stress”. But inspecting the ultimate resistance of a structural element 

using engineering strain-stress data can have a noticeable error. Strains can also have a 

similar problem. When the strain is evaluated based on the initial length of the specimen, 

named “engineering strain”, the result is suitable for small strain problems. But, when the 

problem consists of large deformations, the initial length and the length of the specimen 

are different so that calculating the strain based on the initial length originates some error. 

To compensate such errors, more exact definitions for stress and strain have been 

presented by researchers which can incorporate large deformation effects. To cover all 

the required equations in this discussion, first engineering strain and stress are defined as 

follows: 

 Eq. 3.1 

where  and  are the initial length and the current length of the specimen. And: 

 Eq. 3.2 

In which  is the applied load and  is the initial cross sectional area of the 

specimen. For true strain, the following equation can be reasonably proposed: 

 Eq. 3.3 

in which the increment of length is divided by the current length. Integrating over the 

length of the specimen results in: 

ln  Eq. 3.4 
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This strain is also called as log-strain. Substituting the engineering strain definition 

into true strain definition yields a relationship between the two strains: 

ln 1 ln 1  Eq. 3.5 

Using the above equation, true strain can be easily calculated from the engineering 

strain which is the result of the tension test. The true stress is also defined using a logical 

equation: 

 Eq. 3.6 

which is the division of the current force by the current area. The problem with the true 

stress definition is that finding the real time area of the specimen during the tension test is 

not possible using the conventional tension test equipments. Therefore, despite the 

equation for calculating the true stress is available for engineers and designers, the 

evaluation of true stress is not practical. So, researchers have tried to figure out methods 

to estimate the true stress as precise as possible. The first recommended method to 

evaluate the true stress is based on assuming constant volume for the element during 

deformation. Using the previous equations for engineering and true strains and stresses 

and also assuming a constant value for the element the following formulation can be 

concluded for true stress: 

1  Eq. 3.7 

Using the above equation, the true stress can be easily calculated from engineering 

strain and stress that are results of tension test. But, the validity of this equation depends 
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on the validity of the constant volume assumption. Another method to find the true stress 

is based on the Poisson’s ratio approach. If a cylindrical specimen is under tension, the 

area of the specimen is reduced while its length increases. If the ratio of the transverse 

strain to longitudinal strain is assumed to be equal to the Poisson’s ratio, the current 

diameter of the specimen will be: 

∆ 1

1  
Eq. 3.8 

So, the current area will be: 

4  1 1  Eq. 3.9 

Therefore, the true stress can be written as follows: 

1 1
 Eq. 3.10 

Using this equation the true stress is again evaluated as a function of engineering 

strain and stress. This equation is valid if the ratio of the lateral to longitudinal strains is 

equal to the assumed Poisson’s ratio. In this case, the validity of Poisson’s ratio after 

yielding of steel and experiencing large strains is questionable. 

3.3.1 Tension Test 

To have a better understanding of the state of stresses in steel materials, the strain-

stress data of some actual tension tests that are conducted based the ASTM requirements 

are studied. The tension tests have been done on test specimens with the dimensions in 
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accordance to ASTM A 370. The steel material for the specimens is ASTM A709, Grade 

50 which conforms to the steel material of the girders of the studied bridges. 

The first step of study is to plot engineering and true strain-stress curves for the 

available tension test data. As there are two different definitions for the true stress, both 

of the formulations are plotted. Figure 3.3-1 through Figure 3.3-4 show the strain-stress 

curves. 

 

Figure 3.3-1. Strain-Stress Curves (Tension Test # 1) 
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Figure 3.3-2. Strain-Stress Curves (Tension Test # 2) 

 

Figure 3.3-3. Strain-Stress Curves (Tension Test # 3) 
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Figure 3.3-4. Strain-Stress Curves (Tension Test # 4) 

As can be observed from the results of different tension tests, the equivalent true point 

of each point of engineering curve has smaller strain value. This is attributed to the fact 

that ln 1  is smaller than for nonzero values of strains. The other observation 

is that engineering definition of stress gives the smallest stress and true definition with 

constant volume assumption yields the largest stress among stress definitions. True stress 

based on legitimacy of Poisson’s ratio results in stress values between the other two stress 

definitions. An additional fact about strain-stress curves is that all of the different 

approaches are approximately the same up to start of strain hardening of steel. This is a 

very helpful remark in the practical designs where stresses are kept below the stress 

plateau. The last but not the least observation from the above graphs is that the slope of 

true strain-stress curve at the beginning of strain hardening region is about 1.18 times of 

that slope in the engineering strain-stress curve. This ratio is the same for all conducted 

tension tests. 
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3.3.2 Validity of Constant Volume Assumption 

Further study on these curves is initiated by looking more exactly at the failure point 

of the curves. As stated before, in normal tension tests, the applied force to the specimen 

at each moment (usually with one second intervals) is recorded, while the actual strains in 

the failure zone are not known. But, the cross sectional area of the specimen after break 

can be measured. This cross section represents the actual cross section of the specimen at 

the time of failure after elastic rebound of the area. Since the necked area shows a 

tremendously large plastic deformation, the elastic rebound of the cross section can be 

ignored in the calculations; however estimation of the elastic rebound is not a difficult 

problem. For the previously discussed tension tests, the final cross sectional area of the 

specimens are measured. These areas are 0.06396, 0.06558, .06710 and 0.06299 inch 

squared for the tests #1 through #4, respectively. Dividing the ultimate forces by these 

areas shows considerably different stress values at the very last moments of tension tests 

compared to those of true strain-stress curves. These ultimate stresses are 134.3, 141.2, 

137.3 and 139.9 ksi for the tests #1 to #4, respectively. As there is not any particular 

assumption in calculating these stress values, it can be believed that these stresses are 

more exact compared to true stresses which are calculated based on some assumptions. 

At this point, since the true stress based on Poisson’s ratio assumption gives stress values 

that are even less than those of the stress values based on constant volume assumption, 

the Poisson’s ratio true stress is disregarded for the rest of the study and after this, the 

true stress means the stress estimated based on constant volume assumption. 

Another point of interest is the point of maximum stress on the engineering strain-

stress curve. As the engineering stress is obtained by simply dividing the applied force by 



53 
 

the initial cross sectional area, maximum stress at this point means maximum applied 

load. Therefore, at this point the derivative of the applied load is zero: 

0   Eq. 3.11 

So 

 0  Eq. 3.12 

And therefore 

  Eq. 3.13 

On the other hand, constant volume assumption gives another expression for . As 

the volume is constant, its derivative is zero. So  

 0  Eq. 3.14 

Hence 

  Eq. 3.15 

The second equation in the above expression is based on Eq. 3.3 which is the 

definition of true strain. Thus 

  Eq. 3.16 

Or  

  Eq. 3.17 

In other words, the slope of the true strain-stress curve is equal to the value of true 

stress at that point. This derivation is for the point of maximum stress on the engineering 
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strain-stress curve. This formulation is presented by Yakel (Yakel, 2009). To verify this 

equation, the results of the available tension test are scrutinized. The results of tension 

tests show that the slope of the strain-stress curve is on average 20 percent larger than the 

value of true stress, at the point of maximum engineering stress.  

1.2   Eq. 3.18 

This is another reason that the constant volume assumption is not valid for large 

deformations. 

3.3.3 Elastic Rebound of Cross Section 

In the previous section is was shown that the exact value of stress at the time of failure 

in tension tests is much higher than those predicted by true stress formulation based on 

the constant volume assumption. Those values of stress were calculated ignoring the 

elastic rebound of the cross section after the specimen breaks. In this section, it is tried to 

find the magnitude of the stresses considering the area of the specimens before the 

rebound.  

If the dimensions of a rectangular specimen after the break at failure section are 

 and , the area of the cross section is  times . But 

the cross sectional area right before the break is smaller than that. The elastic rebound of 

the section can be estimated having the stress of the section at the time of the break. The 

elastic rebound strain for each side of the specimen is equal to the stress at the moment of 

break divided by the modulus of elasticity. 
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    Eq. 3.19 

So, the dimension of each side of the specimen just before failure is: 

  1   Eq. 3.20 

And 

  1   Eq. 3.21 

For circular specimens and are replaced by the measured diameter 

. Consequently, a more exact cross sectional area for the specimen at the 

moment of break can be obtained using the following equation: 

  1   Eq. 3.22 

As  is a function of    and this stress is a function of the area 

just before the break, an iterative procedure can be employed to find the area at the 

moment of failure.  

Examining the presented formulation for the available tension tests show that for 

tension tests #1 through #4 the first iteration results in areas equal to 0.06337, 0.06494, 

0.06647 and 0.06239 inch squared, respectively. The ratios of these areas to the measured 

areas are 0.9907, 0.9903, 0.9905 and 0.9902. As the difference of the measured area and 

the calculated area of the first iteration is less than one percent, other iterations are 

ignored and the cross sectional area of the specimens at the time of break can be assumed 

to be equal to %99 of the measured area after the break. This method is used for true 

cross sectional area calculation for the rest of this study. Therefore the true stress at the 
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time of break is calculated by dividing the actual final load by %99 percent of the 

measured area of the section after the break. 

3.3.4 Proposing a New Model for Steel Material 

Based on the previous discussions on the results of tension tests, a model for the true 

strain-stress curve of steel material is presented in this section. The model assumes that 

the engineering strain-stress data are available for the material under study. The purpose 

is to define the true strain-stress curve. The model is described in the following steps. The 

key points are designated in Figure 3.3-5: 

 

 

Figure 3.3-5. Designation of the Key Points on the Strain-Stress Curves 

Step 1- For the points on the elastic region and yielding plateau, it is assumed that the 

constant volume assumption is valid and the values of true strain and true stress are 

obtained by Eq. 3.5 and Eq. 3.7. Therefore points A, B and C are known. 
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Step 2- The slope of true strain-stress curve at the beginning of strain hardening region 

is assumed to be 1.18 (or approximately 1.2) times of that slope for engineering strain-

stress curve (as presented in Section 3.3.1).  

Step 3- Point D is the corresponding true strain-true stress point for the point of 

maximum stress on the engineering strain-stress curve based on constant volume 

assumption (using Eq. 3.5 and Eq. 3.7). 

Step 4- The slope of the true strain-stress curve at point D is equal to 1.2 times of the 

value of true stress at that point (As discussed in section 3.3.2).  

Step 5- A smooth curve is fitted between points C and D knowing the coordinates of 

these points and the slope of the curve at these points. The curve fitting technique is 

offered in the next section. 

Step 6- A line is extended beyond point D with the same slope as the slope of the 

curve at point D and terminated at point E with a stress level equal to the maximum true 

stress at the moment of break. As discussed in Section 3.3.3, this stress is equal to the 

applied load at the time of break divided by %99 of the cross sectional area after the 

break. 

3.3.5 Curve Fitting 

In the material model proposed in the previous section, a curve was needed to fit 

between points C and D. There are some requirements for the curve. The first one is the 

smoothness of the curve. Rough changes are not seen in the engineering strain-stress 

curve. So, a function having rough variations is not expected for the true strain-stress 

curve in this region. The other necessity is that the function is concave between these two 



58 
 

points. As there are four known parameters for the function, a first guess would be a 

cubic polynomial. Other researchers have suggested a more complicated function that 

satisfies all the requirements (Yakel, 2009). To be in harmony with the previously 

proposed models, a function like theirs is used in the present study. A simplifying trick is 

to shift the origin of the coordinate axes to the beginning point of strain hardening region 

and to define two new coordinate axes like .  and .  , where .  

and .  are the true strain and true stress at the start of strain hardening region. The 

function and its first derivative are as follows: 

.
.   Eq. 3.23 

And  

.
.   Eq. 3.24 

The function is plotted schematically in Figure 3.3-6. In this function,  is the initial 

slope, . is the asymptotic slope,  is the reciprocal of the  value at the intersection 

of the tangents and  is the smoothing exponent. 
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Figure 3.3-6. Scheme of Fitted Curve Between Points C and D  

As there are four known values (the coordinates and the slopes at the two ends of the 

curve) and four unknown values of , .,  and , it seems that four equations can 

be written to find the four unknown value. But, coordinates of the first end (0,0) is a 

trivial solution for Eq. 3.23, independent of the four unknown values. Therefore, there is 

one extra unknown value in this problem and assuming a value for one of them results in 

a solution for the other three. Plotting different curves for different values of the involved 

parameters shows that if the smoothing exponent is between 1 and 3, the curve fits the 

best as what is expected for this transition function. If the exponent is less than 1, the 

curve looks like a line and if it is larger than 3, the curve tends to the tangents of the two 

ends. So, a value between 1 and 3 is chosen for that. Let’s take  equal to 2. 

Among the other unknown parameters,  is the easiest to find. If 0 is plugged 

into Eq. 3.24, then  which shows  is simply equal to the known slope of the first 

end. 
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Now, there are two unknown parameters . and  and two known values which 

are the coordinates and slope of the end point. Plugging the coordinates of end point into 

Eq. 3.23 and back-calculating  yields: 

 .

.
1 /  Eq. 3.25 

Simultaneous numerical solution of the Eq. 3.24 and Eq. 3.25, so that the slope at the 

end is equal to the known value of slope, yields the values of . and . Figure 3.3-7 

shows the curve for a smoothing exponent value of 2, an initial slope of 444 , a 

final coordinates of , 0.1435 , 27.98  and an end slope of 98.2 . The 

resulted values for . and  are 88.71  and 22.24, respectively. Note that the end 

slope and asymptotic slope are not the same. 

 

Figure 3.3-7. Fitted Curve Between Points C and D 
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3.3.6 A Sample Model: Grade 50 Steel 

The result of all of the modeling steps for a Grade 50 steel is shown in Figure 3.3-8. In 

this model, the curve is linear up to a stress of 50 ksi with a slope of 29000 ksi. The strain 

at this point is 0.00172. After that, it has a plateau up to a strain of 0.0227. Note that the 

slope of plateau is not a real zero. Then, on the transition curve, it goes to a strain of 

0.1663 with a stress of 82.18 ksi. After the transition, it goes up linearly to a stress level 

of about 141 ksi with a corresponding true strain of 0.767. Other steel materials are also 

modeled using the same approach.  

 

Figure 3.3-8.  Material Model for Grade 50 Steel 
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behaviors under compression and tension. Multi-axial load application is also a decisive 

parameter. When concrete is confined by lateral compressive force, it can carry 

considerably higher axial load. To study the material properties of concrete, first the 

response of concrete under compressive forces is explained. Then the existing models to 

predict the strain-stress properties of concrete specimens under compression are given. 

Then, selecting one of the models, it is tried to illustrate how the model is perceived in 

the finite element program, Abaqus. This program has some different methods to model 

nonlinear strain-stress response of materials among which the most applicable one for 

concrete behavior is detailed. The same steps are taken for tensile behavior of concrete. 

For this purpose, first concrete response under tension is explained. Then, one of the 

existing models for estimating the strain-stress curve of concrete under tension is 

elucidated. And at the end, the technique of Abaqus to model the tensile behavior of 

concrete is elaborated.  

3.4.1 Concrete Response under Compression 

When a concrete member is under compressive force, it demonstrates a nonlinear 

strain-stress curve. In the first stages of loading, concrete stress goes up with an 

approximately linear trend as the strain increases. But under greater loads, the rate of 

stress increase reduces so that it reaches a maximum point. After that, the concrete stress 

decreases as the displacement increases. At the final point, the concrete crushes due to 

application of the ultimate compressive force. This behavior is not the same under 

different conditions. When the rate of load application changes or multi-axial load is 

applied to the concrete member, different strain-stress curves are resulted. The other fact 
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is that concretes of different strength show different crushing strains. Figure 3.4-1 shows 

the strain-stress curves for some concrete specimens of different compressive strength.  

 

Figure 3.4-1.  Strain-Stress Curves of Concrete Specimens of Different Strength 

It can be observed that the compressive stress is a nonlinear function of strain. Also, 

the crushing strain decreases as the maximum stress increases. Finding the affecting 

parameters and their nonlinear relation to the compressive strength is a complex task 

which has been studied by several researchers. The next subsection discusses some their 

works. 

3.4.2 Concrete Compression Response Models 

Several researchers have investigated the response of concrete in compression. The 

result of their research has been to propose models for the strain-stress curve of concrete. 

In this section, first these models are described and then a comparison of the models is 

presented. 
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A) Hognestad Model 

Hognestad (1951) proposed a model for the response of concrete under compression. 

This model describes the stress of concrete at each strain level as a function of the 

maximum compressive strength, , and the modulus of elasticity of concrete. 

          for  0  Eq. 3.26 

 

Figure 3.4-2. Hognestad Model for  Strain-Stress of Concrete in Compression 
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B) Polynomial Model 

This model describes the compressive stress of concrete as a polynomial function of 

its strain. To find the constants of the polynomial functions, it is required to have some 

assumptions. In the model, it is assumed that the maximum stress of the concrete takes 

place at a strain equal to 0.002 and the failure occurs at the strain of 0.003. The other 

assumption is on the failure stress level. In the current model it is assumed that failure 

stress is 60 percent of the maximum stress. Implementing the above-mentioned 

assumptions to a cubic polynomial, the following equation is resulted for the strain-stress 

of the concrete. 

5 10  5 10 800   Eq. 3.29 

In which  is the concrete stress and  is the maximum compressive strength both in 

ksi. 

C) Carreira and Chu Model 

Carreira and Chu (1985) proposed a curve for the strain-stress relation of concrete 

which is compose of two parts. The first part is a line that is valid for stresses up to 30 

percent of the maximum strength of the concrete. Beyond that point, a curve is suggested 

that predicts the stress of concrete up to crushing strain. That curve is defined as follows. 

  Eq. 3.30 

In which  is the strain of concrete at the maximum stress of  in MPA. 

.
1.55           Eq. 3.31 
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In this model,  can be assumed to be equal to 0.002 and the crushing strain to be 

equal to 0.003. 

D) Comparison of Different Models 

In this section, different models proposed for concrete compressive behavior are 

compared to each other. For this purpose, the models are plotted for a concrete with 

compressive strength of 4 ksi. The strain corresponding to this maximum stress is 

assumed to be 0.002. The crushing strain is assumed to be 0.003. Figure 3.4-3 shows the 

strain-stress curves predicted by different models. 

As can be seen, up to the point of maximum stress, the Hognestad model and 

Polynomial model are almost the same, while the model proposed by Carreira and Chu 

predicts higher stresses. Beyond that point, Hognestad Model and Carreira and Chu 

model have approximately the same stresses and the polynomial model drops the stresses 

down to 60 percent of the maximum stress which was imposed to that model as an 

assumption. Comparing this graph to Figure 3.4-1 shows that the stresses at the time of 

failure are close to 80 percent of the maximum stress which is between the stress values 

predicted by the polynomial model and the other two models. In the present study, the 

model proposed by Carreira and Chu is used in the finite element models. 



67 
 

 

Figure 3.4-3.  Strain-Stress Curves of Concrete in Compression in Different Models 

3.4.3 Concrete Response under Tension 

The behavior of concrete in tension is much more complicated than its behavior in 

compression. When tensile strains are introduced in a concrete element, the stress starts 

to be proportional to the magnitude of strain. For very small strains, the stress is 

proportional to the strain, almost similar to the response under compression. But this 

similarity is just for the early stages of loading. As the strain increases, complexities of 

tensile behavior start to show up. The reason for that is formation of micro-cracks in the 

body of the element in the tensile zone. The micro-cracks can unite to develop a macro-

crack which grows in the process of crack propagation. If the strain and average stress are 

recorded during this process, it is observed that as the strain increases the average stress 

over the tensile element decreases. The pattern for this reduction has been the subject of 

study for several researchers who have recommended different models for the tension 

stiffening regime of concrete behavior. More difficulty comes to existence when it is tried 
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to express stress tensor in terms of strain tensor of at a point. Results of the studies show 

that for such a material the stress tensor is not just a function of the strain tensor of that 

point. But also, a strain field should be considered for the neighborhood of each point of 

the element. The next subsection presents some of the existing models for the tensile 

response of concrete. 

3.4.4 Concrete Tension Response Models 

Several researchers have studied the behavior of concrete in tension. Figure 3.4-4 

shows the strain-stress curves which are proposed by some of the researchers. As can be 

seen, linear, bi-linear and nonlinear descriptions are the recommendation of different 

researchers for the tension stiffening part of concrete strain-stress curve. Bazant has 

proposed a line for the tension stiffening part of the curve. Gylltoft has suggested the 

stress as a bilinear function of the strain while some others like Scanlon, Mazars and Lin 

& Scordelis have recommended curvilinear functions for that region of the response. 

 

Figure 3.4-4.  Strain-Stress Curves of Concrete in Tension in Different Models 
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In this section, one of the existing models for predicting the post-cracking response of 

concrete in tension is studied in more details. This method is recommended by Barros et 

al. and is developed to consider both linear and exponential functions for the tension 

stiffening of behavior of concrete (Barros, Martins, & Ferreira, 2001). That’s why the 

formulations are given for both functions simultaneously. The assumed linear and 

exponential functions for strain-stress curve are as follows: 

                 Linear Function Eq. 3.32 

And 

                        Exponential Function Eq. 3.33 

In which  is the initial cracking stress, E is modulus of elasticity of undamaged 

concrete,  is the ultimate strain in tension and b is the calibration coefficient for the 

exponential curve. If the above stress functions are plotted against strain, the schematic 

shapes of Figure 3.4-5 are obtained. The unknown values  and  are found as follows. 

 

Figure 3.4-5.  Schematic Strain-Stress Curve of Concrete in Tension 
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The area under the curves for these two functions will be equal to: 

                                                     for Linear Function    Eq. 3.34 

And  

             for Exponential Function Eq. 3.35 

On the other hand, the total area of the strain-stress curve is equal to the deformation 

energy per unit volume, . From the definitions of Fracture Mechanics, one can obtain 

the crack propagation energy per unit area of the crack as: 

.     Eq. 3.36 

in which w is the width of the damaged region. As  is a material property which can 

be found for the customary materials in the fracture mechanics references, the area under 

the strain-stress curve can be set equal to the known value of / .  

Ozblot and Bazant recommend that the width of the damaged region is proportional to 

the maximum aggregate size, which is a known parameter for any kind of concrete used 

in the construction industry (Ozbolt & Bazant, 1996). So,  can be assumed as a known 

parameter as: 

.     Eq. 3.37 

where   is a factor changing between 3 and 8 and  is the maximum aggregate 

size. 
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As  and  are known, the area under the strain-stress curve can be set equal to the 

ratio of /  to find the unknowns of each of the two linear or exponential approaches. 

For the linear function the unknown  will be found as follows: 

/                Eq. 3.38 

So 

                  Eq. 3.39 

And for the exponential function the parameter  will be calculated as follows: 

                     Eq. 3.40 

Therefore 

                     Eq. 3.41 

Hence, the tension stiffening part of the strain-stress curve for concrete will be: 

                             Linear Function Eq. 3.42 

And 

                        Exponential Function Eq. 3.43 

In practical cases, the strain cannot go to infinity, while in the exponential function 

there is no limit for the strain. Therefore, to find an upper bound for the strain in the 

exponential model, the area under the curve at the maximum practical strain is set equal 

to 98 percent of the total area under the curve. This equality results in a strain of   as 
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the maximum practical strain. So for the exponential function the range of applicability is 

as follows: 

                  Eq. 3.44 

3.4.5 Concrete Response Modeling in Abaqus 

To study the integral abutment connections, the finite element program Abaqus is 

used. The program has several capabilities, making the user able to model complex 

structural systems. Regarding the concrete nonlinear structural properties, two major 

methods are available in the program. One of them is smeared crack modeling and the 

other one is concrete damaged plasticity. In the present study, concrete damaged 

plasticity is employed as the method of analyzing the problem. The accuracy of this 

approach to model the behavior of reinforced concrete has been verified by many 

researchers in the past years. 

Concrete damaged plasticity can incorporate two types of concrete failure in the 

model: crushing under compressive stresses and cracking under tensile stresses. Crushing 

and cracking are detected when certain criteria reach yield surfaces. The yield surfaces 

are defined by compressive and tensile equivalent plastic strains as the hardening 

parameters. In the coming discussion, these two parameters are shown by and . 

Figure 3.4-6 illustrates the strain-stress curves of concrete in tension and compression. It 

is observed that as the strain increases, the tensile stress increases linearly up to a 

maximum tensile stress of . Beyond this point, the tension softening starts which 

results in reduction of stress for any increment of strain so that in very large strains the 
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stress of concrete tends to zero. In compression the response is different. In the 

beginning, the stress has a linear relationship with strain up to reaching the stress of . 

After that, stress goes up as the strain increases in a nonlinear manner. This trend is seen 

up to a maximum compressive capacity of . Beyond this maximum point, the strain 

softening part of the curve starts which results in lower stresses for larger strains. This 

response continues so that for very large strains, the compressive stress of concrete goes 

to zero. 

   

 

Figure 3.4-6. Strain-Stress Curves of Concrete in Tension and Compression 
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Concrete damaged plasticity is supposed to model damage in concrete in compression 

and tension. This is considered in this approach by decreasing the stiffness of concrete 

when strain softening starts in compression or tension. This is implemented in the model 

by means of damage parameters in compression and tension designated by  and , 

respectively. These parameters reduce the modulus of elasticity of concrete and can be 

between zero and one. Values of damage parameter close to zero represent early stages of 

softening and values closed to one correspond to very low stiffness which is seen at large 

strains. Values of these parameters very close to one can lead to structural and so 

numerical instabilities in the problem. 

The problem of concrete damage is more complex when dealing with cyclic loads. In 

this case, some cracks are initiated when the material is under tension. Then, compression 

in the next cycles of loading may result in closure of some of the cracks. Therefore, some 

part of the lost stiffness of the concrete may be reinstated. This complicated behavior is 

modeled by recovery parameters in compression or tension. 

Another difficult situation occurs when concrete is under multi-axial state of stress. In 

this case, Abaqus makes use failure surfaces instead of failure curves.  Figure 3.4-7 

shows a section of the failure surface for the case of biaxial loading. In this picture the 

points of failure corresponding to uniaxial compression, uniaxial tension, biaxial 

compression and biaxial tension are demonstrated. 
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Figure 3.4-7.  Biaxial Failure Surface of Concrete 

In concrete damaged plasticity model, the behavior of concrete under compression is 

idealized by defining the inelastic strain of concrete. This strain is equal to the total strain 

minus the elastic strain assuming an undamaged modulus of elasticity for concrete. 

 Eq. 3.45 

In which  

   Eq. 3.46 
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Figure 3.4-8 shows the definition of compressive inelastic strain based on the above 

equation. Also elastic and plastic strains are illustrated in the picture, to clearly show the 

difference of inelastic strain and plastic strain. 

 

Figure 3.4-8.  Definition of Compressive Inelastic strain Used for Definition of 

Compression Hardening Data (Abaqus Documentation) 

The same approach is used for tension stiffening part of the strain-stress response of 

concrete. The input data of Abaqus are post-cracking stress and also cracking strain for 

an element in tension. The cracking strain is defined as the total tensile strain minus the 

elastic strain assuming undamaged modulus of elasticity for concrete. Therefore: 

 Eq. 3.47 

In which  

 Eq. 3.48 
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Figure 3.4-9 illustrats the cracking strain based on using undamaged modulus of 

elasticity to obtain it from total strain. To distinguish the difference of cracking strain and 

plastic strain, both of them are shown in the picture. As can be seen, plastic strain is 

calculated using the reduced modulus of elasticity of the damaged material. An initial 

guess for the tension stiffening part of the curve which is recommended in Abaqus 

Documentation is a line originating from a strain of 10E-4 for a stress of  and ending 

to a point of zero stress for a strain of 10E-3. Other more accurate models for tension 

stiffening can be found in the literature. 

 

Figure 3.4-9.  Definition of Tensile Cracking Strain used for Definition of Tension 

Stiffening Data 
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inelastic strain of concrete in compression versus stress, which is based on Carreira and 

Chu model. As can be observed, there are no inelastic behavior up to the stress of 1.2 ksi. 

 

Figure 3.4-10. Total and Inelastic Strain vs. Stress for 4 ksi Concrete in Compression 

Figure 3.4-11 depicts the total and cracking strain of the concrete material versus its 

tensile stress. The employed model in tension is an exponential one. It shows that the 

concrete material does not have an inelastic response up to reaching a tensile stress level 

of about 0.5 ksi. Then, it starts to develop cracks which results in steep drop of its tensile 

strength. 
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Figure 3.4-11. Total and Cracking Strain vs. Stress for 4 ksi Concrete in Tension 

3.5 Elements 

In this section, a brief explanation on the elements that are used in the finite element 

modeling is presented. The descriptions are based on Abaqus 6.9 HTML Documentation. 

For more details one can refer to the Abaqus Documentation. 
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Kirchhoff transverse shear constraints when solid elements are used in order to analyze a 

bending problem. In these applications, full integration leads to locking which means 

resulting in a response that is orders of magnitude too stiff, so that the results are totally 

unusable. In such cases, reduced integration will often work well. In contrast, if there is 

no R in the element name, it is fully integrated. It means the Gauss scheme chosen will 

integrate the stiffness matrix of the elements with uniform material behavior exactly if 

the Jacobian of the mapping from the isoparametric coordinates to the physical 

coordinates is constant throughout the element. The meaning of this statement is that the 

opposite sides or faces in 3D elements must be parallel and in second-order elements the 

nodes must be either at the ends or middle of the element sides. Hourglassing can be a 

problem with first-order, reduced-integration elements, like C3D8R, in stress-

displacement analyses. Since the elements have only one integration point, distortion is 

possible in such a way that the strains calculated at the integration point are all equal to 

zero, that leads to uncontrolled mesh distortion. First-order, reduced-integration elements 

in Abaqus include hourglass control, but reasonably fine meshes should be used for them. 

By distributing point loads and boundary conditions over a number of neighboring nodes, 

instead of one point, the hourglassing can be minimized. 

 

 

Figure 3.5-1. C3D8 Brick Element 
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3.5.2 C3D4 

C3D4 is a 4-node first-order constant stress tetrahedral element. It is tried to avoid 

using this element, but is some cases making use of it has been inevitable.  

3.5.3 C3D10M 

C3D10M is a 10-node modified tetrahedron element with hourglass control. 

Figure 3.5-2 illustrates this element. 

 

Figure 3.5-2. C3D10M Tetrahedron Element 

3.5.4 T3D2 

T3D2 is a 2-node linear displacement element. The behavior of this element is the 

same as truss elements is structures. It carries only axial load. No shear or bending 

moment is transferred by this element. This element, when embedded in a concrete mass, 

can be regarded as a rebar. 

3.6 Stress Functions Definition 

In this section, the definitions of the stress functions that are used in the following 

discussions are presented. The stress components at each node are assumed to be given 

10-node modified second-order element
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by the Cauchy stress tensor  which its elements are . The isotropic invariants of the 

stress tensor are defined as 

  

  

  

Eq. 3.49 

Another set of invariants are defined as 

  

  

  

Eq. 3.50 

If the principal stresses of T are ,  and , the above six invariants can be written 

in terms of these stresses as 

  

     

     

Eq. 3.51 

And 

  

     

     

Eq. 3.52 
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The deviatoric stress which has a crucial role in plasticity theory is defined as the 

difference of Cauchy stress and the spherical stress as 

T   Eq. 3.53 

In which the average stress is 

T    Eq. 3.54 

A useful property of the deviatoric stress is that its trace is equal to zero. 

T T 3 0   Eq. 3.55 

The isotropic invariants can also be defined for the deviatoric stress in the same way 

as defined for the Cauchy stress: 

  

  

  

Eq. 3.56 

And the second set of invariants as follows: 

 0 

     

  

Eq. 3.57 

The latter set of invariants of deviatoric stress are written in terms of the invariants of 

Cauchy stress as 

 0 Eq. 3.58 
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3      

2 9 27   

One of the most celebrated yield criteria for ductile metals is the Von Mises Yield 

function as follows 

           Eq. 3.59 

In which  is the yield stress of the ductile metal material and  is Von Mises 

stress potential defined as 

:            Eq. 3.60 

Plugging  from Eq. 3.57 into Eq. 3.60 yields 

3            Eq. 3.61 

Substituting  from Eq. 3.58 into Eq. 3.61and making use of Eq. 3.52 to convert 

invariants of Cauchy stress into principal stresses gives Von Mises stress potential as a 

function of principal stresses as 

            Eq. 3.62 

One of the most significant advantages of the above equation is that it proves that 

Mises stress potential can be smaller or larger than the principal stresses and when one of 

the principal stresses is much larger than the other two, Mises stress is close to the 

absolute value of that larger stress. 

As the Mises stress potential is always equal to or greater than zero, another equivalent 

stress definition by means of which the direction of traction vector can be distinguished is 
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also required. This criterion can be achieved using the third invariant of the deviatoric 

stress tensors. This third invariant is defined as  

. :            Eq. 3.63 

This value is a useful representation of the stress values at a specific location which its 

sign can be positive or negative. In the following study, this third invariant of deviatoric 

stress will be used to distinguish tensile or compressive stresses when required. 

3.7 Finite Element Modeling  

An elaborated technique is employed to model the abutment details in Abaqus 6.9.1. 

The abutment wall, deck slab, haunch, girder, stiffeners and piles are modeled using 3D 

solid elements. Rebars are modeled by means of 2-node 3D truss elements. Figure 3.7-1 

shows a general picture of the abutment which consists of different elements. 
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Figure 3.7-1. General Configuration of the Integral Abutment Model 

Figure 3.7-2 shows the girder element of the connection. The girder is made of Grade 

50 steel. It has an 18”x1.5” top flange, a 66”x0.5” web and an 18”x2” bottom flange. The 

girder may have two stiffener plates at the face of the concrete wall. The stiffener size is 

66”x8.75”x0.5” on each side.  



87 
 

 

Figure 3.7-2.  Girder Element of the Connection 

The girder is 18 inches embedded in the abutment wall. Figure 3.7-3 illustrates the end 

of the girder which is embedded in the wall and cannot be seen clearly in the other 

pictures. One of the features of such connections is that the rebars of the abutment wall 

go through the web of the girder. This requires the web of the girder be drilled to provide 

the holes for rebars to go through. As the two top rebars are #7 and the lower five rebars 

are #5, the upper two holes are larger than the lower ones. 
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Figure 3.7-3. Embedded End of the Girder 

Figure 3.7-4 shows the highlighted picture of the girder in the connection. The 

boundaries of the girder element can be visibly seen in this picture. 
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Figure 3.7-4. Highlighted Position of the Girder Element 

Figure 3.7-5 shows the abutment wall part of the connection. It is made of concrete 

material with a characteristic strength of 4 ksi. It has a width of 42”, a length of 108” and 

a height of 136”. The place of girder and piles embedment is cut into the wall using the 

outstanding features of Abaqus. As the girder stiffeners are assumed to be inside the mass 

of concrete, their place is also cut in the wall element. 
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Figure 3.7-5.  Concrete Wall of the Abutment 

Figure 3.7-6 illustrates the highlighted picture of the abutment wall which more 

clearly shows its boundaries and also the place of piles embedment in the wall. 
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Figure 3.7-6. Highlighted Position of the Abutment Wall 

Figure 3.7-7 shows the highlighted position of the deck in the abutment assembly. 

Like the abutment wall, it is made of class BD47 4 ksi concrete. The deck has an 8” 

thickness and has a tributary width of 108” for each girder.  
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Figure 3.7-7. Highlighted Position of the Deck Slab 

Figure 3.7-8 illustrates the haunch between the girder and the deck slab elements. The 

haunch is of the same material as the deck slab and has a thickness of 1.5 inches. The 

lower width of the haunch is 18 inches which is the width of the girder top flange and the 

upper width is 21 inches that provides a 1:1 slope for the edges. Figure 3.7-9 shows the 

highlighted position of the haunch element in the abutment. 

 

Figure 3.7-8.  Haunch Element of the Connection 



93 
 

 

Figure 3.7-9. Highlighted Position of the Haunch 

Figure 3.7-10 shows the pile element of the abutment. The section of the piles is 

H12x53 which is made of Grade 36 steel. The piles are modeled 3 feet below the point of 

fixity. The abutment is supported by two piles which are 54 inches apart. The center of 

the piles is 12 inches away from the front face of the wall. The surrounding soil of the 

piles is modeled using the spring element in Abaqus. The stiffness of the springs is 4 k/in 

per linear foot of the piles. 
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Figure 3.7-10. H- Pile Element of the Connection 

Figure 3.7-11 shows the highlighted picture of the piles in the abutment assembly. The 

embedded length of the pile in the abutment wall can be obviously detected in this 

picture. 
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Figure 3.7-11. Highlighted Position of the H-Piles 

Figure 3.7-12 shows the highlighted rebars of the concrete deck slab. The longitudinal 

bars are #5 placed at 8” spacing at top and bottom layers. The transverse bars are #5 at 

12” spacing again at both top and bottom layers. The cover above the upper transverse 

rebars is 2 inches and the cover below the lower transverse rebars is 1 inch. 
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Figure 3.7-12.  Highlighted Rebars of the Deck Slab 

 Figure 3.7-13 illustrates the abutment wall cage of reinforcement. The top and bottom 

layer of bars along the length of the abutment consist of 4#7 rebar. The size of all other 

rebars of the wall is #5. The rebars are not evenly distributed to minimize the intersection 

with the girder or the piles. Although, some of them that are parallel to the wall face go 

through the girder web as explained before. The clear concrete cover for the lower and 

back face of the wall is 3 inches, while it is 2 inches for the front face of the wall. The 

vertical rebars of the wall enter the deck slab to guaranty the load transfer between the 

deck and the wall. However, a considerable portion of the load is supposed to be 

transferred through the girder which is attached both to the deck and the wall. 
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Figure 3.7-13. Highlighted Rebars of the Abutment Wall 

The effect of shear studs on the bottom flange of the girder in the embedded length is 

also studied. Figure 3.7-14 shows two pictures of the shear studs below the bottom 

flange. 

      

Figure 3.7-14. Shear Studs Attached to the Girder Bottom Flange 
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Using the above-mentioned elements two different models have been made. The first 

one is a single span bridge of 100 feet length which has integral abutments at the two 

ends. The piles in this model are not modeled and a fixed support is provided for the 

abutment wall. Using this model one is able to apply the ultimate gravity load to the 

bridge and observe the behavior of the I-girder to abutment wall connection. The other 

model is a 30 feet cantilever composite I-girder that is integrally connected to the 

abutment. In the latter study, the piles are included in the modeling. So, it is possible to 

investigate the pile-to-wall connection which is another area of interest. The following 

sections of this chapter describe the results of analyzing these two models. 

3.8 Moment Capacity of the Superstructure 

Before proceeding to the results of finite element analysis, to have a measure of the 

capacity of the superstructure section that is attached to the abutment wall, a moment-

curvature analysis of the section is performed using the defined material properties. A 

MATLAB code is provided to analyze the section. The implemented approach in the 

program is to increase the bending strain in the section incrementally and calculate the 

imposed curvature and the developed moment in the section. This MATLAB program 

has been a huge project by its own, and for brevity more explanation is avoided and the 

program is brought in Appendix B. 

Figure 3.8-1 shows the superstructure section for which the moment capacity is 

calculated and Figure 3.8-2 illustrates the moment-curvature diagram of that section. It is 

seen that the yielding moment of the section is about 160,000 k.in and the ultimate 

moment capacity of the section is approximately 175,000 k.in.  
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Figure 3.8-1. Superstructure Section at the Vicinity of Abutment Wall (Section A-A) 

 

Figure 3.8-2. Moment–Curvature of the Superstructure at Section A-A 
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Figure 3.8-3 shows the stress distribution in the superstructure section when the 

maximum moment is reached. It is observed that the neutral axis is 42 inches above the 

bottom fiber of the girder. Other than about 3.5 inches below and above this neutral axis, 

all other parts of the girder are yielding which have stresses equal or greater than 50 ksi. 

Concrete deck is fully cracked and the upper and lower layers of rebars in the deck are 

yielding. The stress of the rebars is more than 60 ksi. Note that the slope of the plateau 

region in the presented steel material models in section 3.3 is not zero. That’s why the 

stresses after yielding get larger than 50 and 60 ksi for Grade 50 and Grade 60 steel, 

respectively. 

 

Figure 3.8-3. Stress Distribution in the Superstructure at the Vicinity of Abutment Wall 
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3.9 Results of Analysis 

The results of nonlinear finite element analysis of the studied integral abutment detail 

are presented in this section. First, the steel I-girder stresses are discussed. This includes 

the girder stresses at the vicinity of the abutment wall face, both in the embedded region 

and outside of the wall. Then, the concrete deck stresses are shown. In the next step, a 

discussion on the stresses of the abutment wall is presented. As a result, the effect of 

girder stiffener right at the wall front face section is investigated. After that comes 

another outcome of this study which is to show the effect of shear studs attached to the 

bottom flange of the girder. One more investigation is on the pile stresses. Stresses of 

abutment wall at the neighborhood of the pile are then illustrated followed by an 

argument on necessity of a pile stiffener at that location. 

3.9.1 Girder Stresses 

In this section, the stress state of a girder integrally attached to an abutment wall is 

studied. First, a 100-foot span bridge is analyzed in which the girder has no stiffener and 

no bottom flange shear connectors. The Mises stresses for such a girder are depicted in 

Figure 3.9-1. It is seen that the maximum stress happen in the web above the wall face. 

At the level of loading corresponding to this picture, the concrete in contact to the end of 

the bottom flange started crushing while the stress in the girder flange is much lower than 

its yield capacity. To find a solution to decrease the web stresses and shift them to the 

bottom flange, two usual details are described in the following sections. 
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Figure 3.9-1. Mises Stresses of Girder without any Stiffener or End Shear Stud  

A) Effect of Girder Stiffener 

In this part of the study, a transverse stiffener is added to the girder right above the 

wall front face and the single span bridge is analyzed. Figure 3.9-2 describes the stresses 

after adding the stiffener. It is observed that the stiffener reduces the web stresses to some 

extents. But, as expected, the stiffener is not able to move the maximum stresses to the 

bottom flange. That’s why some designers think about connecting shear studs to the 

bottom flange to increase the moment carrying capacity of the girder. This problem is 

discussed in the next section. The effect of the stiffener on the abutment wall stresses is 

studied in section 3.9.2. 
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Figure 3.9-2. Mises Stresses of Girder with Stiffener without End Shear Stud  

B) Effect of Girder End Shear Studs 

Another idea is to connect shear studs to the bottom flange of the girder in the 

embedded length to offer it a more pronounced role in carrying loads. Nine shear studs of 

6 inches length and 1 inch diameter are tied to the lower face of the bottom flange. 

Figure 3.9-3 shows the Mises stresses of the girder end. Comparing to Figure 3.9-1, it can 

be observed that there is not a noticeable difference between the state of stress of the 

girder with and without shear connectors. The maximum stress occurs in the web while 
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the shear studs are not able to give the bottom flange an added value. The effect of the 

shear studs on the state of stress in the abutment wall is discussed in section 3.9.2. 

 

Figure 3.9-3. Mises Stresses of Girder with End Shear Stud without Stiffener 

C) Ultimate Loading  

Another job is to analyze the single span bridge under heavy gravity loads and observe 

the behavior of the connection. The loading and analysis are continued up to reaching 

plastic moment capacity in the middle of the 100-foot span. As can be observed in 

Figure 3.9-4, the Mises stresses in the girder are about 50 ksi from the bottom fiber of the 

section up to upper portion of the web. Figure 3.9-5 is showing the Mises stresses of the 

concrete deck. The concrete stress at mid-span is close to 4 ksi which is the maximum 
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strength of concrete. This configuration for stresses at mid-span corresponds to the plastic 

capacity with the neutral axis below the top flange of the girder. 

 

 

Figure 3.9-4. Mises Stresses of Half of the Girder  
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Figure 3.9-5. Mises Stresses of Concrete Deck 

A closer look at the stresses of girder ends demonstrates that the girder has low 

stresses at the ends, despite of plastification at mid-span. And another weird observation 

is that the maximum stresses of the girder at the ends do not form in the top or bottom 

flange. In integral abutment connections, the maximum stress at the girder end is in the 

web above the wall front face. Figure 3.9-1 through Figure 3.9-3 show initiation of high 

stresses in the web instead of flanges in such a connection. This is attributed to the 

occurrence of knife edge phenomenon. In such connections, the girder web tends to cut 

the face of the concrete wall like a knife. The other characteristic of these connections is 

that the responsibility of developing the longitudinal stresses in the bottom flange of the 

girder is with the surrounding concrete of the flange in the short practical lengths of 
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embedment. As the maximum supporting stress at the end face of the flange is the 

capacity of concrete and the mobilized stress over the surfaces of the flange in the 

embedded region is the friction and bond between steel and concrete, these two cannot 

create stresses comparable to yield stress of steel material. Figure 3.9-6 shows the Mises 

stresses of the girder end as the load is increased. It is observed that application of a large 

load creates high shear stresses in the web of the girder while the stress in the bottom 

flange of the girder is still low. 

 

Figure 3.9-6. Mises Stresses of Girder’s End Corresponding to Mid-span Plastification 
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3.9.2 Abutment Wall Stresses At Girder Embedment 

Zone 

In this section, the concrete abutment wall stresses are studied in more details. The 

first point of interest in the wall is the contact region of the steel girder and the wall. This 

region is in charge of transferring the girder end shear and moment to the abutment 

structure. As shown in Figure 3.9-7, maximum stresses are developed right below the 

girder web at the face of the concrete wall. This picture is of wall supporting an 

unstiffened girder. This region is subject to the vertical shear force and the horizontal 

friction and bond between steel and concrete. This part of the abutment structure is 

potential to failure because of this high stress and the limited confinement of concrete.  

 

Figure 3.9-7. Mises Stresses of Abutment Wall  Supporting an Unstiffened Girder 
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A) Effect of Girder Stiffener on Wall Stresses 

Figure 3.9-8 shows the stresses at the front face of abutment wall below the bottom 

flange of a girder with bearing stiffener. Comparison to Figure 3.9-7 demonstrates that if 

the girder has no bearing stiffener, there is a point of high stress below the web of the 

girder. But, if the girder is provided with bearing stiffener, for the same amount of 

loading the stress is more distributed over the contact area with a lower maximum value. 

This analysis shows the necessity of girder bearing stiffener for this type of connections. 

 

Figure 3.9-8. Mises Stresses of Abutment Wall Supporting a Stiffened Girder 
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B) Effect of Girder End Shear Studs 

Another study is to investigate the effectiveness and necessity of girder end shear 

studs. In this study, the role of bottom flange shear connectors in changing the wall 

stresses is examines. The Mises stresses of the girder and abutment wall in two different 

cases of with and without shear studs are shown in Figure 3.9-9 and Figure 3.9-10. It 

demonstrates that if shear studs are added to the bottom flange of the girder, the concrete 

stresses at the end of the bottom flange decreases from 6.69 ksi to 4.61 ksi. In section 

3.9.1, it was shown that girder stresses are not affected considerably by the end shear 

studs. But, the results for abutment wall stresses show that the shear studs are effective in 

mitigating the wall stresses. 

A closer look at the wall stresses in this zone reveals that the maximum stress occurs 

where the end of the bottom flange pushes the adjacent concrete. As the friction and bond 

between the surfaces of the bottom flange do not mobilize high values of stress in the 

bottom flange, development of stress in the bottom flange is mainly done by the concrete 

in contact to the end face of the flange. While adding shear studs to the bottom flange, 

helps engage a larger chunk of concrete in developing flange stresses. 
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Figure 3.9-9. Mises Stresses of Abutment Wall - Girder without End Shear Studs 

 

Figure 3.9-10. Mises Stresses of Abutment Wall - Girder with End Shear Studs 
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3.9.3 Abutment Wall Stresses At Pile Embedment Zone 

In the case of girder to wall connection, it was observed that the stresses in the 

concrete wall at the points of contact to steel girder were so large. Therefore, it is also 

expected that the stresses in the concrete in contact with steel piles to be high. Figure 3.9-

11 shows the stresses of concrete around the piles. As anticipated, large compressive 

stresses are created at the lower face of the wall. Although there is a great gradient of the 

stresses in depth, these stresses are so huge that are able to crush the concrete. Hence, a 

detail to prevent the crushing is required. A suggestion can be to add stiffeners to the pile 

at the concrete face section which will be discussed in the following section. 

 

Figure 3.9-11. Mises Stresses of the Concrete Wall Around the Piles  
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A) Effect of Pile Stiffener 

The finite element model of the abutment is run again by adding a pair of stiffeners to 

the HP sections of the pile at the concrete lower face section. Figure 3.9-12 shows a 

picture of pile stiffener. The stiffener has 0.5 inch thickness.  

 

Figure 3.9-12. Stiffened Pile at the Wall Lower Face Section 

As can be observed from Figure 3.9-13, the maximum stress of the concrete wall 

reduces to 5.31 ksi. It shows about 18 percent of reduction of the stresses. These 

stiffeners do not have a magnificent role in distributing the stresses in the concrete. As 

opposed to the case of girder-to-wall connection, this time adding stiffeners is not so 

effective.  
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Figure 3.9-13. Mises Stresses of the Concrete Wall Around the Piles with Stiffener 

3.9.4 Pile Stresses 

In the conventional detail for integral abutments, the weakest elements are the piles. 

These piles are usually HP sections. The strongest HP section is HP14x117 which 

compared to the other attached elements which are the girders and abutment wall is tiny. 

That’s why these abutments absorb a small negative moment in comparison with the 

capacity of the girders. Figure 3.9-14 shows the Mises stresses of the piles. The stresses 

illustrate a full plastic hinge in the piles just below the lower face of the concrete wall. 

The pile stresses start to reduce inside the wall as the distance to the concrete face gets 

larger. The stress at the top section of the pile is close to zero. 
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Figure 3.9-14. Mises Stresses of Abutment Piles 

A) Effect of Pile Stiffener 

The stresses of the piles after adding the stiffeners are illustrated in Figure 3.9-15. 

Comparing to Figure 3.9-14 reveals that there is a slight difference between the pile 

stresses with and without stiffeners. This is similar to the results for the girder stresses. In 

the case of the stiffened pile, the pile stresses decrease gradually inside the concrete mass 

so that they are almost zero at the top of the pile. 
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Figure 3.9-15. Mises Stresses of Abutment Piles with Stiffener 



117 
 

Chapter 4     

Effect of Curvature on 

Steel IA Bridges 

4.1 Introduction 

In this chapter the effect of bridge horizontal curvature on the response of integral 

steel I-girder bridges is studied. The baseline bridge for this part of the investigation is 

the I-480 Bridge in Omaha, NE. To perform such an investigation, based on that real-life 

bridge, several finite element models of curved integral bridges with different lengths and 

radii of curvature are analyzed. These bridge models have a composite steel I-girder 

superstructure, two integral abutments at the two ends of the bridge and one or more 

intermediate piers which are isolated from the bridge superstructure by means of 

bearings. All abutments and piers are supported on steel H-piles. More explanations on 

the modeled bridges are brought in the following sections. Figure 4.1-1 shows a picture 

of a curved steel I-girder bridge similar to the bridges that are studied in this research. 
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Figure 4.1-1. A Curved Steel I-girder Bridge Similar to the Studied Bridges 

4.2 Bridge Configuration 

The shape and dimensions of the components of the studied bridges including 

superstructure, abutments and piers are explained in the following subsections. 

4.2.1 Superstructure  

The bridge superstructure is composed of seven steel I-girders, composite concrete 

deck, parapets at the sides which are compositely connected to the deck and a two-inch 

concrete overlay which is considered as the wearing surface and is not a structural 

component. Figure 4.2-1 shows the cross section of the superstructure. 
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Figure 4.2-1. Cross Section of the Composite Steel Superstructure 

The girders have two different cross sections at mid-span and over piers. Dimensions 

of different girder sections are illustrated in Figure 4.2-2. As can be seen, the depth of the 

web is equal to 66 inches throughout the length of the girders, but other dimensions are 

different for positive and negative moment regions. The total height of the steel section is 

69.5 and 70.25 inches at mid-span and over the piers, respectively. The spacing of the 

girders is 9 feet. There is a concrete haunch of variable thickness between the girders and 

the deck which provides a 6% superelevation over the top flange of the girders with its 

variable thickness. The average thickness of the haunch is 1.5 inches over the entire 

length of the girders except a length of 15 feet at each side of the piers that the thickness 

reduces to 1 inch. 

2" Overlay
Parapet Parapet

9' 9' 9' 9' 9' 9'

16" 58 ft = 696 in.

3'-4" 3'-4"

16"
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Figure 4.2-2. Steel I-Girder Dimensions 

The thickness of the concrete deck is 8 inches and its width is 60’-8”. The effective 

roadway width of the bridge is 58 feet. At the two sides of the superstructure, there are 

two concrete parapets which are connected to the deck using rebars. The width and height 

of each parapet are 16 and 42 inches, respectively. 

4.2.2 Abutments 

The abutments of the modeled bridges are integrally connected to the superstructure 

which is the main characteristic of this type of bridges. Each abutment is consisted of a 

concrete wall with a thickness of 3’-5 13/16“ and a varying height between 9’-4” to 13’. 

The wall is sitting on a row of seventeen HP12x53 steel piles with a length of 70 feet and 

spacing of 3’-6”. The wing walls of the studied bridges are separated from the abutment 

wall with a joint so that from a structural stand point, they are not affecting the behavior 

of the bridges. Also, the approach slabs are connected to the abutment wall using a pin 

joint detail. So, the only reaction force from the approach slab is a vertical load that is 

8"
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applied to the abutment walls and then transmitted to the steel piles and the surrounding 

soil. 

There are several details for connecting an abutment to bridge superstructure 

integrally, which can be found in the references. For composite steel superstructures, the 

integral connection can be achieved by continuing the steel girders in the concrete wall 

and connecting these two elements using rebars that go through the web of the girders. 

Figure 4.2-3 shows the details of such an integral connection. 

 

Figure 4.2-3.  Abutment Integral Details 

4.2.3 Piers 

The piers of the studied bridges consist of two hammerhead columns, a cap beam and 

two pile caps each of them resting on two rows of five steel H-piles. All the components 

of the piers other than the H-piles are made of reinforced concrete. The columns have a 

3’-6” by 10’-9” rectangular cross section and a length of 38 feet. At the top, the width of 

each column is gradually widened to 29’-9”. The cap beam which connects the columns 

29 13/16"

Var. 9'-4"~13'

HP12x53

Seat Beam

12"

12"
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to each other has a length of 59’-6”, a width of 4’-6” and a varying depth from 4’ to 7’-7” 

which provides a 6% superelevation for the bridge. The pile cap of each column is a 

21x7.5x4 cubic feet concrete mass which is supported on ten HP14x89 steel piles with 95 

feet length. Figure 4.2-4 shows a general picture of the piers of the studied bridges. 

 

Figure 4.2-4. Pier Configuration 

The superstructure is resting on piers by means of bearings which can be either 

elastomeric, sliding, fixed pot or guided pot. In the fixed pot bearings, the horizontal 

movement of the superstructure and the cap beam at the point of connection is tied to 

each other and the other four degrees of freedom are provided by means of an elastomeric 

layer which is in the pot. These elements are modeled using nonlinear gap springs. In the 

guided pot bearings, using a stainless steel PTFE plate and a shear key, the horizontal 

movement is set so that it is free in one horizontal direction and fixed in the other 

horizontal direction (perpendicular to the free DOF). The other four degrees of freedom 
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are provided by the elastomeric layer and are modeled by gap elements, similar to fixed 

pot bearings. Figure 4.2-5 shows the springs modeling the bearings of the piers. 

 

Figure 4.2-5. Springs Modeling the Bearings of the Piers 

4.3 Finite Element Modeling 

In this section, the characteristics of the finite element models of the studied curved 

steel integral abutment bridges are explained. These characteristics include material 

properties, loading, soil-structure interaction and the employed elements in the finite 

element models. 

4.3.1 Material Properties 

In the studied bridges, the material for I-girders flanges and webs, braces, stiffeners 

and all splices conforms to the requirements of ASTM A709/A709M, Grade 50 

weathering steel. The steel material for H-piles conforms to ASTM A709, Grade 36. All 

structural steel materials have a unit weight of 490 lb/ft3, a coefficient of thermal 

expansion of 6.5x10E-6 /°F, a modulus of elasticity of 29000 ksi and a Poisson ratio of 

0.3. 
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Other components including deck slab, parapets, abutment walls, columns, cap beams 

and pile caps are reinforced concrete parts with a 28-day compressive strength equal to   

4 ksi.  These parts have a unit weight of 150 lb/ft3, a coefficient of thermal expansion of 

6x10E-6 /°F, a modulus of elasticity of 3644 ksi and a Poisson ratio of 0.2. 

4.3.2 Loading 

In this section, the applied loads to the modeled bridges are reviewed. These loads 

include the self weight of the bridge components, the weight of the wearing surface and 

railing, the effects of live load including gravity, braking and centrifugal forces, the 

pressure of soil to the abutments, the thermal loads including expansion, contraction and 

temperature gradient through the thickness of superstructure and the effect of concrete 

shrinkage. An explanation of each of these loads is presented in the following 

subsections. 

A) Dead Load (DC) 

Assuming a unit weight of 150 /  for the reinforced concrete components and a 

unit weight of 490 /  for steel components of the bridges, the dead load of the 

modeled bridges is applied to all elements through calculating the volume of each 

element.  

B) Wearing Surface Load (DW) 

Considering a 2-inch thick future concrete overlay with a unit weight of 145 / , 

the weight of wearing surface which is equal to 1.678E-4 ksi is applied to the bridges 

decks. Also, the cross sectional area of each concrete side railing is assumed to be 498 
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, which results in a weight of 519 /  along the edges of the bridges. A schematic 

picture of the wearing surface components is shown in Figure 4.3-1. 

 

Figure 4.3-1. Wearing Surface of the Modeled Steel Bridges 

C) Earth Pressure (EH) 

The pressure of the backfill soil is applied to the modeled bridges assuming a 

cohesionless soil with a unit weight of 125 /  and an angle of internal friction of 30 

degrees. In this way, the soil pressure is: 

  3.617 10 5  Eq. 4.1 

In which  is depth of the soil layer in inches and  is the soil pressure in ksi. 

Elaborate explanations on how the soil pressure is applied to the structure are presented 

in Section 4.3.4 (Soil-Structure Interaction).  
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D) Live Load (LL) 

Live load is applied to the models based on the AASHTO LRFD Bridge Design 

Specifications (American Association of State Highway and Transportation Officials, 

2010). According to the specifications four different loads should be considered for such 

continuous superstructures: 

- Design truck plus the lane load 

- Design tandem plus the lane load 

- For negative moments and piers reaction: 90 percent of dual design trucks plus the 

lane load 

- And again for the negative moments and piers reaction: dual tandem plus the lane 

load 

An impact factor of 1.33 is applied to all live loads except the lane loads. In addition, a 

multiple lane presence factor is applied which is derived from Table 4.3-1. 

Number of Loaded Lanes Multiplication Factor 

1 1.20 

2 1.00 

3 0.85 

> 3 0.65 

Table 4.3-1. Multilane Presence Factors 

The live loads are applied in the most critical place in each lane so that the maximum 

effects are concluded. Figure 4.3-2 shows the positioning of the live load on the modeled 

bridge decks. 
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Figure 4.3-2. Positioning of the Live Load  

E) Braking Force (BR) 

As per AASHTO LRFD Bridge Design Specifications, the braking force for each lane 

is the maximum of 25 percent of the design truck weight or 5 percent of the design truck 

plus lane load weight. This force is calculated for different bridge lengths and applied for 

different positions of the live load. 

It should be noted that as there are four lanes on the modeled bridges and the 

simultaneous braking of the live load of all the lanes is considered, a multilane presence 

factor based on Table 4.3-1 is applied to the braking forces. It should also be mentioned 

that for bridges with length of less than 450 feet, the braking force of a truck which is 25 

percent of its weigh is governing and this force is equal to 11.7 kips per lane: 

72 0.25 0.65 11.7 /  

For bridges with lengths more than 450 feet, the braking force based on truck plus lane 

loading is governing which depends on the length of the bridge: 

24722424247224242472242424722424120

12 ft12 ft12 ft12 ft120" < 12 ft
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0.05 72 0.64 0.65 2.34 0.0208  /  

F) Centrifugal Force (CE) 

When a bridge has horizontal curvature, an important lateral load which is applied to 

the bridge superstructure is the centrifugal force of the moving loads. Based on AASHTO 

LRFD Bridge Design Specification 2010, this radial force is the product of the weight of 

design truck or tandem and a  factor defined as: 

  Eq. 4.2 

where  is equal to 4/3 for all limit states other than fatigue,   is the design speed,  is 

the radius of curvature of the design lane and  is the gravitational acceleration equal to 

32.2 / . If the parameters in this equation are in a consistent set of units, the  factor 

will be unitless. Actually based on Eq. 1.4 and Eq. 4.2, the centrifugal force factor should 

be equal to 

 
4

3 0.28 Eq. 4.3 

But for design purposes, the structural design speed may be assumed slightly more 

than the geometrical design speed. Table 4.3-2 shows the values of C factor and 

equivalent centrifugal forces for different radii of curvature at design speeds from 35 to 

60 mph. In the calculations, a multilane presence factor of 0.65 is applied for four lanes 

of loading. Note that the assumed design speeds are about 5 mph more than the speed 

given by Eq. 1.4. 
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Radius of 

Curvature (ft) 

Geometrical 

Design Speed 

(mph) 

Structural 

Design Speed 

(mph) 

C Factor Centrifugal 

Force (kips per 

lane) 

300 30.7 35 0.364 17.04 

538 41.2 45 0.335 15.68 

1000 56.1 60 0.324 15.16 

Table 4.3-2. C Factor for Different Radii 

As can be seen, the value of the C factor is almost constant ranging from 0.324 to 

0.364. 

G) Wind Load (WS) 

The wind load is applied to the modeled bridges based on the AASHTO LRFD Bridge 

Design Specification. The pressures of the wind load are assumed to be caused by a base 

design wind which has a speed of 100 mph. The wind pressure has a horizontal direction 

and is uniformly distributed over the areas of the bridge exposed to the wind as seen in 

the elevation view.  

The pressure of design wind, , is calculated using the following equation in ksf: 

 Eq. 4.4 

in which  is the base wind pressure specified in Table 4.3-3,  (mph) is the design 

wind velocity at design elevation and  is the base wind velocity equal to 100 mph at 

30.0 feet height. 
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Structural 

Component 

Windward Load 

(ksf) 

Leeward Load (ksf) 

Beams 0.05 NA 

Trusses, Columns 

and Arches 

0.05 0.25 

Large Flat Surfaces 0.04 NA 

Table 4.3-3. Base Wind Pressure,  Corresponding to     

The wind loading shall not be less than 0.30 klf on beam and girder components like 

the superstructure of the bridges. 

As the bridge superstructure’s elevation is more than 30 feet (the height is ranging 

from 43 feet to 56.44 feet), there should be an adjustment on the  as follows: 

2.5   Eq. 4.5 

where: 

: Friction velocity taken as specified in Table 4.3-4 

: Wind velocity at 30 feet above low ground or design water level assumed to be 

equal to 100  

: Height of the structure at which wind load are being calculated measured from low 

ground or water level (> 30 feet) 

: Friction length of upstream fetch taken as specified in Table 4.3-4 
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Condition Open Country Suburban City 

 (mph) 8.20 10.9 12.0 

 (ft) 0.23 3.28 8.20 

Table 4.3-4. Values of  and  for Various Upstream Conditions 

Where the wind direction is not perpendicular to the structure, the base wind pressure 

 shall be modified as specified in Table 4.3-5. 

Skew Angle of 

Wind (Degrees) 

Girder Lateral Load 

(ksf) 

Girder Longitudinal 

Load (ksf) 

0 0.050 0.000 

15 0.044 0.006 

30 0.041 0.012 

45 0.033 0.016 

60 0.017 0.019 

Table 4.3-5. Base Wind Pressure,  for Various Angles of Attack   

The forces directly applied to the substructures shall be calculated using a base wind 

pressure of 0.040 ksf. Also, a vertical upward wind pressure of 0.020 ksf should be 

applied to the horizontal surfaces of the bridges. 

Now, using the above equations the wind pressures on the studied bridges are 

calculated as follows. Assuming an open country condition for the bridge which is the 

most severe case,  will be 8.20 mph and  will be 0.23 foot. As the average height of 

the superstructure is 49.72 feet, the design wind velocity will be: 
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2.5  2.5 8.20
100
100

49.72
0.23 110.2 mph 

Since for the girder structures the base wind pressure, , is 0.05 ksf, pressure of 

design wind will be: 

0.05 
110.2
100 0.0607  

Therefore the forces on different elements of the modeled bridges will be: 

0.0607 4.22 10                 : On the vertical surface of girders and parapets 

0.020 1.39 10                              : On the horizontal surface of deck 

0.040 2.78 10   0.01168        : On the vertical surfaces of columns 

As this study is mainly focused on curved bridges and there are no unique longitudinal 

and transverse directions for such bridges, especially for highly curved ones, after 

choosing the direction of the wind, the pressures should be calculated and applied to the 

vertical surfaces based on the different angles of attack for different parts. With a 

pressure of design wind equal to 0.0607 ksf, the pressures applied to the parts in an 

average height of 49.72 ft will be as presented in Table 4.3-6. 
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Skew Angle of 

Wind (Degrees) 

Girder Lateral Load 

(ksi) 

Girder Longitudinal 

Load (ksi) 
0 4.22 10  0.000 

15 3.71 10  0.51 10  

30 3.46 10  1.01 10  

45 2.79 10  1.35 10  

60 1.43 10  1.60 10  

Table 4.3-6. Wind Pressure,  for Various Angles of Attack   

H) Uniform Temperature Changes (TU) 

Seasonal temperature changes are applied to the modeled bridges based on the contour 

maps that are given in AASHTO as the more precise method of determining the 

temperature changes for each region. For a steel girder bridge composite with concrete 

deck, a maximum design temperature of 120°F and a minimum design temperature of      

-30°F can be a worst case scenario that can be envisioned. An assumed construction 

temperature between 60°F and 70°F results in an increase of +60°F and a decrease of       

-100°F for the bridge structure. These two temperature changes are applied to the 

modeled bridges as the uniform temperature loading. 

I) Temperature Gradient (TG) 

The temperature gradient loading is applied to the modeled bridges based on the 

provisions of AASSTO LRFD Specifications. Figure 4.3-3 illustrates the considered 

pattern for positive gradient. Assuming a solar radiation zone “1” for the location of the 

modeled bridges, the temperatures T1 and T2 are equal to 54°F and 14°F, respectively. 
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For composite steel girder bridges, the value of A is 12 inches and t is the thickness of 

concrete deck. Based on these assumptions a non-uniform temperature gradient is 

obtained for the concrete deck and there will be no gradient in the steel girders. The 

negative temperature gradient is obtained by multiplying the values of positive gradient 

by -0.30. These two gradient patterns are applied to the computer models. 

 

Figure 4.3-3. Positive Temperature Gradient in the Superstructure Section 

J) Shrinkage (SH) 

To account for the effect of concrete shrinkage in the models, first the strain due to 

concrete shrinkage is calculated and then the equivalent temperature decrease which 

causes the same amount of strain is found. In this way, the effect of concrete shrinkage is 

simulated by applying a temperature decrease to the concrete parts. 

To calculate the strain in concrete due to shrinkage, the method presented by 

AASHTO LRFD is used (American Association of State Highway and Transportation 

Officials, 2010). In the code, the shrinkage strain is obtained using the following 

equation: 
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0.48 10  Eq. 4.6 

  in which: 

  1.45 –  0.13 /   1.0  

2 0.014  

 
5

1  

 61 4  

where: 

 = relative humidity (%). In the absence of better information,  may be taken from 

Figure 4.3-4. 

 = factor for the effect of the volume-to-surface ratio of the component 

 = factor for the effect of concrete strength 

 = humidity factor for shrinkage 

 = time development factor 

 = maturity of concrete (day), defined as age of concrete between the end of curing 

and the time being considered for shrinkage effects 

 = age of concrete at time of interest (day) 

/  = volume-to-surface ratio (in.) 
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 = specified compressive strength of concrete at time of prestressing for pre-

tensioned members and at time of initial loading for non-prestressed members. If 

concrete age at time of initial loading is unknown,  may be taken as 0.80  (ksi). 

AASHTO LRFD 2010 states that if the concrete is exposed to drying before 5 days of 

curing have elapsed; the shrinkage strain should be increased by 20 percent.  

 

Figure 4.3-4. Annual Average Ambient Relative Humidity in Percent 

For concrete deck of the superstructure, assuming a relative humidity of 70 percent for 

the location of the bridge under consideration, a /  ratio equal to 4.0 inches, an  of 4 

ksi for superstructure concrete and a time of infinity for calculation of the time 

development factor, the following values are obtained: 

  
12 12 8
12 12 2 4.0 
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  1.45 –  0.13 1.45 0.13 4 0.93 1.0   1.0 

2 0.014 2 0.014 70 1.02 

 
5

1
5

1 0.80 4 1.19  

 61 4  
∞

61 4 4 ∞ 1.0 

For parapets the   ratio and  are calculated as follows: 

  
42 12

42 12 42 5.25 

  1.45 –  0.13 1.45 0.13 5.25 0.77 1.0   1.0 

For abutment walls the   ratio and  are calculated as follows: 

  
728 158 48

728 158 158 48 2 728 48 33.4 

  1.45 –  0.13 1.45 0.13 33.4 2.89 1.0   1.0 

And for the pier columns the  ratio and  are equal to: 

129 42
129 42 2 15.8 

  1.45 –  0.13 1.45 0.13 15.8 0.60 1.0   1.0 

The other coefficients including , ,  are the same as those of deck and so the 

shrinkage strain can be calculated as: 
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1.0 1.02 1.19 1.0 0.48 10 583 10  

Now, the equivalent temperature decrease can be evaluated using the following 

equation: 

 ∆   

Hence: 

6 10  ∆  583 10  

∆  97.2 °  

The effect of shrinkage of the concrete deck, parapets, abutment wall and pier columns 

is applied to the modeled bridges by assuming a contraction of -97.2°F for these parts. In 

this case of loading, there is no temperature change in the other elements of the bridge. 

4.3.3 Load Combinations 

The load combinations used for studied bridges are based on Table 3.4.1-1 of 

AASHTO LRFD. In general, a factored load effect can be taken as: 

 Eq. 4.7 

in which ’s are load modifiers that are taken equal to unity, ’s are the load factors 

from Table 3.4.1-1 of AASHTO LRFD and ’s are the load effects. Among all the 

possible load combinations given in Eq. 4.7, some of them realized to be critical for the 

studied bridges that are discussed as follows.  

For Strength I Limit State, Eq. 4.7 results in: 
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, 1.75 1.75 1.75

0.5  1.2 0.5 1.2  
Eq. 4.8 

Where 

, 1.25  0.90 

, 1.5  0.65 

, 1.35  0.90 

The possible rational load combinations comes from maximizing or minimizing 

, maximizing or minimizing , maximizing or minimizing . The 

following eight load combinations are the final result from Eq. 4.8. 

, 1.25 1.5  0.9 0.65 1.35 0.9

1.75 1.75 1.75 0.5  1.2

 

Eq. 4.9 

For the term , it is observed that contraction and shrinkage act in the same 

direction, while expansion is opposite to shrinkage. Therefore, a more simplification is to 

take 1.2 0.5  and 1.2 1.2 . However, the more general expression 

arises less questions about the possible critical combinations.  

For Strength III Limit State, Eq. 4.7 yields: 

, 1.25 1.5 0.9 0.65 1.35 0.9

1.4 0.5 1.2  
Eq. 4.10 

In addition to strength limit states, the bridges are also studied in service limit states. 

Eq. 4.7 gives the following Service I Limit State combinations: 



140 
 

, 1.0 1.0 1.0 1.0 1.0 1.0

0.3 1.0 0.5 1.2  
Eq. 4.11 

In which  is equal to 0.5 for the load combinations that have live load included and 

equal to 1.0 when live load is not considered. These load combinations are regarded in 

this study on the integral bridges. 

4.3.4 Soil-Structure Interaction 

This section presents detailed explanation on the employed methods for calculation of 

the interaction forces between the elements of the modeled bridges and the adjacent soil. 

Based on theories of soil mechanics, the soil pressure depends on the magnitude and 

direction of the structure displacement. If the structure is pushed against soil, the pressure 

changes nonlinearly between at-rest and passive pressure. And if the structure is moving 

away from neighboring soil, the interaction pressure decreases nonlinearly from at-rest to 

active soil pressures, depending on the magnitude of the movement. To predict these 

nonlinear responses, there are some available methods in literature which will be used in 

the finite element models. 

As the soil exists all around the piles of abutments or piers, but in the case of abutment 

walls, the soil is just in one side of the wall, there are two different soil pressure response 

curves for these two cases which will be explained separately in the following 

subsections. 
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A) Soil-Abutment interaction 

In soil mechanics, lateral soil pressure is generally defined as a ratio of vertical earth 

pressure. This ratio that is known as the earth pressure coefficient is a variable that 

changes based on the state of interest which can be active, at-rest, passive or something 

between. For a wall supported laterally by soil, Clough G. W. and Duncan J. M. have 

performed a series of finite element analyses to perceive the soil behavior (Clough, 

Duncan, University of California, & Dept. of Civil Engineering, 1971). They developed a 

relationship between the wall movement and the soil pressure which is shown in 

Figure 4.3-5. As can be observed the soil pressure changes from passive pressure to 

active pressure based on the direction and magnitude of the wall displacement. In the 

present study, the curve that they have presented for an internal friction angle of 30 

degrees is entered as the response curve into the finite element models. 
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Figure 4.3-5. Relationship of Wall Movement vs. Soil Pressure  

Based on the earth pressure coefficients presented in Figure 4.3-5, for an abutment 

wall height of 13’-2”, a backfill soil with a unit weight of 125 / 3, an internal friction 

angle of 30 degrees and for springs of one square foot tributary area located at different 

depths, the force-displacement curves of Figure 4.3-6 are obtained which are used in the 

finite element models. 
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Figure 4.3-6. Force-Displacement Curves of the Abutment Backfill Springs 

As the backfill of the bridge abutments are generally composed of granular soils, the 

response curve for abutment springs is only presented for cohesionless soils and therefore 

cohesive soil behavior for abutment backfill is ignored. 

B) Soil-Pile Interaction 

The response of the soil interacting with piles of piers or abutments is different than 

that for abutment walls because the piles are fully embedded in soil or in other words the 

soil completely surrounds the piles. So the pile movement in all directions results in 

pushing a mass of soil. In this way, if one wants to study this problem in 2D, for each 

point of the pile if the pile is not moving, the at-rest pressures of the two sides are equal 

and the total pressure on the pile is equal to zero. And if the pile moves in a direction, the 

value of the soil pressure is equal to the pressure value resulted from a displacement of 

the same magnitude but in the opposite direction. This 2D reasoning is valid for all 

horizontal directions in a 3D space and therefore displacement versus pressure curves that 
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are presented by the researchers is skew-symmetrical with respect to zero pile 

displacement. 

One of the sources for solution of this problem is the recommendations of American 

Petroleum Institute which proposes soil response curves for both cohesive and 

cohesionless soils (American Petroleum Institute, 2005). The following subsections 

describe the API recommendations. 

B1) Lateral Load-Deflection in Soft Clay 

The response of soft clay under lateral loading is generally a nonlinear behavior. API 

proposes a p-y curve for short term static loading which may be generated from 

Table 4.3-7.  

/  /  

0 0 

0.23 0.1 

0.33 0.3 

0.5 1 

0.72 3 

0.98 8 

1 ∞ 

 

Table 4.3-7. Proposed API p-y Curve for Soft Clay 

in which: 

: actual lateral pressure 
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: lateral bearing capacity of soft clay 

: actual lateral deflection 

 2.5 .   

    : strain which occurs at one half of the maximum stress on laboratory unconsolidated 

undrained compression tests of undisturbed soil samples 

: pile diameter 

The lateral bearing capacity of soft clay has been found to be between 8  and 12  

except at shallow depths which failure mode changes due to lack of enough overburden 

pressure. In the present study, this capacity is assumed to be equal to 9c for deep 

elements of the pile and for shallower positions, i.e. at depth smaller than reduced 

resistance zone ( ), it is linearly increased between 3  and 9 : 

3                     

9                                             

Eq. 4.12 

: undrained shear strength for undisturbed clay samples 

: effective unit weight of soil 

J: a dimensionless empirical constant with values ranging from 0.25 to 0.5 

X: depth below soil surface 

: depth below soil surface to bottom of reduced resistance zone. For constant soil 

strength with depth: 
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6
 

Based on the above mentioned equations, the force-displacement curves for the 

springs of abutment piles are obtained which are plotted in Figure 4.3-7. These graphs 

correspond to the response for HP12x53 piles with spring spacing of 5 feet, soil unit 

weight of 125 lb/ft3, undrained cohesion of 2 ksf, J value of 0.4 and  equal to 0.01. 

 

Figure 4.3-7. Force-Displacement Curves of the Springs of Piles of Abutments in Soft Clay 

Also for piles of piers with HP14x89 sections, for springs of five feet spacing and the 

same soil properties and same J and  values, the force-displacement curves of 

Figure 4.3-8 are found.  

‐100

‐80

‐60

‐40

‐20

0

20

40

60

80

100

‐6 ‐4 ‐2 0 2 4 6Fo
rc
e 
(k
ip
)

Displacement (in.)

Force‐Displacement of Abutment Pile Springs

Depth>12.78 ft

Depth=10 ft

Depth=5 ft



147 
 

 

Figure 4.3-8. Force-Displacement Curves of the Springs of Piles of Piers in Soft Clay 

B2) Lateral Load-Deflection in Sand 

API recommends a hyperbolic tangent equation for the lateral force-displacement 

curve of the piles in sand as follows: 

 . . . tanh  
 

  Eq. 4.13 

Where: 

: Lateral soil resistance in a length of  of pile (force) 

 : An empirical correction factor, 3 0.8  0.9 

 : Estimated ultimate lateral soil resistance (force/unit length) 

 : Length of the pile section 

 : Initial modulus of subgrade reaction from Figure 4.3-9 
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 : Depth from the top of the soil layer 

 : Displacement in the horizontal direction 

 

Figure 4.3-9. Initial Modulus of Subgrade Reaction 

The ultimate soil lateral resistance can be obtained based on the equations given in 

API recommendations as the minimum of: 

 . .   Eq. 4.14 

And 

 . . .  Eq. 4.15 
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where: 

: Ultimate sand lateral resistance at shallow depths (force/unit length) 

: Ultimate sand lateral resistance at deep depths (force/unit length) 

: Pile Diameter 

: Effective soil density 

: Angle of internal friction 

       

  45  

       1  

 /2 

 45  

: Active earth pressure coefficient 

: At-rest earth pressure coefficient 

The values of constants ,  and  can be found from Figure 4.3-10. This figure 

may also be used to check the values obtained from the relevant equations. 



150 
 

 

Figure 4.3-10. Values of Coefficients ,  and  as a Function of Angle of Friction 

Using the above equations and considering a width of 13.8 inches for HP14x89 piles 

of piers, a soil unit net weight of 125 /  , an angle of internal friction of 30 degrees and 

a one foot spacing for the pile springs, a k value of 45 lb/in3 is obtained from Figure 4.3-

9, which results in the force-displacement curves of Figure 4.3-11 for the pile springs. As 

shown in these two graphs, the force-displacement curves strongly depend on the depth 

of the springs. 



151 
 

 

Figure 4.3-11. Force-Displacement Curves of the Springs of Piles of Piers in Sand 

The response of the springs of the HP12x53 piles of the abutments can be plotted by 

employing the same values as used for the pier piles in the related equations and 

considering a width of 11.8 inches for the piles. Figure 4.3-12 shows the force-

displacement curves for these springs. 
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Figure 4.3-12. Force-Displacement Curves of the Springs of Piles of Abutments in Sand 

4.3.5 Elements 

The structures studied in this chapter are curved steel I-girder bridges with flexible 

integral abutments interacting with soil, having at least one intermediate pier made of 

concrete columns, cap beam and pile caps supported on steel piles. The piles of the piers 

are also in contact with the supporting soil. As can be observed, the bridge behavior is 

controlled by several structural elements that need different finite elements to be used for 

elaborate modeling. An explanation of the employed finite elements is brought in the 

following subsections. 
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A) Beam Element 

To model the superstructure braces, pier columns, cap beams and also the piles of the 

piers and abutments, two-node frame elements are used. The frame elements have a 

general three dimensional beam column formulation. In these elements the effects of 

axial deformation, biaxial bending, torsion and biaxial shear can be modeled. A frame 

element is a straight line between two points. Each element has its own local coordinate 

system for assigning element properties and loads. Another characteristic of these 

elements is end offset which enables one to more accurately model the intersection of two 

elements, such as intersection of the columns of these bridges with the relatively rigid 

pile caps. The rigidity of end offsets can vary by setting a parameter called rigid zone 

factor to model partial to full rigidity. These elements can be loaded by gravity, multiple 

concentrated loads, multiple distributed loads, temperature induced loads and strain and 

deformation loads. 

B) Shell Element 

Several parts of the modeled bridges including the deck slab, parapets, flanges and 

webs of the I-girders, stiffeners, abutment walls and pile caps are modeled using shell 

elements. A shell element is a three- or four-node formulation which combines 

membrane and plate behaviors. 

For defining material properties and loads and for getting output, each shell element 

has its local axes. Different types of loadings are possible in these elements including 

gravity and uniform loads, surface pressure on the side faces and also the top, bottom 
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surfaces and temperature loads.  In these elements temperature-dependent, orthotropic 

material properties can also be defined. 

Shell elements use a four-point numerical integration formulation. Stresses and 

internal forces and moments are calculated at the 2-by-2 Gauss integration points and 

then extrapolated to the joints of the element. From the difference in values of stresses or 

internal forces calculated from different elements attached to a common joint, an estimate 

error in the solution can be approximated. This is an indication of the accuracy of a given 

finite-element meshing and can then be used as the basis for optimizing the mesh for a 

new and more accurate solution. 

C) Nonlinear Link Element 

Nonlinear link elements are used to connect two joints together with specified 

nonlinear properties. Each link element may show up to three types of behavior based on 

the required properties and the analysis type. These properties include: linear, nonlinear 

and frequency-dependent. 

In the modeled bridges, these link elements are used to simulate the elastomeric 

bearings connecting the piers to the superstructure. The properties assigned to these link 

elements are described here. In design of the elastomeric bearings, it is assumed that the 

area of the bearing should be chosen so that the pressure on the elastomeric bearing is not 

less than a specified value, namely one third or one fourth of the maximum allowed 

pressure on the bearing. This assumption yields to the fact that these types of bearings 

shall not in tension in any of the load combinations. On the other hand, as the maximum 

applied pressure on the elastomer is limited by the manufacturers (typically to 2 ksi), the 
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stiffness of the link element in the six degrees of freedom can be determined using the 

following equations. In these equations, the gravity direction of the neoprene is assumed 

as direction 1 and the two horizontal directions are named 2 and 3. The elastomers are 

circular with radius of 14 inches and have a thickness of 4 inches. The modulus of 

elasticity of elastomeric material is 85.3 ksi and it has a shear modulus of elasticity of 

0.142 ksi. 

Axial stiffness:      

  6565 /  

Shearing stiffness: 

  10.9 /  

Torsional stiffness: 

  268 . /  

Bending stiffness: 

  80 427 . /  

Where: 

 is the cross sectional area,  is axial modulus of elasticity,  is the rubber thickness, 

 is the shear modulus of elasticity,  is the torsional constant (equal to  for circular 

elastomers) and  is the moment of inertia of the section of the elastomeric bearing. 
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In this way, six stiffnesses of the bearings are calculated and entered into the finite 

element model. A picture of the bearing springs modeled in a pier is shown in Figure 4.3-

13. 

 

Figure 4.3-13. Modeling of the Bearings 

Later in this study, the effects of fixed and guided pot bearings are also examined. For 

those types of bearings, if the elastomeric layer of the pot is assumed to have a circular 

shape with the radius of 18 inches and thickness of 1 inch, then the stiffness in the six 

degrees of freedom will be calculated as follows: 

Axial stiffness:      

  .  /  
 

21 700 /  

Shearing stiffness (for fixed pots): 

  ∞ 

Shearing stiffness (for guided pots in the guided direction): 

  0 

Shearing stiffness (for guided pots perpendicular to guided direction): 
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 ∞ 

Torsional stiffness: 

  .   /  
 

1463 . /  

Bending stiffness: 

  .   /  
 

439 551 . /  

D) Nonlinear Support Element 

To model the effect of the soil support which acts on the abutment walls and the 

surface of the piles, nonlinear support elements are used. These elements are one-node 

grounded nonlinear springs.  

As two different types of properties are supposed to be analyzed with these elements 

which are soil-abutment interaction and soil-pile interaction, two different sets of 

properties are defined for the elements. 

The first set of properties for nonlinear support elements is based on the force-

displacement curves of Figure 4.3-6 which are assigned to the nonlinear springs of the 

abutment walls. The second set of assigned properties to nonlinear springs is based on the 

force-displacement curves of section 4.3.4B) which are considered for the springs that are 

supposed to model the behavior of the surrounding soil of the pile of abutments and piers. 

As the piles are embedded in the soil, the springs have the same nonlinear response in 

tension and compression. 
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4.3.6 Finite Element Models 

Based on the information provided in the previous sections, a comprehensive finite 

element analysis study is conducted using the Nonlinear Finite Element Analysis 

Program SAP 2000. In the analyses, the movements and internal forces of curved integral 

abutment bridges are evaluated and compared to the responses of straight bridges. 

In order to conduct such analyses, several finite element models of curved I-girder 

steel bridges with radius of curvature equal to 300, 538 and 1000 feet are analyzed. For 

each of these radii, the bridge is modeled in different lengths, namely; 308, 501, 694 and 

887 feet. Additionally, the equivalent straight bridge of each curved model is simulated 

with exact same characteristics as the curved bridge except the curvature. The span length 

in the modeled bridges is 154 feet for the end spans and 193 feet for the middle spans. As 

shown before, the width of all the bridges is 60’-8”. Figure 4.3-14 illustrates typical 

models that are made in this study. 
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Figure 4.3-14. Typical Finite Element Models of the Studied Bridges  

4.4 Results of FE Analysis 

In this section, the results of the conducted finite element analyses are presented. In 

the analyses, different aspects of the behavior of steel I-girder integral abutment bridges 

are studied. These studies include:  

- Effect of Length and Curvature on Load Responses:  

A diverse set of loads are applied to the modeled bridges. The effect of bridge 

curvature and bridge length on the response of different elements under each load 
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is examined. As the critical forces in an element are determined based on factored 

load, the loads are combined based on the load combinations of Section 4.3.3 and 

the effect of length and curvature is also presented for the envelope of load 

combination effects. 

- Bridge Movement: 

First, it is tried to distinguish the different parameters affecting the bridge end 

displacement. It is observed that the maximum bridge end displacement occurs due 

to contraction and shrinkage. The reduction of the bridge length (or bridge 

shortening) due to these effects is calculated. In the case of long straight bridges, 

the summation of end displacements is equal to the bridge shortening. But, in 

curved bridges end displacements are a function of bridge shortening. A 

geometrical relationship is presented between shortening and displacement in 

curved bridges. The effect of bridge width is also included. 

- Abutment Pile Orientation: 

The orientation of abutment piles is a problem that is studied in deep for steel 

bridges.  Researchers have two different opinions regarding the pile orientation. 

Some believe the piles should be oriented for strong axis bending. Some others 

prefer a weak axis bending. An analytical solution for this problem is presented for 

the case of straight bridges. For curved bridges, several finite element analyses for 

different bridge configurations are performed. Based on the results, a general 

solution to find the optimum pile orientation is presented. 

- Effect of Bearing Type and Orientation: 
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First, different bearing types used in bridge industry are surveyed. The different 

types that are found are categorized based on their structural performance. The 

effect of elastomeric, fixed, guided and sliding bearings on the internal forces of 

the studied bridges is investigated. And the final recommendations on the bearing 

orientation are provided. 

In the following sections, all of the above-mentioned problems are developed 

elaborately. 

4.4.1 Effects of Length and Curvature on Load 

Responses 

In this section, the effect of different loads on the responses of the studied integral 

abutment bridges is displayed. The piers of the bridges are isolated from the 

superstructure by means of elastomeric bearings. The loads and load effects that are 

considered include the self weight of the bridge, the weight of superstructure, live load, 

braking force, centrifugal force, horizontal earth pressure, expansion, contraction, 

positive and negative temperature gradient and finally concrete shrinkage. Since the 

studied bridges are composed of several elements, the examined elements should be 

limited to those elements that are the most critical from the design standpoint. The other 

factor is the inspected output. As each element has a number of different outputs such as 

axial or in-plane forces and also bending moments and shear forces in different 

directions, the study should be narrowed down to a number of the most influential output 

types.  
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With the above introduction, since the abutment piles are the most critical elements in 

design of integral bridges, they are chosen for the study. For those elements, the resultant 

bending moment and shear force are investigated as the desired output types. The 

following subsections show the results of the finite element studies on these element 

outputs. 

The other problem is the magnitude of the internal forces in each element due to each 

load. It should be noticed that the responses are totally different in a manner that the 

responses under some of the loads are tens of times of the response due to some other 

loads. So, all loads should not be considered of the same effectiveness. A weight function 

is defined for each response of the elements which shows the significance of that type of 

loading for that set of elements. The definition of the weight function is as below: 

  
 

      
 

For example the weight function for dead load moment of pile of abutments is:  

   
   

     
 

And then the average of the internal force ratios is calculated for different bridge as 
follows: 

           

And the normalized weight factor for each load case is obtained using the following 
equation: 
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A) Bending Moment of Abutment Piles 

As the piles of abutment are assumed to be integrally connected to the abutment wall, 

the maximum moment is produced in the upper section of each pile. And since due to 

application of different loads, there are bending moments in both longitudinal and 

transverse directions of the bridge, the resultant moment is calculated for each pile. In the 

following parts, this resultant moment due to each of the considered loads are studied. 

The loads are presented based on their weight functions. The normalized weight factors 

are tabulated in Table 4.4-1. 

Load Case Normalized Weight Factor 

Contraction 31 

Expansion 14 

Live Load 12 

Wind Load 11 

Dead Load 11 

Shrinkage 8 

Earth Pressure 6 

Centrifugal Force 3 

Weight of Wearing Surface 2 

Braking Force 1 

Temperature Gradient (+)ve 0 

Temperature Gradient (-)ve 0 

 

Table 4.4-1. Normalized Weight Factors for Bending Moment of Abutment Piles 
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The fact that should be mentioned about these weight factors is that these factors are 

not the percentage of participation of the load compared to other loads in a load 

combination. These factors show the relative magnitude of the moments due to different 

load. For example, in some bridges factored contraction moment can be about 95 percent 

of the critical load combinations moment, while its normalized weight factor is 31. 

A1) Contraction 

Contraction with a normalized weight factor of 31 is the most effective loading for the 

studied bridges. In straight bridges, contraction moments in abutment piles have an 

increasing trend with increase of bridge length. Figure 4.4-1 shows the curves of moment 

versus length for different radii. In curved bridges with large radius of curvature, i.e. 

radius of 1000 feet, the moments due to contraction tend to increase as the length 

increases, but the increase is not as strict as the case of straight bridges. For bridges with 

radius of 300 and 538 feet, the moment increases up to length of about 500 to 600 feet, 

then it starts to decrease for longer bridges.  
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Figure 4.4-1. Maximum Moment in Abutment Piles Due to Contraction 

To have a better understanding of how the moments reduce for long bridges, the 

moments in piles of bridges of different radii are divided by the moment of the straight 

bridge of the same length. In this way, a set of Normalized moments are calculated which 

are plotted in Figure 4.4-2. 
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Figure 4.4-2. Normalized Moment in Abutment Piles Due to Contraction 

As can be observed from the above graph, the pile moments in a bridge with R=300’ 

and L=887’ is about 17 percent of the pile moment in a straight bridge of the same length. 

This shows that the abutment pile moments due to contraction not only do not necessarily 

increase as the bridge length increases but also they may be reduced considerably for 

long bridges. 

A2) Expansion 

Expansion is the second load that is studied because it has the second greatest weight 

factor. The bending moment in abutment piles of straight bridges show a strictly 

increasing trend as the length of the bridge increases. But in curved bridges, the moments 

of the abutment piles get larger values due to increase in the length of short bridges. But 

beyond a specific length which depends of the radius of curvature, the moments start to 
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drop off. The other noticeable point is that the values of pile moments in expansion are 

considerably lower than those due to contraction. There are two reasons for this 

difference. The first one is the magnitude of the considered temperature changes. The 

temperature increase is +60°F while the temperature decrease is -100°F. The other reason 

for lower moments compared to contraction is the soil resistance. When bridge expands, 

the abutment walls are pushed against the backfill soil, and soil tries to decrease the 

movement of bridge ends. That’s why in a straight bridge with L=887 feet, the pile 

moment due to expansion is about 1100 k.in and that moment caused by contraction is 

about 3800 k.in. 

 

Figure 4.4-3. Maximum Moment in Abutment Piles Due to Expansion 

In order to have a better view of the relative values of the moments of the studied 

bridges due to expansion, a normalized graph of the curves is presented in Figure 4.4-4. 
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Figure 4.4-4. Normalized Moment in Abutment Piles Due to Expansion 

The observable fact from Figure 4.4-4 is that the magnitude of abutment pile 

expansion moments in a long curved bridge (L=887 feet) with a radius of 300 feet is less 

than 40 percent of that of a straight bridge. In shorter bridges, the pile moments of curved 

bridges are greater than those of straight bridges. The reason of larger moments in shorter 

curved bridges is the lateral displacement of the abutment wall due to bridge expansion 

which bends the piles about their strong axes and causes large moment in piles. In the 

case of straight bridges, because of symmetry there is not large lateral displacement due 

to expansion.  

A3) Live Load 

In the table of weight factors live load is in the third place which shows the relatively 

high values of internal moments developed by live load in the abutment piles. As can be 
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seen in Figure 4.4-5, these moments cover a range between 450 k.in and 650 k.in. The 

important problem about live load moments is that the values of live load moments 

increase as the number of spans increases from two to three. The moments reach a 

plateau for bridges with three or more spans. This is because of patterned loading of the 

live load.  

 

Figure 4.4-5. Maximum Moment in Abutment Piles Due to Live Load 

By dividing the pile moments of bridges of different radii to the moment of the piles 

of straight bridge of the same length, a normalized moment graph is produced which is 

depicted in Figure 4.4-6. The moments are at most 20 percent larger than the moments of 

straight bridges for shorter bridges and are within 10 percent of those of straight bridges 

for long bridges. 
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Figure 4.4-6. Normalized Moment in Abutment Piles Due to Live Load 

A4) Wind Load 

Lateral load transfer mechanism in integral abutment bridges is totally different than 

that of jointed bridges. That’s why wind load has such a high weight factor in integral 

bridges. As the piers of the studied bridges are assumed to be connected to the 

superstructure by means of elastomeric bearings, and the abutments are integrally 

connected to the superstructure, the larger stiffness of the abutments absorbs almost all 

the lateral loads applied to the bridge. This problem is more magnified when the length of 

the bridge increases. As shown in Figure 4.4-7, the moments in the abutment piles of 

bridges of L=300 feet have a maximum of about 400 k.in and for length of about 900 

feet, the maximum is about 900 k.in. This could lead to high stresses in the piles if there 

were live load and centrifugal force on the bridge simultaneously. But the load 
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combinations that include stormy conditions assume no live load on the bridge. Because 

of this approach, which is reasonable, wind load is not a terribly critical load case on 

integral abutment bridge. However, the current studies show that the wind load 

combinations should always be considered for abutment piles. 

 

Figure 4.4-7. Maximum Moment in Abutment Piles Due to Wind Load 

A graph of the ratio of the moments of curved bridges to the moment of the straight 

bridge of the same length is shown in Figure 4.4-8. These ratios have a maximum of 

about 1.5 for shorter bridges and a maximum of 2 for longer bridges which shows the 

vulnerability of curved bridges to wind load. It’s because the wind major effect on the 

abutment of straight bridges is in lateral direction and the abutment stiffness in lateral 

direction is much larger than the stiffness in longitudinal direction. Wind can have a 
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major component in the longitudinal direction of curved bridges which causes larger 

displacement and so larger moments in the abutment piles. 

 

Figure 4.4-8. Normalized Moment in Abutment Piles Due to Wind Load 

A5) Dead Load 

Dead load effect on the abutment of bridges depends on the sequence of the 

construction. Based on the stages that a bridge is constructed, the internal forces in the 

components can be totally different. In a bridge which most of the end span is covered by 

the elements cantilevered to piers, the dead load effects on the abutment are minimal at 

the end of construction. But in a bridge with a large number of temporary supports that 

are removed at the end of construction, the forces in the abutment can be much larger. In 

the studied bridges, the dead weight of the bridge is applied to the models in a single 

stage which simulates the second example with temporary supports. The shapes of the 
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curves of the piles dead load moments versus bridge length are illustrated in Figure 4.4-9. 

It shows that the moments decrease as the bridge length increases.  

 

Figure 4.4-9. Maximum Moment in Abutment Piles Due to Dead Load 

The magnitude of dead load moment reduction can be seen in Figure 4.4-10. The 

maximum decrease is for the bridge with the smallest radius which decreases from 1.3 

times of equivalent straight bridge moment to about 0.9 times of that. 
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Figure 4.4-10. Normalized Moment in Abutment Piles Due to Dead Load 

A6) Concrete Shrinkage 

In the literature related to structural effects of concrete deck shrinkage in composite 

steel bridges, this phenomenon is regarded as a secondary effect in bridge structures. But 

in the studied bridges, concrete shrinkage showed a noticeable effect on the abutment 

piles. It can be observed from Figure 4.4-11 that shrinkage can cause moments up to 

about 1100 k.in in the abutment piles of straight bridges which is a large moment. This 

behavior is seen, but not of the same severity, in bridges with a radius of 1000 feet. But in 

bridges with a radius of 300 or 538 feet, the pile moments are not increasing for bridges 

longer than 500 or 600 feet. In these bridges, a maximum moment of about 660 k.in is 

read which shows the better performance of highly curved bridges under shrinkage load 

effects. 
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Figure 4.4-11. Maximum Moment in Abutment Piles Due to Concrete Shrinkage 

The pattern of changes of moments versus length for different radii shows that for 

shorter bridges shrinkage creates larger moments compared to straight bridges. But, as 

illustrated in Figure 4.4-12, in longer bridges (L=887’), shrinkage moments are less than 

70 percent of those of straight bridges. 
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Figure 4.4-12. Normalized Moment in Abutment Piles Due to Concrete Shrinkage 

A7) Horizontal Earth Pressure 

Study of integral abutment bridges shows that earth pressure produces larger internal 

forces in curved bridges compared to straight bridges. This response is attributed to the 

movement of curved bridges due to earth pressure. When earth pressure is applied to the 

abutments of a straight bridge, the only source of displacement is the compression of the 

superstructure due to the applied pressure and bending of the abutments and 

superstructure. As the displacements due to compression of the superstructure are 

negligible, bending is responsible for all movements. But in curved bridges, earth 

pressure can be assumed to have two components: one in the direction of the bridge 

chord and the other perpendicular to the first one. The components in the direction of the 

chord line balance each other, while there is no balancing force for the other component 
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other than the soil reaction on the bridge piles. Consequently, horizontal earth pressure on 

the abutments causes lateral bending of the piles in addition to all the effects that exist in 

a straight bridge. That’s why in Figure 4.4-13, as the bridge radius reduces, the pile 

moments blow up. 

 

Figure 4.4-13. Maximum Moment in Abutment Piles Due to Horizontal Earth Pressure 

The ratio of the pile moment increase for curved bridges compared to equivalent 

straight bridges can be extracted from Figure 4.4-14. As one can observe, the pile 

moments in highly curved bridges can be up to seven times of those of corresponding 

straight bridges. Even in bridges with a radius of 1000 feet, the pile moments are at least 

twice of those for straight bridges. 
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Figure 4.4-14. Normalized Moment in Abutment Piles Due to Horizontal Earth Pressure 

A8) Centrifugal Force 

The results of the study show that the bending moment in the abutment piles due to 

centrifugal force is not highly dependent on the radius of curvature or the length of the 

bridge. As can be observed in Figure 4.4-15, when the radius of the bridge varies from 

300 feet to 1000 feet or the length of the bridge changes between 300 feet and 900 feet, 

the pile moments change from 120 to 150 k.in. It means three times of change in radius 

or length causes about 25 percent of difference in abutment pile moments. If the 

centrifugal force factor was chosen equal to 0.28 for all radii, the pile moments were even 

closer to each other. 
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Figure 4.4-15. Maximum Moment in Abutment Piles Due to Centrifugal Force 

A9) Weight of Wearing Surface 

The response due to the weight of wearing surface has the same style as that of dead 

load. As observed in Figure 4.4-16, the pile moments have a decreasing trend as the 

length of bridge increases. But the magnitudes of the moments are much smaller. This 

can also be interpreted from its weight factor which is equal to two versus the weight of 

dead load that is eleven.  
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Figure 4.4-16. Maximum Moment in Abutment Piles Due to Weight of wearing Surface 

The ratios of the pile moments for wearing surface weight are shown in Figure 4.4-17. 

As the values of the pile moments in this case are not so large, these ratios are not of 

great importance from a design point of view. 
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Figure 4.4-17. Normalized Moment in Abutment Piles Due to Weight of Wearing Surface 

A10) Braking Force 

Braking force shows to be one of the least important load types applied to an integral 

bridge. Having a normalized weight factor equal to one implies this minimal effect. 

Figure 4.4-18 illustrates the variation of bending moment of the abutment piles versus 

bridge length. For all different radii, the braking pile moment increases when the length 

of the bridge increases. Another observation is that the braking response for length 

greater than 450 feet is different than that of shorter bridges. This is attributed to the way 

the loading code defines the braking force. For more evidence one can refer to the 

loading section. The other fact is that as the radius of curvature of the bridge increases, 

the abutment pile moment due to braking load reduces. 
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Figure 4.4-18. Maximum Moment in Abutment Piles Due to Braking Force 

Figure 4.4-19 depicts the normalized moment of abutment piles for different bridge 

lengths and radii. It shows that the pile braking moment of a highly curved bridge is 

about four times of that of equivalent straight bridge. But, regarding the fact that the 

braking load is of little significance in integral bridges, this increase in the moments is 

not so effective in changing the pile design moments. 
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Figure 4.4-19. Normalized Moment in Abutment Piles Due to Braking Force 

A11) Positive Temperature Gradient 

The abutment pile moments and the ratios of the moments to the moments of 

equivalent straight bridge caused by positive temperature gradient are illustrated in 

Figure 4.4-20 and Figure 4.4-21, respectively. As can be observed, for longer bridges, 

this moment is independent of the bridge length. But, the most important thing about 

these moments is that their magnitudes are negligible compared to other moments created 

in the piles. This can also be concluded from the normalized weight factor of this loading 

which was close to zero. From this study, it is resulted that all the complex procedures 

presented by design codes, including AASHTO LRFD Bridge Design Specifications, to 

more accurately model temperature gradient do not change the design moment of 

abutment piles noticeably.  
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Figure 4.4-20. Maximum Moment in Abutment Piles Due to Positive Temperature 

Gradient 

 

Figure 4.4-21. Normalized Moment in Abutment Piles Due to Positive Temperature 

Gradient 
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A12) Negative Temperature Gradient 

The pile moments and normalized moments in the abutments due to negative 

temperature gradient are illustrated in Figure 4.4-22 and Figure 4.4-23. Similar to 

positive temperature gradient, again the values of bending moments are trifling. The 

comment on positive temperature gradient is repeated that complicated modeling for this 

type of loading does not distinctly change the design moments. 

 

Figure 4.4-22. Maximum Moment in Abutment Piles Due to Negative Temperature 

Gradient 
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Figure 4.4-23. Normalized Moment in Abutment Piles Due to Negative Temperature 

Gradient 

A13)  Combination of the Loads 

The bending moment in the abutment piles are calculated based on the load 

combinations of section 4.3.3. As there are several different combinations, study of 

responses in all of the combinations may be exhausting. Therefore, the envelope of the 

moments in all of those combinations is studied instead. The envelope moments are 

plotted for different radii and lengths in Figure 4.4-24. It can be observed that generally 

as the radius reduces, the slope of the curves reduces as well. Therefore, in spite of the 

larger moments for shorter curved bridges, the moments in curved bridges are finally 

smaller than those of the corresponding straight bridge. The other fact is that the envelope 
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pile moments of bridge with small radius of curvature, R<600 feet, is almost independent 

of the bridge length. This is a significant result that can be concluded from this graph. 

 

Figure 4.4-24. Maximum Moment in Abutment Piles in Load Combinations Envelope  

Similar to what was done for each load case; the normalized moments are plotted 

versus bridge length for different radii of curvature in Figure 4.4-25. In this graph, it is 

shown that in bridges of length less than 500 feet, pile design moment in curved bridges 

are at most 20 percent larger than those of straight bridges. But as the length of the bridge 

increases, the moments reduce in a manner that in bridges of length equal to about 900 

feet and radii equal to 300, 538 and 1000 feet, the pile moments are 0.48, 0.54 and 0.81 

times of those of equivalent straight bridge, respectively. 
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Figure 4.4-25. Normalized Moment in Abutment Piles in Load Combinations Envelope 

B) Shear Force of Abutment Piles  

A study similar to what is done for abutment piles bending moment is carried out on 

the shear forces of the piles. The results show that the design shear force of piles which is 

the envelope of the shear in different load combinations is increasing in straight bridges 

as the length of the bridge increases. But in curved bridges, such a general conclusion 

cannot be made. The response depends on the radius of curvature of the bridge. It is 

observed that for bridges with large radius, the behavior is similar to that of straight 

bridges. In the bridges of high curvature, the slope of shear curves is much smaller than 

that of bridges with large radius so that the shear forces can even be decreasing versus 

length. In long bridges with small radius, the design shear can be as small as 40 percent 

of that of equivalent straight bridges.  
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For brevity of the main text, the complete discussions and graphs of shear forces in 

abutment piles are presented in Appendix A. 

4.4.2 Bridge Movement 

Bridge movement is a major concern in design of integral bridges. When the 

superstructure of a bridge is integrally connected to the abutments, all effects that can 

cause a displacement or rotation at the ends of the bridge create internal forces both in 

abutment and in superstructure. The most important source of displacing the end of a 

bridge is temperature change. Expansion and contraction are the most known causes of 

change of bridge length. The other significant reason for bridge movement is the 

shrinkage of concrete deck. In fully concrete superstructures, shortening of the bridge 

length can also be caused by creep of concrete. However, in composite steel bridges 

creep cannot have such a role in moving the ends of the bridge. When there is a 

movement in the bridge ends, all the bridge elements including abutment wall, abutment 

piles, steel girders and deck should tolerate the induced forced. The pavements should 

also accommodate the movement so that there is not uncontrolled cracks or bumps in the 

road.  

In order to determine the displacements of bridge ends, all the engaged factors should 

be studied. These include: 

- the factors dependent on the location and type of the bridge: maximum and 

minimum temperatures that the bridge experiences over its life span, the 

temperature gradient in the bridge elements, construction temperature of the bridge 
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- the factors dependent on material properties: coefficients of thermal expansion of 

steel and concrete, creep and shrinkage properties of concrete 

- the factors affecting the bridge movement based on the structural characteristics of 

the bridge 

The first set of problems which are mainly climatic problems have been studied by 

several researchers. As these problems depend on many parameters including shade 

temperature, solar radiation and wind speed, the success in this area has been limited. But 

reasonable data are available in references including “Climatic Atlas of the United 

States” (Visher, 1954) and “Climatography of the United States” (United States, 

Environmental Data Service, & National Climatic Center, 1900s).  In the present study, 

an increase of +60 °F and a decrease of -100 °F are taken which are based on AASHTO 

LRFD contour maps for a typical location in the US. But site specific temperatures 

should be used for each bridge which can be obtained from climatological resources or 

design codes.  

The second set of problems which is determination of the material properties is also 

studied by several researchers, including the investigations of Tadros et al. on the creep 

and shrinkage properties of concrete (Al-Omaishi, Tadros, & Seguirant, 2009; Huo, Al-

Omaishi, & Tadros, 2001; Tadros et al., 2003).  

But the third problem which is analysis of bridges for movements due to assumed 

temperature changes and assumed material properties needs much more attention. What 

is generally known in bridge engineering is that the bridge movement if the summation of 

the movements due to temperature, shrinkage and creep: 
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  ∆ ∆ ∆ ∆  Eq. 4.16 

The thermal displacement is equal to the thermal strain times the initial length: 

  ∆   Eq. 4.17 

In which thermal strain is the product of temperature change ∆  and the coefficient of 

thermal expansion . The shrinkage and creep displacements are also calculated in the 

same way: 

  ∆   Eq. 4.18 

and 

  ∆   Eq. 4.19 

To calculate the shrinkage and creep strains there are some available methods, one of 

them the equations presented by AASHTO LRFD Bridge Design Specifications 

(American Association of State Highway and Transportation Officials, 2010). But 

regarding the usage of these equations, some questions may come to the mind of a bridge 

engineer: 

- Are these equations able to predict the bridge movement with enough precision?  

- Aren’t there any other factors affecting the bridge displacement at pavement level?  

- What should be done to find the displacements of a curved bridge? 

In this section, using the finite element models of the studied composite steel curved 

bridges, it is tried to answer the above questions. First, a discussion is presented to clarify 

the involved factors and the difference of bridge shortening and bridge end displacement. 

Then, based on the results of finite element analyses, two factors are introduced to more 
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exactly calculate the change of length of bridge due to temperature variation and 

shrinkage. Then, the total change of bridge length is calculated using previously obtained 

parameters and a new modification factor. And finally, a new method is presented to find 

the bridge end displacement as a function of the change of bridge length which is 

applicable to both straight and curved bridges. To develop the new method, the effect of 

bridge width and also the direction of the displacement which is a major unknown in 

curved bridges are studied. At the end, an example for the recommended procedure is 

presented. 

This procedure is applicable when a bridge is not designed using 3D finite element 

analysis, or when an engineer wants to calculate the movements of an existing bridge to 

design the expansion joints or for retrofit purposes. 

A) Factors Affecting Bridge Displacement 

In this section, three subjects are discussed. The first one is to clarify the difference of 

bridge shortening/elongation and the bridge end displacement. In a straight bridge with a 

large length-to-width ratio, the summation of the bridge end displacements is equal to the 

change of bridge length. But in a curved bridge or in a straight bridge with smaller 

length-to-width ratio, the sum of end displacements is not the same as the shortening or 

elongation of the bridge length. The reason for that is clearly illustrated for a sample 

curved bridge in Figure 4.4-26. As can be seen, the end displacements are not in the same 

direction to be added to each other. On the other hand, the change in the bridge length 

occurs in a curved line for which definition of a direction is not possible. 
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Figure 4.4-26. Directions of End Displacements in A Curved Bridge 

The second problem is to investigate the reasons for “movement” of bridge ends. 

Among the applied loads and load effects to a bridge, some of them like temperature 

variation change the bridge length. It is obvious that when the length of a bridge changes, 

at least one of the bridge ends moves. But this kind of movement is not the only source 

for bridge end displacement. The bridge ends can displace due to rotation of the bridge 

ends without noticeable change in bridge length. This rotation is more understandable as 

a source of movement when the load do not change bridge length, like gravity loads. 

Figure 4.4-27 shows a picture of bridge end movement due to translation and rotation. 
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Figure 4.4-27. Bridge End Movement- a) Pure Translation -b) Rotation 

The third problem is to explain the effect of different loads on bridge length. In the 

literature, it can repeatedly be found that the only parameters involved in bridge 

displacement are temperature change, shrinkage and creep. But the results of 3D finite 

element analysis of the studied composite steel bridges show that almost all loads 

participate in displacing the bridge ends. The other issue is consideration of each 

displacement in combination with other displacements. These load combinations are 

defined by design codes. In the present study, AASHTO LRFD load combinations are 

used. The effect of each load is as follows: 

- Contraction: bridge contraction is the major cause for bridge shortening. Most of 

the displacement is because of translation, but a smaller portion of that is caused 

by end rotation. 

- Shrinkage: concrete deck shrinkage is another main source for bridge shortening. 

In composite steel bridges, it occurs only in the deck, not in the girders. So, in 

(a) (b)
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addition to reducing the length of the bridge, it causes rotation of the ends more 

profoundly compared to bridge contraction. 

- Creep: the effect of concrete creep is ignorable in composite steel bridges. 

However in prestressed concrete bridges, it is an important reason for bridge 

shortening. 

- Expansion: bridge expansion is another significant source of displacing the bridge 

ends. In section 4.4.1A2), two reasons were presented for smaller abutment pile 

moments due to expansion compared to contraction. For exact same reasons, the 

displacements due to expansion are smaller than those of contraction. In addition, 

contraction, shrinkage and creep create displacements that are in the same 

direction (or at least approximately in the same direction). But expansion 

movement is almost in the opposite direction. In the conducted finite element 

analyses, expansion load combinations do not create the maximum end 

displacements. For these reasons, the main focus of the present study is to 

calculate the bridge movements in contraction load combinations. 

- Gravity Loads including dead load, weight of wearing surface and live load: all 

gravity loads cause bridge end displacement. As gravity loads do not change the 

bridge length, this displacement is mainly due to rotation of the bridge ends. 

- Lateral loads: these loads such as centrifugal load and wind load are analyzed in 

the finite element models. The results demonstrate that the movements due to this 

type of loads are not of great importance. Although all of these displacements are 

taken into account. 
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- Earth pressure: finite element analyses of the studied bridges show that earth 

pressure has a minimal effect on end displacement of straight bridges. But in the 

case of curved bridges, its effect become more visible which is considered in the 

models. 

- Braking force: the results show that live load braking force has a minimal effect 

on bridge movement. 

- Temperature gradient: all model either straight or curved show that the 

displacements due to temperature gradient in superstructure in approximately zero. 

So, if a bridge designer ignores the complicated modeling of temperature gradient, 

no noticeable displacement is missed. 

B) Bridge Shortening Due to Contraction 

To calculate the reduction of the bridge length due to a uniform temperature decrease 

of -100 °F, the equivalent coefficient of thermal expansion (in this case contraction) 

should be evaluated. This coefficient is calculated as follows: 

   Eq. 4.20 

in which the values of modulus of elasticity, E, cross sectional area, A, and coefficient of 

thermal expansion,  , for concrete deck and steel girder should be plugged in. Then, the 

change of bridge length can be calculated using the following equation: 

  ∆ . ∆ .  Eq. 4.21 

where ∆  is equal to -100 °F and  is the initial length of the bridge (or  

√  where  and  are the undeformed bridge length and width to account for the 
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effect of bridge width). Based on the location of point of zero movement, this value may 

be multiplied by a fraction like ½. For curved bridges, two different lengths for inner and 

outer arc of the bridge are considered. Comparison of the bridge length reductions 

resulted from 3D finite element analyses and hand calculations based on the above 

equations shows differences that are mainly due to bending moments in the cross section. 

The ratio of the lengths resulted from finite element analyses and the lengths based on 

hand calculations are defined as a modification factor  that is plotted versus the 

radius of curvature in Figure 4.4-28. For simplicity, in hand calculations, the actual 

distance to the point of zero movement, which is an oblique line in straight bridges and 

an unknown curve in curved bridges, is ignored and the modification factors are found 

based on the length of the bridge edges. 

 

Figure 4.4-28. Modification Factor for Bridge Shortening Due to Contraction 
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C) Bridge Shortening Due to Shrinkage 

To calculate the change in bridge length because of shrinkage of concrete, the 

equivalent shrinkage strain of superstructure due to shrinkage of different components 

should be determined as follows: 

  , , , ,  Eq. 4.22 

The shrinkage strain for each component should be calculated based of the 

recommendations of 4.3.2J). It should be noted that , for steel girders is equal to 

zero. Then the change in bridge length is calculated as follows: 

  ∆ ,   Eq. 4.23 

in which  is the bridge length in straight bridges and the inner and outer arc length in 

curved bridges (or  or a fraction of this value). Comparison of 

the results of these calculation and the bridge lengths resulted from 3D finite element 

analyses shows that the hand calculations need a modification factor to account for all of 

the other participating factors that are not seen in these simplified calculations. This 

factor, named , is plotted versus radius of curvature for the modeled bridges. 
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Figure 4.4-29. Modification Factor for Bridge Shortening Due to Shrinkage 

D) Total Bridge Shortening 

The total bridge shortening can be found as the shortening due to contraction and 

shrinkage are available from previous sections. The changes in lengths of the bridges are 

obtained based on AASHTO LRFD Service I load combinations. In these load 

combinations, temperature and shrinkage can have a load factor of 1.2 to yield the 

maximum response. So, the values of bridge length reduction obtained from finite 

element analyses are compared to the values of length reduction found from 1.2 times of 

contraction and shrinkage calculation. The values of bridge length reduction of 3D 

models are obtained from drawing of the deformed shapes of the bridges in AutoCAD. 

Finding bridge length using these two different methods again demonstrates that hand 

calculations miss the effect of some other parameters that exist in a real bridge. These 

parameters include other loads such as gravity and lateral loads and also earth pressure. 
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To account for these parameters another modification factor is defined which is plotted 

versus radius in Figure 4.4-30. 

 

Figure 4.4-30. Modification Factor for Bridge Shortening Applied to Total Shortening 

As can be observed, the summation of contraction and shrinkage shortenings should 

be increased from 5 to 8 percent to make up for the effect of other loads. So, the total 

shortening of a bridge, either straight or curved, is computed using the following 

equation: 

   ∆ 1.2   ∆ ∆  Eq. 4.24 

If the modification factor given by Figure 4.4-30 is assumed to be equal to 1.08 for all 

bridges, then the Eq. 4.24 is simplified to: 

   ∆ 1.3  ∆ ∆  Eq. 4.25 
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Now the total bridge shortening is found and the next task to calculate the bridge end 

displacement is to understand the direction of that displacement.  

E) Effect of Bridge Width on the Displacement Direction 

To find the direction of end displacement, first the effect of bridge width is studied. 

The width effect is investigated in three different problems as follows. 

E1) Effect of Width on Contraction End Displacement 

Since the bridge contracts in all dimensions, as shown in Figure 4.4-31, the angle of 

end displacement is obtained from the following equation: 

    Eq. 4.26 

 

 

Figure 4.4-31. Direction of End Displacement Due to Contraction 

where  is the length of bridge centerline. The angles obtained from the above 

equation exactly match the results of finite element analyses.   
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E2) Effect of width on Shrinkage End Displacement 

The direction of shrinkage end displacement is more complicated. Since the girders 

are continuous in the longitudinal direction of the bridge and discrete in the transverse 

direction, the following equation can be imagined for the direction of the displacement: 

 
 Eq. 4.27 

These angles are also compared to the finite element results which show reasonable 

and practical precision.  

E3) Effect of width on Total End Displacement 

The effect of bridge width on the total bridge displacement is much more complicated 

than the previous cases and derivation of a closed for solution for that is not easily 

possible. Therefore, a finite element solution is employed. Based on the results of the 

finite element analyses, the data presented in Table 4.4-2 are gathered that are used to 

find the effect of bridge width on the total displacement of bridges. 

L (ft) W/L  (deg.) /90°  (deg.) /90° 

308 0.197 105 1.17 75 0.83 

501 0.121 100 1.11 80 0.89 

694 0.087 98 1.09 82 0.91 

887 0.068 96 1.07 84 0.93 

Infinity 0.000 90 1.00 90 1.00 

Table 4.4-2. Direction of Total Displacement (Results of FE Analyses) (W=60’-8”) 
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The angles  and  are shown in Figure 4.4-32. 

 

Figure 4.4-32. Angles  and  in Total Displacement 

If the values of /90°  and /90° are plotted versus W/L, as shown in 

Figure 4.4-33, it is observed that these values can be estimated by two lines with a good 

correlation. The following two equations are presented for these two lines: 

   1 0.84  Eq. 4.28 

   1 0.84  Eq. 4.29 
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Figure 4.4-33. Values / °  versus W/Lc 

The values of the above two equations are deviation of the direction of displacements 

from 90 degrees because of the width of the bridge. These equations can be considered as 

the effect of width on the direction of total displacement. The ratio of /  should be 

limited to 0.33 for these equations. 
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bridges are derived from finite element models and by dividing those angles by the 

factors  and , it is tried to find a relationship for the modified directions. 

Table 4.4-3 shows the angles of displacement direction for different bridges and the 

modified directions to eliminate to effect of width. 
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L R L/R  ,  ,

308 300 1.03 91 78.0 67 80.0 

501 300 1.67 77 69.0 60 68.0 

694 300 2.31 68 62.4 57 63.0 

887 300 2.96 68 64.0 58 62.0 

308 538 0.572 102 87.0 73 87.0 

501 538 0.931 86 77.5 70 78.8 

694 538 1.29 82 75.0 68 75.0 

887 538 1.649 76 71.0 65 69.6 

308 1000 0.308 104 89.5 74 89.0 

501 1000 0.501 94 84.7 76 85.5 

694 1000 0.694 88 80.7 75 82.3 

887 1000 0.887 85 79.4 75 80.4 

308 Infinity 0 105 90.0 75 90.0 

501 Infinity 0 100 90.0 80 90.0 

694 Infinity 0 98 90.0 82 90.0 

887 Infinity 0 96 90.0 84 90.0 

Table 4.4-3. Angles and Modified Angles of Total Displacement Direction 

The values of modifies angles are plotted versus the ratio L/R in Figure 4.4-34. 
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Figure 4.4-34. Modified Displacement Directions versus L/R 

As observed in Figure 4.4-34, the modified inner and outer angles surprisingly 

coincide. If a line is fitted to the data series of the modified angles, a unique equation is 

obtained which is displayed in Eq. 4.30. 

   90° 11  Eq. 4.30 

Then the actual values of inner and outer angles can be calculated using the following 

equations: 

   .  Eq. 4.31 

   .  Eq. 4.32 

In this way, the direction of end displacement of a curved bridge can be determined. 
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the direction of the end displacements of the corners of a curved bridge were found. In 

this section, the goal is to calculate the total end displacements of a bridge, based on the 

previous findings. For that purpose, one of the arcs of the bridge, either inner or outer, is 

considered. The problem needs a geometrical solution to find a new arc which has a 

specific length and its end lies on a specific line. The specific length is the length of the 

deformed bridge and the specific line is the direction of the end displacement, which both 

of them are known. The geometry of the problem is shown in Figure 4.4-35. In this 

picture, the undeformed configuration is known which consists of the length L, the radius 

R and the center of curvature O. So, the coordinates of all of the points on the curve are 

known. Desired is to locate the deformed curve which means finding O’ and R’ knowing 

the new length L’ and the line AA” as the geometrical location for A’.  

 

Figure 4.4-35. Deformed Bridge General Configuration 
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deformed and undeformed shape of all the studied bridges showed that the centers of 

curvature for the undeformed and deformed bridges approximately coincide. Therefore, if 

coincidence of the centers of curvature is added to the problem as a constraint, the 

simplified geometry will be as depicted in Figure 4.4-36. 

 

Figure 4.4-36. Deformed Bridge Simplified Configuration 

To solve this problem, first the equation of line AA” and the circle of deformed arc are 

derived.  The equation of line AA” is: 

   tan . tan  Eq. 4.33 

And the equation of deformed arc is: 

    Eq. 4.34 

The coordinated of point A’ can be found by solving the above two equation for x and 
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  1 / 1  Eq. 4.35 
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    Eq. 4.36 

Where 

  tan  Eq. 4.37 

  tan  Eq. 4.38 

So the slope of line OA’ will be: 

   tan  Eq. 4.39 

The length of the deformed arc is equal to: 

   2  Eq. 4.40 

In which  

    Eq. 4.41 

The above equations can be solved numerically to find R’. This can be done easily in 

Excel, MathCAD, MATLAB or any other program capable of solving equations. The 

Excel is maybe the easiest one. Note that in these equations,  is the total length, not half 

of it. 

Using the presented method, the end displacements of a curved composite steel bridge 

are found which is of great importance to design such a bridge. This method is also 

helpful to have a sense of magnitude and direction of displacements to design the bridge-

to-pavement connection devices like the expansion joints. 
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H) Step by Step Procedure 

Based on the investigations of the present study, the following steps are recommended 

to calculate the maximum displacements of a curved or straight bridge: 

Step 1- Determine the point of zero movement and therefore the length of the bridge 

that participates in end displacement. For symmetric bridges, it can be assumed to be 

equal to half of the length of bridge. Otherwise, other methods found in the literature can 

be employed. To account for the effect of width,  can be replaced by  √  or a 

similar function of bridge length and width. 

Step 2- Determine the effective coefficient of thermal expansion using Eq. 4.20. 

Step 3- Calculate the bridge shortening due to contraction using Eq. 4.21. 

Step 4- Find the modification factor for bridge shortening due to contraction using 

Figure 4.4-28. 

Step 5- Determine the equivalent shrinkage strain using Eq. 4.22 and 

recommendations of 4.3.2J). 

Step 6- Calculate the bridge shortening due to shrinkage using Eq. 4.23. 

Step 7- Find the modification factor for bridge shortening due to shrinkage using 

Figure 4.4-29. 

Step 8- Find the modification factor for total bridge shortening using Figure 4.4-30. 

Step 9- Calculate the total bridge shortening using Eq. 4.24. 

Step 10- Calculated the bridge width effect factor using Eq. 4.28 and Eq. 4.29. 
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Step 11- Find the direction of the bridge corners displacements solving Eq. 4.30 

through Eq. 4.32. 

Step 12- Knowing the total bridge shortening found in step 9 and the directions found 

in step 11, solve equations Eq. 4.35 through Eq. 4.41 to find the new location of bridge 

corners. 

Using this method, the x and y components of bridge end displacements are found. 

I) Example 

In this section, the x and y components of the end displacement of the inner corner of 

a curved composite steel bridge of length, width and radius of curvature respectively 

equal to 887, 60.667 and 538 feet are calculated. 

Assumptions: 

3644  

864  

6.0 10 /  

29000  

99.35  

6.5 10 /  

1- It is assumed that point of zero movement is located in the middle of the bridge.  

887
538 538

60.667
2 12 10043.88  
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2 5021.94  

2- Equivalent coefficient of thermal expansion: 

  . . .
.

6.24 10 /  

3- Contraction shortening is equal to: 

  ∆ . ∆ . 6.24 100 5021.94 3.134  

4- From Figure 4.4-28: 

0.97 

5- Equivalent shrinkage strain: 

 , 0 

 , 538 10  (From section 4.3.2J)) 

  , , , , 538 10

.
304.5 10  

6- Shrinkage shortening: 

  ∆ ,  /2 304.5 10 5021.94 1.529  

7- From Figure 4.4-29: 

1.185 

8- From Figure 4.4-30: 

 1.07 



214 
 

9- Total shortening is: 

   ∆ 1.2   ∆ ∆ 1.2 1.07 0.97 3.134 1.185

1.529 6.23  

10-  Effect of width on displacement direction: 

   1 0.84 1 0.84 . 1.057 

11-  Direction of displacement: 

   90° 11 90 11 71.7° 

   . 1.057 71.7 75.8° 

12-  Solving equations Eq. 4.35 through Eq. 4.41: 

  6090.70 . 

  5.15 . 

So: 

  ∆ 6090.70 538 . 12 1.30 . 

  ∆ 5.16 0 5.16 . 

∆  and ∆  are the components of displacement of the inner corner of the bridge. 

4.4.3 Pile Orientation 

There are two different opinions on the orientation of abutment piles among the 

researchers of this field. A first approach to pile orientation in integral bridges, asks for 

the weak axis bending for the piles. The supporters of such an attitude have the following 

reasoning for their opinion: As the bridge tends to move longitudinally and as this 
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movement depends on the length of the bridge which can be hundreds of feet, in order to 

facilitate the bridge end displacement, the stiffness of the abutments should be 

minimized. One of the most effective methods to reduce the stiffness of the abutments is 

to align the piles of the abutment such that the bending moment due to longitudinal 

movement occurs about the weak axis of the piles. This philosophy has led several 

departments of transportation to require a weak-axis bending orientation for the abutment 

piles. But, in contrast to this interpretation, another approach regards the problem mainly 

as a classic bending problem in which larger section modulus of an element results in 

smaller normal stresses. Founded on the latter reasoning, some other departments of 

transportation necessitate strong axis orientation for the abutment piles. Figure 4.4-37 

illustrates the weak- and strong-axis orientations for the abutment piles. 

    

Figure 4.4-37. Critical Load Combination Type 

It is observed that there is disagreement on the pile orientation among bridge 
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for weak-axis bending to better accommodate bridge displacements. For a given 

deflection, weak-axis bending generates less stress in the piles than does strong-axis 

bending.”  Or “In order to build longer integral bridges, pile stresses should be kept low. 

In addition to weak-axis bending orientation of piles, additional provisions can be made” 

(Arsoy et al., 1999). It seems that the writers have assumed the same fixity depth and the 

same section modulus for the piles oriented in weak and strong axes in order to so easily 

conclude that weak orientation develops less stresses. If two elements have the same 

length and different moment of inertia, due to equal lateral displacement, the bending 

moment in that one which has smaller moment of inertia will be smaller. This relation 

can be clearly seen in Eq. 4.42. 

   ∆ Eq. 4.42 

But such two piles embedded in soil do not have the same points of fixity. As the 

moment of inertia increases, the fixity point will be deeper. On the other hand, the section 

modulus of the weak axis is smaller than that of the strong axis. And the stress is directly 

related to section modulus, not the moment of inertia. So even if it is definitely known 

that the bending moment about the weak axis is smaller than the strong axis, it cannot be 

concluded that the stress level in the pile is lower. 

According to the above explanations, it is clear that pile orientation is a more 

complicated problem than what apparently assumed by some designers. More complexity 

comes to existence when the bridge has some sort of irregularity such as horizontal 

curvature. 

As stated earlier, this problem depends on some factors including bridge configuration 

and soil properties. The other factor is the loading that is dictated by the design code. To 
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be able to have a closer approach to this problem, first, the studies bridges are analyzed 

with usual weak axis orientation for the piles, assuming a moderate stiffness for the soil 

as explained in Section 4.3.4. Then, all bridges are analyzed with the piles aligned so that 

their strong axis is parallel to abutments. After studying the resulted internal forces, a 

method for orienting the abutment piles of a general curved bridge in the optimized 

direction is derived. In the proposed method, the goal is to minimize the stresses of the 

piles. It is also explained that why minimizing the stresses is in agreement with LRFD 

approach for design of piles, because one may think of it as an allowable stress  design 

methodology. 

A) Analysis of Modeled Bridges with Weak and Strong Orientation for 

Abutment Piles 

In this section, first, to have a better understanding of the effect of pile orientation on 

the developed stresses in the bridge elements and particularly in the abutment piles, all 

the modeled bridges are analyzed in both usual cases for pile orientation. Since the 

baseline bridge had a weak axis parallel to abutments, all the original finite element 

models have weak axis orientation for the piles. So, the results presented in section 4.4.1 

are for weak axis orientation. The piles of all models are rotated 90 degrees so that the H-

Piles strong axes become parallel to the abutments. These new models are analyzed and 

the maximum stresses in the piles of all bridges are calculated using the following 

equation: 

    Eq. 4.43 
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In the above equation,  is the axial load of the pile,  is the cross sectional area of the 

pile, , ,  and  are the bending moment and section modulus of the pile 

about the weak axis and strong axis, respectively. The ratios of the maximum stresses of 

the piles in the original weak axis oriented models to those of the new models with strong 

axis orientation are shown in Table 4.4-4. 
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          L (ft) 

R (ft) 
308 501 694 887 

300 0.84 0.87 0.76 0.80 

538 0.86 0.90 1.23 1.20 

1000 0.96 0.96 1.40 1.60 

Infinity 1.65 1.48 1.60 1.71 

Table 4.4-4. Ratios of Abutment Pile Stresses (Weak Axis Orientation to Strong Axis 

Orientation) 

As can be observed from the above table, in some cases the weak-axis bending leads 

to lower stresses and in some other cases strong-axis orientation yields smaller stress 

values. So, a general conclusion cannot be made at this stage. The other important 

observation is that in straight bridges, the ratio is greater than unity, no matter what is the 

length of the bridge. It means lower stresses for strong-axis orientation. This can be 

theoretically proven regarding the fact that bridge end displacement is almost 

independent of the substructure stiffness. So, the parameter ∆ in Eq. 4.42 is equal for all 

pile orientations. Besides, normal stress due to bending is equal to: 

    Eq. 4.44 

in which  is half of the depth of a symmetric section. Substituting  from Eq. 4.42 into 

Eq. 4.44 yields: 

   ∆ Eq. 4.45 

As the depth and width of HP sections are approximately equal, the parameter c is the 

same for weak and strong axes bending ( ). The length L is the distance 
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from top of the pile to the point of fixity which is calculated using the following 

equations for different soil properties: 

   1.4                  for constant  Eq. 4.46 

And  

   1.8                  for linearly increasing  Eq. 4.47 

Therefore, assuming the same soil properties,  is larger for strong axis orientation. 

Therefore, based on Eq. 4.45, as ∆ is the same for both orientations,  will be smaller 

for strong axis bending. In HP sections strong axis moment of inertia is about three times 

of that of weak axis. So,  is about 30 percent larger for the strong axis and so the stress 

is about 25 percent lower. This difference is only due to horizontal displacement. Other 

factors such as pile rotation due to earth pressure or any other participating factor can 

also affect the stresses. That’s why larger differences are read from Table 4.4-4 for 

straight bridges.  

To further investigate the effect of pile orientation, the condition under which a load 

combination produces the maximum stress in the abutment piles is studied. To have such 

a discussion, first the individual loads are considered. Gravity loads including dead load, 

live load and weight of future wearing surface are the first set of loads that create 

noticeable stress levels in the abutment piles. In a bridge of simple geometry like a 

straight bridge, these loads apply an axial load and a negative moment to the abutment 

piles. Temperature and shrinkage are the second set of loads that cause considerable 

amount of stress in the piles. In this set, expansion applies negative moment to the 

abutments, while contraction and shrinkage apply positive moment to the abutments. If 
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other loads such as centrifugal force, braking force, earth pressure, wind load and 

temperature gradients are ignored, the positive and negative moments of the piles can be 

written as follows: 

. . . ∆  Eq. 4.48 

And 

& . . . ∆ .  Eq. 4.49 

In which  is the span length,  is the total length of the bridge, ∆  is the uniform 

temperature change and ,  and  are constants. Plugging in the values of temperature 

changes, the above two equations can be rewritten as: 

. 60 .  Eq. 4.50 

And 

& . 100 . .  Eq. 4.51 

The last two equations show that for short bridges the negative moment is greater than 

the positive moment but as the length of the bridge increases, the positive moments due 

to contraction becomes dominant. It should be noted that the axial force stresses are 

added to the bending stresses, independent of the bending moment direction. Therefore, 

the load combinations can be divided into two types: 

- The load combinations that include bridge expansion (denoted as EXP.).  

- The load combinations that include bridge contraction (denoted as CONT.). 
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With this background on the developed stresses in the piles, using the results of finite 

element analyses, the governing load combination category for each model is determined. 

The results for weak-axis bending pile orientation are shown in Table 4.4-5. 

 

          L (ft) 

R (ft) 
308 501 694 887 

300 EXP. EXP. CONT. CONT. 

538 EXP. CONT. CONT. CONT. 

1000 EXP. CONT. CONT. CONT. 

Infinity EXP. CONT. CONT. CONT. 

Table 4.4-5. Critical Load Combination Category for Abutment Pile Stresses 

Table 4.4-5 shows that bridges of short length have an expansion-based critical load 

combination and in other bridges the load combinations that include contraction dominate 

the stresses. In bridges of very small radius of curvature, the criticality of expansion load 

combinations extends more into longer bridges, but as the length increases, contraction 

becomes governing again. On this basis, a graph can be plotted for determining the 

governing load combination in the studied bridges that is shown in Figure 4.4-38. 

 



223 
 

 

Figure 4.4-38. Critical Load Combination Type 

The fact that in some bridges weak-axis bending leads to lower stresses and in the 

other bridges strong-axis bending creates smaller values of stress draws the attention to 

finding the optimum orientation for abutment piles. This problem has several contributing 

factors such as bridge length, bridge radius, stiffness of superstructure, stiffness of 

abutment wall and piles, height of the abutment wall and also some other factors such as 

soil properties. Thus, presenting an analytical solution for that is not easily possible. A 

numerical solution for this problem can be reached by making use of the finite element 

models. To do that, first the direction of the displacement of the node located at the top of 

the abutment piles is determined. To find this direction, the x and y components of the 

displacements of that node is extracted from the models in all load combinations. Then 

using the following equation, the angle of displacement direction with respect to x axis is 

determined: 
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tan / 180/  Eq. 4.52 

Figure 4.4-39 shows the direction of displacement for a typical pile top node. 

 

Figure 4.4-39. Direction of Pile Displacement 

There are 17 piles under each abutment and 16 load combinations in which these 

directions are calculated. The average of these directions for expansion combinations and 

contraction combinations are calculated and plotted versus L/R ratios in Figure 4.4-40.  
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Figure 4.4-40. Average Displacement Directions of Abutment Piles Top Node 

There are some fluctuations for the displacement directions in the above graph, but the 

general trend can be perceived. In expansion load combinations, for an L/R ratio of zero 

which is for a straight bridge, a displacement direction of -90° is read that means the piles 

move toward the backfill soil. For larger values of L/R, the angle increases gradually up 

to a mean angle of displacement of about +55° for highly curved bridges of L/R equal to 

3. This shows that in highly curved bridges, even in expansion load combinations, the 

piles move away from the backfill which is because of other participating factors like 

earth pressure on the abutment wall. For contraction load combinations, the average angle 

of displacement starts from +90° for L/R equal to zero that indicates separation of 

abutment wall from backfill.  As the ratio of L/R increases, this angle increases to +140° 

that can be interpreted by moving of the abutments toward the center of the bridge when 

the bridge contracts. Based on the previous graph which is the result of finite element 
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analysis of several bridges, approximate smooth curves can be imagined for design 

purposes like those displayed in Figure 4.4-41. 

 

Figure 4.4-41. Design Displacement Directions of Abutment Piles Top Node 

Using the above graph, the orientation of the abutment piles of the studied bridges is 

changed so that the critical displacement of the abutment causes strong-axis bending in 

the piles and the models are run again. Orienting the piles for strong-axis bending in the 

direction of maximum displacement is based on the results of modeling of straight 

bridges in which the direction of displacement was known and strong-axis bending 

showed better performance in lowering the stresses. After the analyses, the resulted pile 

stresses, which are called optimized stresses, are compared to the stresses of weak-axis 

and strong-axis orientation for the piles. For this purpose, the ratios of these stresses to 

the optimized stress are calculated and tabulated in Table 4.4-6 and Table 4.4-7: 

    Eq. 4.53 
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          L (ft) 

R (ft) 
308 501 694 887 

300 1.00 1.00 1.00 0.89 

538 1.06 1.04 1.75 1.56 

1000 1.06 1.00 1.40 1.50 

Infinity 1.65 1.48 1.60 1.71 

Table 4.4-6. Ratio of Piles Weak-axis Orientation Stress to Optimized Stress 

 

          L (ft) 

R (ft) 
308 501 694 887 

300 1.19 1.13 1.31 1.12 

538 1.23 1.17 1.42 1.31 

1000 1.10 1.04 1.00 0.93 

Infinity 1.00 1.00 1.00 1.00 

Table 4.4-7. Ratio of Piles Strong-axis Orientation Stress to Optimized Stress 

As can be seen, in 15 out of 16 bridge models, this method of optimization leads to 

stresses less than or equal to the stresses obtained from usual weak-axis or strong-axis 

pile orientation stresses. Weak-axis pile orientation which is the most commonly adopted 

orientation can cause up to 75% larger stresses and strong-axis orientation can develop 

more than 40% greater stresses compared to the optimized solution. So, the presented 

method can be put into practice to find the optimal pile orientation for curved integral 

abutment bridges. A step by step procedure for this purpose is brought in the following 

subsection. 
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B) The Procedure to Find the Optimal Pile Orientation 

According to the presented analyses and discussions for optimizing the abutment pile 

orientation, the following steps are recommended for design purposes: 

Step 1- Using Figure 4.4-38, try to find the critical type of load combinations between 

expansion- and contraction-based combinations. 

Step 2- Using Figure 4.4-41, find the direction of piles displacement based on the 

critical type of load combinations found in Step 1. 

Step 3- Orient the strong axis of the abutment piles perpendicular to the displacement 

direction found in Step 2. 

Step 4- Analyze the bridge based on the recommended pile orientation. Since the 

validity of the recommended graph for distinguishing the criticality of expansion versus 

contraction is limited to the current study, a more conservative approach is to find the 

displacement direction for both expansion-critical and contraction-critical assumptions 

and analyze two different models for these two pile orientations and find the optimal 

orientation to have the minimum stress in the piles. In the latter procedure, the minimum 

stress is guaranteed, even though taking the simpler procedure and trying to find the 

critical type of load combinations is much better than choosing the weak- or strong-axis 

bending without these considerations.   

4.4.4 Effect of Bearing Type and Orientation 

There are several types of bearings that are used in bridges. Each type of bearing has 

its own characteristics. For example, each type has a specific arrangement for setting the 
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degrees of freedom free, fixed or in between. Since in an integral bridge, the 

superstructure is resting on piers by means of a bearing device, it is necessary to study the 

effect each bearing type on the responses of the bridge. Different types of bearings and 

the status of the degrees of freedom for each of them are tabulated in Table 4.4-8. 

Bearing Type 
Ux 

Longitudinal 

Uy 

Transverse 

Uz Rx Ry Rz 

Plain or Reinforced Elastomeric k k k k k K 

Fixed Pot or Fixed Disc Fix Fix k k k k 

Guided Pot or Guided Disc 0 or k Fix k k k k 

Sliding (Elastomer or Pot or Disc) 0 0 k k k 0 

Rocker or Cylindrical 0 Fix Fix Fix 0 Fix 

Spherical Fix Fix Fix 0 0 0 

Table 4.4-8. Different Bearing Types and the Associated DOF’s 

In this table, “k” means that the DOF has a specific stiffness between zero and infinity. 

A free DOF that has zero stiffness and a fixed DOF with a stiffness of infinity are the two 

bounds indicated by “0” and “Fix”, respectively. 

In the present study, the effects of four different types of bearings which are more 

commonly used in integral bridges are studied. These bearings consist of elastomeric, 

fixed, guided and sliding bearings. The responses that are studied include the bending 

moment of abutment piles and pier columns. For abutment piles, the resultant bending 

moment which is the square root of sum of squares of the longitudinal and transverse 
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moments is studied and for the pier columns, the longitudinal and transverse moments are 

investigated separately. 

A) Effect of Bearing Type on Abutment Pile Moments 

To study the effect of different bearing types on the bending moment of abutment 

piles, several finite element analyses are conducted on the studied bridges with different 

bearings. As there are several load cases applied to the bridges and also several load 

combinations, quite a few sets of outputs are resulted. For brevity, only the envelope of 

bending moments in different load combinations is presented in Figure 4.4-42.  

 

Figure 4.4-42. Bending Moment of Abutment Piles with Different Bearing Types 

In bridges with the radius of 300 feet, the bridges with sliding bearings have larger 

moments compared to those with elastomeric, fixed or guided pot bearings. The moments 

for the bridges with fixed and guided pot bearings are very close to each other. These two 
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types of bearing cause smaller moments in the abutment piles. The other observation on 

highly curved bridges is that the maximum abutment pile moment is almost independent 

of the length of the bridge. As can be seen, the moment for the bridges with the length of 

about 900 feet is approximately equal to the moments in bridges with 300 feet length.  

In straight bridges, the general response is similar to that of curved bridges. The 

abutment pile moments in bridges with sliding bearings are greater than those in the 

bridges with other types of bearings. Fixed and guided pot bearings create slightly 

smaller moments compared to the elastomeric bearings, which is attributed to the 

restraint that the massive piers have developed against the movements. Abutment pile 

moments are increasing as the length of the bridge increases. The other fact is that in 

short bridges either curved or straight, the maximum abutment pile moment is 

approximately the same for bridges with different types of bearings. 

In both straight and curved bridges, the change in the abutment pile moments due to 

using different types of bearings is less 20 percent. 

B) Effect of Bearing Type on Pier Columns Moments 

The moments created in the pier columns are divided into longitudinal and transverse 

components that are discussed separately. In this context, the transverse moment means a 

moment that causes bending of pier elements in the plane of the pier. The longitudinal 

moment causes bending perpendicular to the transverse moment. In the case of curved 

bridges, longitudinal moment bends the pier about the radial axis.  

The longitudinal moments in straight bridges decrease as the stiffness of the bearing 

reduces. It is shown in Figure 4.4-43 that the bridges with fixed bearings have the largest 
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moment values. When the bearings have the properties of elastomers, the moments 

decrease and if the bearings are sliding or guided, with sliding direction along the length 

of the bridge, the longitudinal moments reduce drastically. In the latter case, the 

longitudinal stiffness of the bearings is zero and it may be expected that the moments 

should be equal to zero. But, the moments are not equal to zero because of the rotational 

stiffness of the bearings. The rotation of the superstructure above the pier and the 

rotational stiffness of the bearings build up a moment in the pier in the longitudinal 

direction. Another sources of the longitudinal moments can be the loads that are applied 

to the pier itself, like wind load if applicable. 

In the case of curved bridges, a similar pattern is observed. Bridges with fixed 

bearings have the largest moments in the pier columns. If the bearings are elastomeric, 

the maximum moment of pier columns reduce compared to those with fixed bearings. 

And when the bearings are sliding or guided the moments are considerably smaller. 

 

Figure 4.4-43. Longitudinal Bending Moment of Pier Columns  with Different Bearing 

Types 
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The transverse moment of pier columns are plotted versus bridge length for different 

radii in Figure 4.4-44. It is observed that curved bridges with fixed bearings have 

transverse moments very close to those of the bridges with guided bearings. This is 

attributed to the reason presented for the case of abutment piles. If the bearings are 

changed to elastomeric ones, the moments drop significantly. In the case of elastomeric 

bearing, the transverse moments are on average 60 percent of the moments of bridges 

with fixed or guided bearings. If sliding bearings are used, the moments reduce to the 

transverse moments that are caused by the pier structure itself, like expansion, contraction 

and shrinkage of the pier frame. 

In straight bridges, the pier columns transverse moments are mainly due to frame 

action of the pier structure, not the behavior of the whole bridge structure. So, it is 

generally independent of the bearing type or the length of the bridge. These moments are 

very close to the moments if the pier is analyzed alone. The result is that such a pier 

configuration itself creates moments about 55000 k.in. In such cases, it can be 

recommended that use of massive pier columns in pier bents should be avoided in favor 

of multiple slender columns. 
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Figure 4.4-44. Transverse Bending Moment of Pier Columns  with Different Bearing Types 

C) Bearing Orientation 

The response of elastomeric, fixed and sliding bearings can be considered like an 

axisymmetric material in which the response is the same in all horizontal directions. But 

guided bearings are fixed in one horizontal direction while having sliding or elastomeric 

response in the perpendicular direction. The directional dependence of the response 

demands choosing an optimal orientation for the bearing. In jointed bridges, since the 

superstructure is attached to substructure only by means of bearings, the optimal 

orientation for guided bearings can be defined based on assuming a point of zero 

movement for the superstructure and orienting all bearings in radial directions with the 

point of zero movement as the center. Figure 4.4-45 shows this idea. 
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Figure 4.4-45. Guided Bearing Orientation in Jointed Bridges 

The presented method for finding the optimal orientation of the bearings is valid 

provided that there is no restraint for the bridge movement. If there are some restraints 

like fixed bearings or integral abutments, the point of zero movement should be found by 

assuming a point as the point of zero movement, orienting the guided bearings along the 

rays coming out of that point, analyzing the bridge to find the internal forces of the 

elements and optimizing the internal forces by trial and error on the position of the zero 

movement point. Figure 4.4-46 shows the rays of alignment for a trail point. 
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Figure 4.4-46. Guided Bearing Orientation in Bridges with Restraint Superstructure for a 

Trial Point 

Adopting such an iterative method can be time-consuming if not a waste of time when 

there are other bearing types to be used in conjunction with integral bridges. A better 

recommendation is to use elastomeric or sliding bearings in the case of integral bridges. 

For elastomeric bearings, use of circular bearings is recommended to completely 

eliminate the problems arising from bearing direction. 
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Chapter 5     

Effect of Curvature on 

Concrete IA Bridges 

5.1 Introduction 

In this chapter, the effect of horizontal curvature on the response of concrete curved 

integral abutment bridges is studied. To perform such an investigation, several finite 

element models of concrete integral bridges with different lengths and radii of curvature 

are analyzed. Each of the studied bridges has a concrete voided slab superstructure, two 

integral abutments at the two ends of the bridge and one or more intermediate piers which 

their connection to the superstructure is either integral or bearing isolated. All abutments 

and piers are supported on concrete piles. More explanations on the modeled bridges are 

brought in the following sections. Figure 5.1-1 shows a picture of a concrete curved 

integral bridge similar to the bridges that are studied in this section. 
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Figure 5.1-1. A Concrete Curved Integral Bridge Similar to the Studied Bridges 

5.2 Bridge Configuration 

The components of the studied bridges include superstructure, abutments and piers. 

The shape and dimensions of these elements are explained in the following subsections. 

5.2.1 Superstructure  

In the studied bridges, the superstructure is a concrete voided slab with a total width of 

40 feet. This concrete deck consists of two solid concrete side cantilevers of 5 feet length 

with the thickness of 12 inches and a voided concrete slab of 44 inches depth. The 

diameter of voids is 28 inches and their center to center spacing is 38 inches. Figure 5.2-1 

depicts the cross section of the superstructure. As shown in the picture, the bridge has 

two curbs at the two sides of the roadway each of them with a width of 24 inches. 
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Figure 5.2-1. Cross Section of the Superstructure of the Modeled Bridges 

5.2.2 Abutments 

The abutments of the modeled bridges are integrally connected to the superstructure 

which is the main characteristic of this type of bridges. Each abutment is consisted of a 

50-inch high concrete wall with a thickness of 44 inches which is resting on a row of 

three circular concrete shafts. The diameter of each shaft is 40 inches and their length is 

50 feet. (In this chapter, the terms shaft and pile are used interchangeably.) As the 

thickness of both voided slab and the abutment wall are 44 inches, the connecting zone 

has a 44 by 44 square inches cross sectional area which transfers the forces between 

superstructure and the abutment. 

There are several details for connecting abutments to bridge superstructures integrally, 

which can be found in the references. For voided slab superstructures, the integral 

connection can be achieved easily by splicing the rebars of the deck and the abutment 

28"38"

24"  432 in. = 36 ft. 24"

 132"  132"  48" 48" 60"  60"
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together and casting monolithic concrete for the two adjacent components. Figure 5.2-2 

shows such a typical integral connection. 

 

Figure 5.2-2. A Typical Integral Connection for Voided Slab Bridges 

5.2.3 Piers 

Piers of the modeled bridges consist of three concrete columns of circular cross 

section with a radius of 32 inches which are supported on concrete shafts with a diameter 

of 48 inches. The length of the columns is 20 feet and the depth of the shaft is 60 feet. 

The piers connection to the superstructure is either integral or bearing-isolated. In the 

integral connection, the columns are assumed to be rigidly connected to the 

superstructure. Figure 5.2-3 illustrates such an integral connection.  
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Figure 5.2-3. Integral Connection of Piers and Superstructure 

In the bearing-isolated piers, the columns are connected to each other by means of a 

cap beam and the superstructure rests on the cap beam by means of a number of 

elastomeric bearings. Figure 5.2-4 shows a typical bearing-isolated superstructure to pier 

connection. 

 

Figure 5.2-4. Bearing-Isolated Connection of Piers and Superstructure 
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5.3 Finite Element Modeling 

In this section, the characteristics of the finite element models that are used to study 

the curve concrete integral bridges are explained. These characteristics include the 

material properties, the applied loads to the models, soil-structure interaction and the 

employed elements. 

5.3.1 Material Properties 

In the modeled bridges, different components are assumed to be reinforced concrete 

elements. The strength of the concrete in different parts varies based on the requirements 

of each part. 

For all structural elements, the concrete material has a unit weight of 145 lb/ft3, a 

coefficient of thermal expansion of 6x10E-6 /degrees F and a Poisson ratio of 0.2. 

For voided slab superstructure, concrete columns and the stub abutment walls, the 

specified compressive strength of concrete is 5 ksi. The concrete in these parts has a 

modulus of elasticity of 4074 ksi and a shear modulus of elasticity of 1698 ksi. 

For piles of piers and abutments, the modulus of elasticity of concrete material is equal 

to 3644 ksi and the shear modulus is 1518 ksi. For these piles the specified compressive 

strength of concrete is 4 ksi. 

5.3.2 Loading 

In this section, the applied loads to the modeled bridges are reviewed. These loads 

include the self weight of the bridge components, the weight of the wearing surface and 
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railing, the effects of live load including gravity, braking and centrifugal forces, the 

pressure of soil to the abutments, the thermal loads including expansion, contraction and 

temperature gradient through the thickness of superstructure and the effect of concrete 

shrinkage. Explanations for each of these loads are presented in the following 

subsections. 

A) Dead Load (DC) 

Assuming a unit weight of 145 / , the dead load is applied to all of the 

components of the modeled bridges through calculating the volume of each element.  

B) Wearing Surface Load (DW) 

Considering a 4-inch thick overlay with a unit weight of 140 / , the weight of 

wearing surface is applied to the bridges. In addition to the overlay, two curbs with a 

thickness of 12 inches are assumed to exist on the bridges. The weight of railings is 

considered to be 67 lb/ft. A schematic picture of the wearing surface components is 

shown in Figure 5.3-1. 
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Figure 5.3-1. Wearing Surface of the Modeled Bridges 

C) Earth Pressure (EH) 

The pressure of the backfill soil is applied to the modeled bridges assuming a 

cohesionless soil with a unit weight of 125 /  and an angle of internal friction of 30 

degrees. Therefore, the soil pressure is: 

  3.617 10 5  

in which  is the depth of the soil layer in inches and  is the soil pressure in ksi. 

Elaborate explanations on how the soil pressure is applied to the structure are presented 

in Section 5.3.3 (Soil-Structure Interaction).  

D) Live Load (LL) 

Live load is applied to the models based on the AASHTO LRFD Bridge Design 

Specifications 2010. According to the specifications four different loads should be 

considered for such continuous superstructures: 

4" Overlay
Railing Concrete Curb
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- Design truck plus the lane load 

- Design tandem plus the lane load 

- For negative moments and piers reaction: 90 percent of dual design trucks plus the 

lane load 

- And for the negative moments and piers reaction: dual tandem plus the lane load 

An impact factor of 1.33 is applied to all live loads except the lane loads. In addition, a 

multiple lane presence factor is applied which is derived from Table 4.3-1. 

The live loads are applied in the most critical place in each lane so that the maximum 

effects are concluded. Figure 5.3-2 shows the positioning of the live load on modeled 

bridge decks. 

 

Figure 5.3-2. Positioning of the Live Load (distances in inch) 
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E) Braking Force (BR) 

As per AASHTO LRFD Bridge Design Specifications, the braking force for each lane 

is the maximum of 25 percent of the design truck weight or 5 percent of the design truck 

plus lane load weight. This force is calculated for different bridge lengths and applied for 

different positions of the live load. 

It should be noted that as there are three lanes on the modeled bridges and the 

simultaneous braking of the live load of all lanes is considered, a multilane presence 

factor, based on Table 4.3-1, is applied to these braking forces. Also, it is noteworthy that 

the braking force of each lane for bridges shorter than 450 feet is a constant load equal to 

15.3 kips: 

72 0.25 0.85 15.3 /  

And for longer bridges, it increases with the bridge length as follows: 

0.05 72 0.64 0.85 3.06 0.0272  /  

F) Centrifugal Force (CE) 

When a bridge has horizontal curvature, an important lateral load which is applied to 

the bridge superstructure is the centrifugal force of moving loads. Based on AASHTO 

LRFD Bridge Design Specification 2010, this radial force is the product of the weight of 

design truck or tandem and a  factor defined as: 

  Eq. 5.1 
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Where  is equal to 4/3 for all limit states other than fatigue,   is the design speed,  

is the radius of curvature of the design lane and  is the gravitational acceleration equal 

to 32.2 / . If the parameters in this equation are in a consistent set of units, the  

factor will be unitless. A multilane presence factor equal to 0.85 should also be included 

for three lanes of live load. Table 5.3-1 shows the assumed speed and the resulted 

centrifugal force for each radius. Note that the assumed design speeds are about 5 mph 

more than the speed given by Eq. 1.4. 

Radius of 

Curvature (ft) 

Geometrical 

Design Speed 

(mph) 

Structural 

Design Speed 

(mph) 

C Factor Centrifugal 

Force (kips per 

lane) 

200 25.1 30 0.401 24.53 

600 43.5 50 0.371 22.70 

1000 56.1 60 0.324 19.82 

Table 5.3-1. C Factor for Different Radii 

G) Uniform Temperature Changes 

Seasonal temperature changes are applied to the modeled bridges based on the contour 

maps that are given in AASHTO as the more rigorous method of determining the 

temperature changes for each region. For a bridge superstructure which is just made of 

concrete, a maximum design temperature of 110 °F and a minimum design temperature 

of -30 °F can be the worst possible cases. A construction temperature of 60 °F results in 

an increase of +50 °F and a decrease of -90 °F which the bridge should tolerate. These 
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two temperature changes are applied to the modeled bridges as the uniform temperature 

loading. 

H) Temperature Gradient 

The temperature gradient loading is applied to the modeled bridge based on the 

provisions of AASSTO Specifications. Assuming a solar radiation zone “1” for the 

location of the modeled bridges, a positive temperature gradient of 40 °F is suggested 

through the thickness of the superstructure. For the negative temperature gradient, a -0.3 

factor should be multiplied to the positive gradient which results in a negative gradient of 

-12 °F. These two temperature gradients are also applied to the models. 

I) Shrinkage 

Concrete shrinkage is a time-dependent volume decrease of the concrete due to loss of 

moisture. This phenomenon happens for all concrete elements regardless of presence of 

external force on the element. To account for this effect in the models, first the strain due 

to concrete shrinkage is calculated and then the equivalent temperature decrease which 

causes the same amount of strain is found. In this way, the effect of concrete shrinkage is 

simulated. 

To calculate the strain in concrete due to shrinkage, the method presented by 

AASHTO LRFD 2010 is used. In the code, the shrinkage strain is obtained using the 

following equation: 

0.48 10  Eq. 5.2 
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For the definition of each of the parameters of Eq. 5.2, the reader is referred to Section 

4.3.2J). 

Assuming a relative humidity of 70 percent for the location of the bridge under 

consideration, a /  ratio equal to 0.613 inch, an  of 5 ksi for superstructure concrete 

and a time of infinity for calculation of the time development factor, the following values 

are obtained: 

  1.45 –  0.13 1.45 0.13 6.44 0.613 1.0   1.0 

2 0.014 2 0.014 70 1.02 

 
5

1
5

1 0.80 5 1.00  

 61 4  
∞

61 4 4 ∞ 1.0 

Having the above factors evaluated, the shrinkage strain can be calculated as: 

1.0 1.02 1.0 1.0 0.48 10 490 10  

Now the equivalent temperature decrease can be evaluated using the following 

equation: 

 ∆   

Hence: 

6 10  ∆  490 10  

∆  81.7 °  
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Since in the uniform temperature loading a decrease of -90 °F was considered for 

bridge contraction and the equivalent temperature decrease of shrinkage is -81.7 °F, the 

effects of the concrete shrinkage can be assumed to be % 90.8 of the effects resulted from 

bridge contraction. 

5.3.3 Soil-Structure Interaction 

The procedure employed to analyze the soil-structure interaction for studied concrete 

integral bridges, is similar to what used for steel bridges in Chapter 4. Again, as the 

abutment walls separate from the soil under specific loading conditions, but the piles are 

surrounded by soil, the soil response is studied in two different subsections for the walls 

and piles. 

A) Soil-Abutment Interaction 

The load-displacement curves of the soil behind the abutment wall of the studied 

concrete bridges are derived from the response curves of Figure 4.3-5, presented Clough 

and Duncan. For an abutment wall height of 7’-10”, a backfill soil with a unit weight of 

125 / 3, an internal friction angle of 30 degrees and for springs of one square foot 

tributary area located at different depths, the force-displacement curves of Figure 5.3-3 

are obtained which are used in the finite element models. 
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Figure 5.3-3. Force-Displacement Curves of the Abutment Backfill Springs 

As the backfill of the bridge abutments are generally composed of granular soils, the 

response curve for abutment springs is only presented for cohesionless soils. Therefore, 

cohesive soil behavior for abutment backfill is ignored. 

B) Soil-Pile Interaction 

The response of the soil interacting with shafts of piers or abutments is modeled using 

the same technique that was used in steel bridges. The recommendations of American 

Petroleum Institute are adopted as the model for the soil behavior (American Petroleum 

Institute, 2005). The following subsections describe the resulted load-deflection curves. 

B1) Lateral Load-Deflection in Soft Clay 

The response of soft clay under lateral loading is generally a nonlinear behavior. API 

proposes a p-y curve for short term static loading which may be generated from 

Table 4.3-7. In that table,  is actual lateral pressure,  is the actual lateral deflection,  

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

‐5.00 ‐4.00 ‐3.00 ‐2.00 ‐1.00 0.00 1.00 2.00 3.00

Fo
rc
e 
(k
ip
)

Displacement (in.)

Force‐Displacement Curve for Abutments Springs

Depth=94"

Depth=70"

Depth=46"

Depth=22"



252 
 

is equal to 2.5 . , the  is the strain which occurs at one half of the maximum stress on 

laboratory unconsolidated undrained compression tests of undisturbed soil samples,  is 

the pile diameter and  is the lateral bearing capacity of soft clay. 

The lateral bearing capacity of soft clay has been found to be between 8  and 12  

except at shallow depths which failure mode changes due to lack of enough overburden 

pressure. In the present study, this capacity is assumed to be equal to 9  for deep 

elements of the pile and for shallower positions, i.e. at depth smaller that reduced 

resistance zone ( ), it is linearly increased between 3  and 9 : 

3                     

9                                             

Eq. 5.3 

: Undrained shear strength for undisturbed clay samples 

: Effective unit weight of soil 

: A dimensionless empirical constant with values ranging from 0.25 to 0.5 

: Depth below soil surface 

: Depth below soil surface to bottom of reduced resistance zone. For constant soil 

strength with depth: 

6
 

Based on the above equations, with assumed undrained shear strength of 2 ksf,  of 

0.01,  value of 0.4 and 5 feet spacing for the springs of the concrete piles of abutments 

with a diameter of 40 inches, the force-displacement curves are obtained which are 
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plotted in Figure 5.3-4. As can be observed, the behavior for the springs deeper than 33 

feet, is independent of the depth of the soil. This constant response is applicable to 

springs down to the end of the piles which are 50 feet deep. 

 

Figure 5.3-4. Force-Displacement Curves of the Springs of Piles of Abutments in Soft Clay 

For the response of the soil neighboring the pile of piers which have a diameter of 48 

inches, assuming the same constants and soil properties as for abutment piles, the curves 

of Figure 5.3-5 are derived. As can be seen, from the depth of 36.9 feet to the end of the 

piles, which is the depth of 65 feet, the reaction of the soil does not change. 
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Figure 5.3-5. Force-Displacement Curves of the Springs of Piles of Piers in Soft Clay 

B2) Lateral Load-Deflection in Sand 

API recommends a hyperbolic tangent equation for the lateral force-displacement 

curve of the piles in sand as follows: 

 . . . tanh   
 

  Eq. 5.4 

Where: 

: Lateral soil resistance in a length of  of pile (force) 

 : An empirical correction factor, 3 0.8  0.9 

 : Estimated ultimate lateral soil resistance (force/unit length) 

 : Length of the pile section 

 : Initial modulus of subgrade reaction from Figure 4.3-9 

 : Soil depth from the top of the soil layer 
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 : Displacement in the horizontal direction 

The ultimate soil lateral resistance can be obtained based on the given equations as the 

minimum of: 

 . . Eq. 5.5 

And 

 . . .   Eq. 5.6 

Where: 

: Ultimate sand lateral resistance at shallow depths (force/unit length) 

: Ultimate sand lateral resistance at deep depths (force/unit length) 

: Pile Diameter 

: Effective soil density 

: Angle of internal friction 

       

  45  

       1  

 /2 

 45  

: Active earth pressure coefficient 

: At-rest earth pressure coefficient 



256 
 

The values of constants ,  and  can be found from Figure 4.3-10. This figure 

may also be used to check the values obtained from the relevant equations. 

Using the above equations and considering a diameter of 48 inches for the shafts of 

piers, a soil unit net weight of 125 /  , an angle of internal friction of 30 degrees and 

five feet spacing for the springs, a k value of 45 lb/in3 is obtained from Figure 4.3-9 

which results in the force-displacement curves of Figure 5.3-6 for the pile springs. As 

shown in the Figure 5.3-6, the force-displacement curves strongly depend on the depth of 

the springs.  

 

Figure 5.3-6. Force-Displacement Curves of the Springs of Piles of Piers in Sand 
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diameter of 40 inches for the piles. Figure 5.3-7 shows the force-displacement curves for 

these springs. 

 

Figure 5.3-7. Force-Displacement Curves of the Springs of Piles of Abutments in Sand 

5.3.4 Elements 

The bridges studies in this chapter consist of voided slab superstructures, flexible 

integral abutments interacting with the backfill soil and the surrounding soil of the piles 

and some piers comprising concrete columns and piles. The piles of the piers are also in 

contact with the supporting soil. As can be observed, the bridge behavior is controlled by 

several structural elements that need different elements to be used for better modeling. 

An explanation of these finite elements is brought in the following subsections. 
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A) Beam Element 

To model the pier columns and also the piles of the piers and abutments, two-node 

frame elements are used. For description of the beam elements refer to the Section 

4.3.5A). 

B) Shell Element 

The superstructure including the voided slab deck and the side cantilevers and also the 

stub abutments of the bridges are modeled using shell elements. A shell element is a 

three- or four-node formulation which combines membrane and plate behaviors. For 

more complete description of the shell elements refer to Section 4.3.5B). 

C) Nonlinear Link Element 

Nonlinear link elements are used to connect two joints together with specified 

nonlinear properties. As explained in Chapter 3, each link element may have three 

different types of behavior based on the required properties and the analysis type. These 

properties include: linear, nonlinear and frequency-dependent. 

In the modeled bridges, these link elements are used to simulate the elastomeric 

bearings connecting the piers to the superstructure. In design of the elastomeric bearings, 

it is assumed that the area of the bearing should be chosen so that the pressure on the 

bearing is not less than a specified value, namely one third or one fourth of the maximum 

allowed pressure on the bearing. This assumption yields to the fact that these types of 

bearings shall be not in tension in any of the load combinations. On the other hand, as the 

maximum applied pressure on the neoprene is limited by the manufacturers (typically to 

2 ksi), the stiffness of the link element in the six degrees of freedom can be determined as 
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follows. In the following equations, the gravity direction of the neoprene is assumed as 

direction 1 and the two shearing directions are assumed as 2 and 3. For a circular 

elastomeric bearing of 22-inch diameter and 4-inch thickness, assuming an elastic 

modulus of 85.3 ksi and a shear modulus of 0.142 ksi, the following stiffnesses can be 

calculated: 

Axial stiffness: 

 
85.3 4 22

4 8106 /  

Shearing stiffness: 

 
0.142 4 22

4 13.5 /  

Torsional stiffness: 

 
0.142 32 22

4 816 . /  

Bending stiffness: 

 
85.3 64 22

4 245216 . /  

Where: 

 is the cross sectional area,  is axial modulus of elasticity,  is the total thickness 

including rubber and steel plates,  is the shear modulus of elasticity,  is the torsional 

constant (equal to  for circular neoprenes) and  is the moment of inertia of the section 

of the elastomeric bearing. 
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Therefore, the calculated stiffness of the bearings are entered into the finite element 

model. A picture of the elastomeric bearing modeling of a pier of the modeled bridges is 

shown in Figure 5.3-8. 

 

Figure 5.3-8. Modeling of the Elastomeric Bearings 

D) Nonlinear Support Element 

To model the effect of the soil support which acts on the abutment walls and the 

surface of the piles, nonlinear support elements are used. These elements are one-node 

grounded nonlinear springs.  

As two different types of properties are supposed to be analyzed with these elements 

which are soil-abutment interaction and soil-pile interaction, two different sets of 

properties are defined for these elements. 
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The first set of assigned properties to nonlinear support elements is based on the force-

displacement curves of Figure 5.3-3 which are assigned to the nonlinear springs of the 

abutment walls. 

The second set of assigned properties to nonlinear springs is based on the force-

displacement curves of Figure 5.3-4 and Figure 5.3-5 which are considered for the 

springs that are supposed to model the behavior of the surrounding soil of the shafts of 

abutments and piers. As the shafts are embedded in the soil, the springs have the same 

nonlinear response in tension and compression. 

5.3.5 Finite Element Models 

Based on the information provided in the previous sections, a comprehensive finite 

element analysis study is conducted. In the analyses, the movements and internal forces 

of curved integral abutment bridges are evaluated and compared to the responses of 

straight bridges. 

In order to perform such analyses, several finite element models of curved bridges 

with radius of curvature equal to 200, 600 and 1000 feet are made. For each of these 

radii, the bridge is modeled in different lengths, namely 130, 215, 300, 470 and 640 feet. 

On the other hand, the equivalent straight bridge of each curved model is simulated with 

exact same characteristics as the curved bridge except the curvature. The length of the 

end spans and intermediate spans of the studied bridges are 65 and 85 feet, respectively. 

As shown before, the width of all the bridges is 40 feet. Figure 5.3-9 illustrates a typical 

finite element model that is made in this study. 
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Figure 5.3-9. A Typical Finite Element Model of the Studied Bridges  

5.4 Results of FE Analysis 

In this section, the results of the previously explained finite element analyses are 

presented. To comprehend the behavior of curved concrete integral bridges, different 

problems are discussed. First, the internal forces of the abutment piles are studied and 

compared to counterpart straight bridges. The results are presented for a variety of load 

cases that were discussed in Section 5.3.2. Integral bridges can have bearing-isolated 

rigid piers or flexible integral piers. The responses in these two types of structures are 

compared. The other part of this section focuses on the integral piers. When the piers are 

integrally connected to superstructure, they should be flexible to accommodate the 

movements. And flexibility requires slender columns to be incorporated in the structure. 

The superiority of adopting integral bridge systems when slender columns are needed is 

then discussed.  
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5.4.1 Effect of Length and curvature on Load 

Responses 

In this section, the consequences of variation in the bridge length and curvature on the 

load effects are presented. In the design of integral abutment bridges, the most critical 

response is the internal forces in abutment piles. In most cases, the pile forces determine 

the maximum possible bridge length. Other responses like the bending moments in the 

superstructure, the moments in the abutment concrete wall can be designed by choosing 

larger sections or stronger material. The axial forces in the piles can also be designed 

choosing enough long piles. Therefore, the study is narrowed down to the flexural forces 

of the abutment piles which are discussed in the following sections. 

A) Bending Moment of Abutment Piles 

Abutments of the modeled bridges are comprised of the stub wall and the piles. The 

height of the stub wall is just 50 inches and it is a continuous element compared to 

discrete supporting piles. Therefore, from a structural design point of view, the piles are 

more critical for design. This statement is more clarified noting the fact that the 

summation of the bending moments of the stub wall and the piles along the line of their 

intersection are equal. For the wall, this moment is distributed along the horizontal length 

of the wall which is 40 feet, but for the piles, the moment is divided among the piles, in 

this case among three piles. Hence, to study the variation of the internal forces of the 

abutments, those of the abutment piles are investigated. 

A1) Contraction 
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The flexural moments of the abutment piles of the modeled bridges are evaluated 

using the finite element program for both curved and straight bridges under bridge 

contraction loading. These moments are plotted versus the length of the bridges in 

Figure 5.4-1. It is observed that for straight bridges the moment blows up as the length 

increases. In curved bridges the rate of increase in the moments reduces as the curvature 

increases. In highly curved bridges, the moments have a drastic decrease as the length of 

the bridge gets larger. For a radius of 200 feet, the moment in a bridge of 640 feet is 

smaller than that of a bridge with 130 feet length. 

 

Figure 5.4-1. Maximum Moment of Abutment Piles Due to Contraction 

A2) Expansion 

The bending moment of abutment piles due to straight bridge expansion increases 

strictly as the length of the bridge increases. In curved bridges, the moment increases up 
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to a specific length at which a maximum moment occurs. The length corresponding to the 

maximum moment depends on the curvature, ranging from 300 feet for a radius of 200 

feet to 500 feet for a radius of 1000 feet. For longer bridges the moments start to reduce.  

 

Figure 5.4-2. Maximum Moment of Abutment Piles Due to Expansion 

A3) Live Load 

For each radius, the pile moments due to live load have an increase as the length of the 

bridge increases from 130 feet (two-span bridge) to 300 feet (four-span bridge). For 

longer bridges, it is almost constant. The response for straight bridges and curved bridges 

with the radius of 1000 feet are very close. For a radius of 600 feet, the moments are 

larger than the other bridges.  
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Figure 5.4-3. Maximum Moment of Abutment Piles Due to Live Load 

A4) Dead Load 

The bending moment in the abutment piles due to dead load of the bridge has a 

decreasing trend as the length of the bridge increases up to a specific length. In longer 

bridges, the moments are approximately constant for each bridge curvature. The moments 

in straight bridges and curved bridges with a radius of 1000 feet are very close. For long 

bridges, the dead load moments reduce as the radius of the bridge decreases. 
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Figure 5.4-4. Maximum Moment of Abutment Piles Due to Dead Load  

A5) Concrete Shrinkage 

As the studied bridges are composed of only concrete elements, the responses due to 

concrete shortening is similar to those of bridge contraction. As can be observed, in 

straight bridges, the moments due to shrinkage are strictly increasing. As the radius 

reduces, the rate of increase decreases in a manner that for the tight radius of 200 feet, the 

moments have a maximum at the length equal to 300 feet and for longer bridges, the 

moments decrease rapidly. For larger radii, the moments have a concave curve which 

shows a response between that of straight and highly curved bridges. For large bridge 

radius like 1000 feet, the moments are close to those of straight bridges. 
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Figure 5.4-5. Maximum Moment of Abutment Piles Due to Concrete Shrinkage 

A6) Horizontal Earth Pressure (EH) 

The abutment pile moments are approximately constant for straight bridges. In this 

case, there is a slight increase in moments for longer bridges as depicted in Figure 5.4-6. 

For radius equal to 600 and 1000 feet, the response is similar to straight bridges with a 

larger increase as the length increases. For highly curved bridges, R=200 feet, the 

response is totally different. The moments increase rapidly as the radius decreases from 

600 feet to 200 feet. The reason is illustrated in Figure 5.4-7 through Figure 5.4-9. In a 

straight bridge, the earth forces are in the same line and opposite to each other. Therefore, 

they balance each other and only cause local bending in the piles. In a tightly curved 

bridge depending on the length-to-radius ratio, the earth pressures are not counteracting 

like in straight bridges. For small Length/Radius ratios the major components of earth 
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pressure balance each other. But for large Length/Radius ratios, the earth pressure is 

mainly resisted by the internal forces in the structure. In some cases, as shown in 

Figure 5.4-7, the earth pressure may be almost perpendicular to each other. In such 

situations, large lateral displacements occur due to earth pressure which results in large 

bending moments in the abutment piles. 

 

Figure 5.4-6. Maximum Moment of Abutment Piles Due to Horizontal Earth Pressure 
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Figure 5.4-7. Plan View of Deformed Shape of the Bridge with R=200’ under EH 

 

 

Figure 5.4-8. Plan View of Deformed Shape of the Bridge with R=600’ under EH 
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Figure 5.4-9. Plan View of Deformed Shape of the Bridge with R=1000’ under EH 

A7) Centrifugal Force 

Figure 5.4-10 describes the pile moments due to centrifugal forces. It shows that the 

centrifugal moments are larger for short bridges. Up to a length of 400 feet, the moments 

are decreasing and for longer bridges, the moments are constant. 
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Figure 5.4-10. Maximum Moment of Abutment Piles Due to Centrifugal Force 

A8) Weight of Wearing Surface 

The changes in moments due the weight of wearing surface are similar to those of 

dead load. In general, there is a decreasing trend in the moments as the length increases. 

The response of bridges with the radius equal to 1000 feet is very close to that of straight 

bridges. 
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Figure 5.4-11. Maximum Moment of Abutment Piles Due to Weight of Wearing Surface 

A9) Braking Force 

The pile moments because of braking force are shown in Figure 5.4-12. It is observed 

that the moments increase as the radius of the bridge decreases. This is mainly attributed 

to the balance of braking force by the backfill pressure. In straight bridges or those with a 

large radius, the braking force is resisted by the passive pressure of the abutment backfill. 

But, in highly curved bridges, a large component of the braking force is not balanced by 

the earth pressure and creates a large bending moment is abutment piles and piers. The 

other fact is the increase in the slope of the curves for bridges longer than 450 feet. This 

is because of the change in the magnitude of braking force in the design code for bridges 

beyond this length. 
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Figure 5.4-12. Maximum Moment of Abutment Piles Due to Braking Force 

A10) Positive Temperature Gradient 

It is shown in Figure 5.4-13 that the bending moments due to positive temperature 

gradient is approximately constant as the length of the bridge changes. Also, it is 

observed that these moments reduce as the radius of the bridge decreases. The difference 

in the moments between straight bridges and those with radius equal to 200 feet is less 

than 20 percent. So, as an estimate, it can be assumed that the moments due to 

temperature gradient are independent of bridge length and radius. 
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Figure 5.4-13. Maximum Moment of Abutment Piles Due to Positive Temperature 

Gradient 

A11) Negative Temperature Gradient 

As negative temperature gradient is equal to minus 30 percent of the positive one, the 

results pattern is similar to that of positive gradient. For description of the results, the 

reader is referred to the previous section. 
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Figure 5.4-14. Maximum Moment of Abutment Piles Due to Negative Temperature 

Gradient 

A12) Combination of the Loads 

The final plot for load effects, and the most important one, is illustrated in Figure 5.4-

15. The envelopes of the maximum bending moments in different load combinations are 

shown in this picture. The significant observation is that in curved bridges, the envelope 

moments are not strictly increasing. In highly curved bridges with radius equal to 200 

feet, the moments are almost constant for bridges longer than 300 feet. In bridges with 

larger radius, the moments are between those of R=200 and straight bridges. The bridges 

with R=1000 feet have moments very close to straight bridges, so that these moment can 

be estimate ignoring the effect of curvature. 
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Figure 5.4-15. Envelope of Moment of Abutment Piles in Different Load Combinations 

B) Shear Forces of Abutment Piles 

 In the case of steel bridges, it was observed that the graphs of shear forces of 

abutment piles (depicted in Appendix A) were similar to those of piles bending moments. 

Therefore, for the studied concrete bridges, for brevity, the discussion on the shear forces 

is disregarded.  
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In this section, the effect of pile orientation in concrete integral bridges is investigated. 
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the shafts can be asymmetric, like rectangular shafts, or the rebars in a symmetric shaft 

can be asymmetric. Then, different orientations of the shafts result in different internal 

forces. Therefore, there should be a criterion to determine the optimum orientation of the 

shafts. 

To study this problem, the circular piles of the studied concrete bridges are replaced 

by rectangular shafts. The shafts have a 40-inch by 20-inch cross section. Two sets of 

finite element models are made with strong-axis and weak-axis bending orientations for 

the piles. The bridges are analyzed with these two shaft orientations to find the internal 

forces of the shafts including the axial force and bending moments. The results for the 

bridge with the length of 130 feet are shown in Table 5.4-1: 

Orientation Axial Force 

(kip) 

M22 (weak axis 

moment) (k.in) 

M33 (strong axis 

moment) (k.in) 

Weak-Axis 

Bending 
105 863 9381 

Strong-Axis 

Bending 
105 1143 8492 

Table 5.4-1. Internal Forces of Shafts with Different Orientations 

The shafts are designed by the program PCACOL to calculate the required rebar area 

in each of them. The results show that for the strong-axis orientation of the shafts, 8.22 

square inches of Grade 60 rebar is requires. This area of rebar is equal to 1.025 percent of 

the gross cross sectional area of the shaft. Figure 5.4-16 and Figure 5.4-17 depict the 

design details in the program format. The shaft with weak-axis orientation is also 
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designed for the resulted internal forces. The needed area of Grade 60 rebar for the weak-

axis bending is 16.56 square inches. It is equivalent to 2.07 percent of the gross cross 

sectional area of the shaft. The details of the design process are shown in Figure 5.4-18 

and Figure 5.4-19. 

Therefore, it is concluded that the strong-axis bending of the drilled shafts results in 

more economical designs in the case of straight bridges. A similar conclusion was made 

for the orientation of steel piles in the previous chapter. 
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Figure 5.4-16. PCACOL Design Sheet for Strong-Axis Orientation (1 of 2) 
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Figure 5.4-17. PCACOL Design Sheet for Strong-Axis Orientation (2 of 2) 
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Figure 5.4-18. PCACOL Design Sheet for Weak-Axis Orientation (1 of 2) 
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Figure 5.4-19. PCACOL Design Sheet for Weak-Axis Orientation (2 of 2) 
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5.4.3 Bearing-Isolated Pier vs. Flexible Integral Pier 

As described in the Section 5.2.3, there can be two different types of piers in the 

studied concrete integral bridges. In one of the pier types, the columns of the pier are 

integrally connected to the superstructure. As both columns and superstructure are 

concrete elements, just extending the rebars of the columns into the superstructure with 

the required development length provides the integrity of the piers and superstructure. In 

the second type of piers, the pier columns and a cap beam form a frame which the 

superstructure seats on it by means of elastomeric bearings. Therefore, a large amount of 

the movements of the superstructure can be accommodated by bearings instead of the 

pier structure. Figure 5.2-3 and Figure 5.2-4 describe these two types of piers graphically. 

The concrete integral abutment bridges are analyzed with these two types of piers. As 

the stiffnesses of these two piers are not the same, the internal forces of the structures are 

different. The point of interest in the design of integral abutment bridges is the abutment 

piles. The envelope of flexural moment of abutment piles in different load combinations 

are derived from the finite element models and plotted versus different bridge lengths in 

Figure 5.4-20. As can be observed, in straight bridges, the difference between the pile 

moments with different pier types is ignorable. In curved bridges, the pile moments in the 

bridges with integral piers are greater than those of bridges with isolated piers. As the 

radius of curvature of the bridges is reduced, the difference between the moments is more 

profound. The largest change in the moments is for bridges with the radius equal to 200 

feet which a 15 percent reduction is observed when the piers are bearing-isolated. 
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Figure 5.4-20. Envelope of Moment of Abutment Piles in Different Load Combinations in 

Bridges with Integral Piers vs. Bridges with Elastomeric Isolated Piers 

5.4.4 Mitigation of Moment Magnification  

In design of frames, the second order ∆ effects should be taken into account. The 

studied concrete integral abutment bridges which have integral piers are 3D frames. Such 

bridges have an enhanced ∆ behavior compared to jointed bridges. In this section, the 

difference between the behavior of these two types of bridges and the superiority of 

integral abutment designs are explained. 

To design the columns of the piers of a jointed bridge, the flexural moments of the 

columns  should be determined from a second order elastic analysis or an approximate 

procedure as follows (American Institute of Steel Construction, American Institute of 

Steel Construction, & Manual of steel construction, 2005): 
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  Eq. 5.7 

in which 

: required flexural strength assuming no lateral translation 

: required flexural strength as a result of lateral translation only 

 1 Eq. 5.8 

where 

  Eq. 5.9 

and 

 : effective length factor in the plane of bending determined for the braced 

frame 

: required axial compressive strength 

: a coefficient based on elastic first order analysis assuming no lateral translation 

equal to: 

 0.6 0.4    for members with no transverse loading 

 =0.85    for end restrained members with transverse loading 

 =1.0    for end unrestrained members with transverse loading 

: smaller-to-larger end moments ratio (negative for single curvature) 

And 
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∑ ∆

∑

 Eq. 5.10 

or  

 ∑
∑

 Eq. 5.11 

In which 

∑ : required axial strength of all columns in a story 

∆ : lateral inter-story deflection 

∑ : sum of all story horizontal shear producing ∆  

: column height 

 Eq. 5.12 

: effective length factor in the plane of bending determined for the unbraced 

frame. 

The above formulations consider two buckling states for the columns. One is the 

situation in which a column is loaded axially but it cannot sway laterally, because it is 

attached to other columns through the top and bottom rigid diaphragms (floors) 

(Figure 5.4-21). The other state is when the columns are loaded axially and 

simultaneously can sway. But the lateral translation occurs for all columns altogether and 

in the same direction (Figure 5.4-22). Actually, these equations are derived from AISC 

manual of steel construction which is mainly developed for building design. In buildings, 

the main lateral loads are wind or seismic forces which have a unique direction for all the 

columns of a story at a given time. 



288 
 

 

Figure 5.4-21. ∆ Effect in Non-Sway Mode 

 

Figure 5.4-22. ∆ Effect in Sway Mode 

In bridges in addition to the above two situations, one more state can happen. Consider 

a three-span bridge jointed at the abutments. When the bridge is under uniform thermal 

loads, for example contraction, the top of the columns move toward the center of the 

bridge (or more exactly toward the point of zero movement). The critical case takes place 

when the axial force of one of the columns is maximized due to presence of live load. 

Figure 5.4-23 shows a bridge in such a state. Under such circumstances, the moment in 

the loaded columns (left columns in the picture) tends to magnify. But, as the ∆ and 

moments increase in this column, the other column tends to restore to its undeformed 
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shape. Therefore, the assumption in the building structures which a floor moves in a 

unique direction due to a loading case is not valid for bridge under the described 

conditions. In building structures, the terms such as ∑  or ∑  are based on the 

assumptions that are valid only for that type of structure. 

 

Figure 5.4-23. ∆ Effect in a Jointed Abutment Bridge with Flexible Piers 

For bridge design, more critical conditions in which an axially loaded column can 

have a side sway while other columns do not have the same direction of side sway should 

be considered. In this case, the other columns, not only do not help the column that has 

the maximum axial load, but also they may act like springs that intensify the ∆ effect for 

the critical column. Therefore, the following magnification factor may be recommended 

for a column in such a situation.  

,

 1 
Eq. 5.13 

where 

 ,  Eq. 5.14 
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In integral abutment bridges, as the two ends of the bridge are connected to the 

abutments, for movement in any direction at least one of the abutments is a help for the 

intermediate columns. Figure 5.4-24 illustrates an integral abutment bridge under such a 

situation. As can be observed, the stiffness of the left abutment piles mitigates the 

moment magnification of the axially loaded columns. For this case, the following 

equation for the magnification factor can be recommended, in which the resisting 

elements are the left abutment and left pier. 

 ∑ ,
∑ ,

 
Eq. 5.15 

In which 

 ,  Eq. 5.16 

 

 

Figure 5.4-24. ∆ Effect in an Integral Abutment Bridge with Flexible Piers 
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Chapter 6    

Concluding Remarks and 

Future Research 

The concluding remarks of the present study are divided into three sections. First, the 

findings of the close-up analysis of the integral abutment connections are summarized. 

Then, the conclusions of the investigations on steel I-girder bridges are explained. After 

that, the results of the studies on concrete bridges are recapitulated. At the end, some 

recommendations for future research are presented. 

6.1 Connections of Integral Abutments 

An important part of the current study was to investigate the behavior of abutment 

connections in steel integral bridges. Each integral abutment has two connection zones: 

one is the superstructure-to-abutment wall connection and the other is the pile-to-

abutment wall connection. The state of stresses in each of these two connections has been 

scrutinized.  

For the girder-to-abutment wall connection, it was observed that the girder stresses in 

the vicinity of the wall face are mainly concentrated in the lower part of the girder web. 
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This means that the maximum stresses are not found in the bottom flange of the girder. 

This is attributed to the mechanism of stress transfer between the steel girder and the 

neighboring concrete wall. The effect of adding a stiffener to the girder web at the section 

of the wall face has also been studied. The results show that the stiffener is effective in 

spreading the stresses over the face of the concrete wall below the bottom flange. This 

had a minor effect on the stresses of the girder itself. Another idea that was studied was to 

add shear studs to the bottom flange of the girder for the length embedded in the wall. It 

was observed that shear studs did not change the maximum stresses of the girder, but 

were effective in reducing the concrete wall stresses by about 40 percent. 

The second zone which has been studied is the pile-to-abutment wall connection. For 

this zone the significant observation is the high stresses in the steel pile, so that the pile 

section is almost fully plastic. The stresses in the concrete abutment wall are also high, 

even higher than the characteristic strength, which can be interpreted as the confinement 

effects. The effect of stiffener on the stresses in the pile and concrete wall was also 

examined. It was concluded that the pile stiffener reduces the maximum stresses on the 

face of the wall. This stiffener is not as effective as the stiffener for the girder-to-wall 

connection because of different load transfer configurations. 

6.2 Steel I-girder IA Bridges 

Several integral steel I-girder bridges were studied in this dissertation. The baseline 

model for the analyses was the I-480 Bridge in Omaha, NE, which is a four-span 

composite steel I-girder bridge with a radius of 538 feet. Several other models were 

generated based on this bridge for various bridge lengths and radii. The bridges were 
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analyzed using finite element models. Full 3D finite element analysis was conducted 

including the modeling of girder flanges and web plates, concrete deck slab, shear studs, 

cross frames, stiffener plates, different bearing connections, pier caps, non-prismatic 

columns, pile caps, pier H-piles, abutment walls, abutment piles and even parapets. Based 

on the need, different elements such as solid, shell, plate and beam elements are 

employed. The soil-structure interaction has been modeled as well. A wide variety of 

loads and load effects have been applied to the models including dead load, live load, 

centrifugal force, braking force, earth pressure, uniform temperature changes, 

temperature gradient, wind load and concrete shrinkage. 

6.2.1 Effects of Bridge length and curvature on load 

responses 

Based on the results of the analysis for different loads, a weight factor is defined for 

each load. The larger weight factor for a specific load means the larger internal forces due 

to that load. Therefore, a larger weight factor indicates the importance of the loading 

from a structural design point of view. The sorting of the loads based on their weight 

factors is as follows: contraction, expansion, live load, wind load, dead load, concrete 

shrinkage, horizontal earth pressure, centrifugal force, weight of wearing surface, braking 

force, positive temperature gradient and finally negative temperature gradient.  

The results of the study show that the internal forces in the abutments of curved 

bridges due to contraction loading, which is the most critical loading for design purposes, 

are always smaller than those of straight bridges. As the radius of curvature of the bridge 

reduces, the internal forces reduce as well. Besides, the increase in the length of straight 
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or large-radius bridges increases the internal forces of the abutment piles. But for smaller 

radii, the abutment piles’ internal forces start to decrease as the bridge is longer than a 

specific length. 

For bridge expansion, the results show that in straight bridges the internal forces 

increase as the length of the bridge increases. But, in the case of curved bridges, there is 

an increase in the responses for shorter bridges and then the curves reach a maximum 

point. For longer bridges beyond the maximum point, the internal forces are decreasing. 

Therefore, it can be concluded that the internal forces due to expansion for bridges longer 

than a specific length are smaller than those of straight bridges. That specific length 

depends mainly on bridge curvature. 

For live load effects, it is observed that the abutment pile stresses generally have the 

same level of intensity. The internal forces are mainly independent of radius of curvature. 

For short bridges, as the length increases, there is a slight increase in the internal forces 

due to live load. But beyond a specific length, the internal forces are constant. The 

increase in the shear forces and flexural moments is attributed to the loading pattern of 

the live load which is applicable to the multi-span bridges. The abutment pile’s internal 

forces due to other gravity loads such as dead load of structure or weight of wearing 

surface are decreasing versus length of the bridge. The response curves do not have a 

large slope. 

The results of the study for the effects of concrete shrinkage in composite steel bridges 

were complex and could not be interpreted easily. A general conclusion is that in straight 

bridges, the internal forces of the abutment piles increase as the length of the bridge 

increases. But in curved bridges, these forces remain constant for bridge lengths larger 



295 
 

than a specific value. The other important observation is that concrete shrinkage is not a 

secondary effect in composite integral abutment bridges. Its effects are more significant 

than some commonly understandable loads such as earth pressure and centrifugal force.  

The abutment forces due to horizontal earth pressure are highly dependent on the 

radius of the curvature of the bridge. It is shown that for smaller radii, as the acting earth 

pressure on the abutments do not balance each other, larger lateral displacement is 

created in the whole structure. Therefore, the internal forces in the abutment piles that are 

integrally connected to the superstructure have large values. 

In the studied steel bridges, the values of the shear forces and bending moments due to 

centrifugal force are shown to be almost independent of the radius of curvature. Even the 

length of the bridge has a minimal effect on the responses due to centrifugal force. The 

reason for this is the fact that the centrifugal force is approximately constant for different 

radii. 

Other loads including braking force and temperature gradient show minor influence on 

the response of composite integral abutment bridges. The effects are so small that the 

obtained weight factors for both positive and negative temperature gradients are less than 

0.5 (compared to 31 for contraction). 

6.2.2 Bridge Movement 

Since the internal forces in the abutment piles are mainly a result of the time-

dependent movements of bridge abutments, a major goal in this dissertation was to study 

the displacements of curved integral abutment bridges. To perform such a complicated 

task, first the factors affecting the bridge end displacements were studied. It was 
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discovered that the bridge end displacement in this type of bridges is not just a function 

of seasonal temperature changes. Other loads like horizontal earth pressure can cause 

considerable movements in highly curved bridges. And even if the values of a curved 

bridge shortening or elongation due to some effects like temperature changes are known, 

the magnitude and direction of the bridge end displacements are unknown. The other fact 

is that the rotation of the abutments should be considered as a source of displacement at 

the pavement level. Knowing these facts, a comprehensive finite element study on the 

displacements of curved composite steel integral bridges was conducted. Using the 

results of the analyses, a relation was developed between the bridge end displacements 

and the shortening due to contraction and shrinkage. The effects of bridge end rotation 

and also the effects of other loads on curved bridge end displacements were incorporated 

into the solution by means of modification factors.  

In the case of curved bridges, a major unknown in bridge movement is the direction of 

displacement. One of the factors that affects the direction of displacement is the bridge 

width. The effect of bridge width was investigated. For straight bridges, closed-form 

solutions were obtained for the effect of bridge width on the direction of displacement 

due to contraction and shrinkage. For curved bridges, the effect of bridge width was 

explored through several finite element analyses. It was observed that the effect of width 

can be extracted from the direction of displacement by means of two factors for inner and 

outer bridge corners. In this way, an equation was found using available curve fitting 

methods for the direction of end displacement of curved integral bridge. 

Therefore, the magnitude and direction of bridge end displacements for composite 

steel I-girder integral bridges were found. 
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6.2.3 Pile Orientation 

Orientation of the abutment piles is an important problem in design of integral bridges. 

In most of the references of integral abutment bridges, it is clearly stated that the piles 

should be oriented for weak-axis bending so that the stresses are kept low. It the present 

study, a closed-form solution for straight bridges was presented that showed lower levels 

of stress resulted from strong-axis bending of the piles. To verify the solution, the stresses 

were examined in several finite element models of the studied bridges. The results show 

that the strong-axis bending of the piles yields lower levels of stress.  

In the case of curved bridges, as the direction of the movement of the abutments is not 

necessarily perpendicular to abutment line, the optimum orientation for the piles is not 

strong or weak axis. The results of the finite element models are used to find the average 

direction of maximum displacement of the pile heads. These directions were plotted 

versus L/R ratios. Based on the findings of the optimum orientation for straight bridges, it 

was concluded that the piles should be oriented so that the strong-axis of the piles is 

perpendicular to the direction of the maximum displacement. This method of 

optimization was verified by the finite element analysis which showed lower stresses in 

30 out of 32 cases compared to strong- or weak- axis bending. 

6.2.4 Effect of Bearing Type 

To study the effect of bearing type on the response of curved integral abutment 

bridges, different bearing types were surveyed. All the existing bearings were categorized 

based on the provided degrees of freedom for the connecting members. The effects of 

plain and reinforced elastomeric bearings, fixed pot or disc bearings, guided pot or disc 
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bearings and sliding bearings were studied. The findings of the finite element studies 

show that using fixed bearings over piers reduces the abutment pile moments compared 

to the pile moments of bridges with sliding bearing over the piers. But, the reduction in 

most cases was less than 20 percent. The bridges that had elastomeric bearings had pile 

moments between those with sliding and fixed bearing. The maximum pile moments of 

bridges with guided bearings were very close to the moments of bridges with fixed 

bearings. 

The flexural moments in the piers were studied in two perpendicular directions: 

longitudinal and transverse. The longitudinal moments of the piers were maximized if the 

bearings were fixed. If the bearings were of sliding or guided types, the longitudinal 

moments were very close to zero. One of the reasons for not having an exact zero 

moment was the applied loads to the piers themselves, such as the wind load. In the case 

of elastomeric bearings, the longitudinal moments of the piers were between those of the 

bridges with sliding bearings and fixed bearings. 

The transverse moments of the piers were maximized when the bearings of the piers 

were fixed or guided. The values of these moments were much greater than those of 

bridges with sliding bearings, namely about 2.5 times. It should be noted that even with 

sliding bearings the transverse moments of the piers were not close to zero. That is 

because of the nature of the studied piers: massive columns framed by means of another 

gigantic element: the cap beam. In other words, if two massive hammerhead columns are 

framed together, large values of internal forces should be expected. The transverse 

moments of piers with elastomeric bearing were larger than those of piers with sliding 

bearings but still much smaller than those with fixed or guided bearings. 
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As guided bearings were proved to produce large bending moments in the piers of 

curved integral abutment bridges, bridge designers should not look for finding an 

optimum orientation for this type of bearings. It is recommended that elastomeric or 

sliding bearings be used in the piers of curved integral abutment bridges. 

6.3 Concrete IA Bridges 

A broad study has been conducted on curved integral abutment concrete bridges. The 

superstructure of the bridges was composed of a continuous voided slab integrally 

connected to the abutment walls. The abutment walls were supported on drilled shafts. 

The pier columns were either integral with the superstructure or isolated by means of 

elastomeric bearings and a cap beam. The piers were also supported on drilled shafts. 

Different lengths and radii were considered for analysis. The effects of different loads 

including dead load, live load, centrifugal and braking force, earth pressure, temperature 

and shrinkage loads have been investigated on the bridges. 

6.3.1 Effects of Bridge Length and Curvature on Load 

Responses 

The findings on the effects of variation in radius and length on bridge behavior 

showed that in straight bridges, the internal forces of the abutment piles due to 

contraction loading increase as the length of the bridge increases. As the radius decreases, 

the increases in the internal forces tend to lessen. For highly curved bridges, like those 

with a radius of 200 feet, the bending moments increase up to length of 300 feet and 

beyond that length the moments become constant. 
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For the pile bending moments due to expansion, it was observed that shorter curved 

bridges have larger bending moments in the abutment piles compared to straight ones. 

But, as the length gets larger, the moments start to decrease after reaching a peak. 

Therefore, it can be concluded that the bending moments due to expansion in very long 

curved bridges are smaller than that of equivalent straight bridges. 

For the pile moments due to gravity loads, two different behaviors were observed. For 

the bending moment due to live load, there was an increase up to the length of 300 feet 

and beyond that length, the live load moments were almost constant for each radius of 

curvature. The reason for the increase in the moments from the two-span bridge with the 

length of 130 feet to the four-span bridge with the length of 300 feet is the number of 

spans and possibility of patterned loading for the four-span bridge. The other gravity 

loads such as dead load or weight of wearing surface showed a decreasing trend for the 

pile moments versus the length of the bridge.  For these gravity loads, the responses of 

the bridge with the radius equal to 1000 feet were very close to those of straight bridges. 

The shape of abutment pile bending moment curves due to shrinkage in concrete 

integral bridges was very similar to those due to contraction. The only difference was the 

magnitude of the moments. The reason for that is the fact that after completion of the 

construction of the bridge, all the elements continue shrinking which causes the same 

effects as the contraction. The only difference can be the different ages of the elements 

which causes different strain rates. 

For the bending moments of piles due to horizontal earth pressure, there was a huge 

difference between the results for highly curved bridges and other bridges. In straight 

bridges and the bridges with large radius of curvature, the earth pressures applied to the 
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two abutments either balance each other or their major components are balanced. But in 

highly curved bridges, these forces do not counteract and consequently cause horizontal 

displacement of the whole bridge. Therefore, the resulted bending moments in the 

abutment piles are noticeably larger compared to other bridges. 

The bending moments due to positive and negative temperature gradient are 

approximately equal for different bridge length or bridge radius. The moments in bridges 

with the radius of 1000 feet are almost the same as those of straight bridges. The other 

important observation is the relatively large magnitude of these moments in the piles of 

concrete bridge. That is because of larger size and stiffness of the concrete piles of these 

bridges compared to those of steel bridges.  

The final conclusion for the effects of loads on the studied concrete bridges can be 

made by looking at the envelope of load combinations. It is observed that in straight 

bridges the combination of bending moments increase strictly as the length of the bridge 

increases. In the case of curved bridges, the increase in the combination of bending 

moments is not as strict as that of straight bridges. For small radii of curvature, they have 

an increase up to the length of 300 feet and beyond that length a plateau is observed. The 

fact that the envelope of piles bending moments is almost constant in highly curved 

bridges is probably the most significant conclusion of this part of the study. 

6.3.2 Pile Orientation 

In the studied concrete integral bridges, the abutments are supported on circular drilled 

shaft. Therefore, if the rebars are symmetric in the shafts, all horizontal directions would 

be the same for pile movement. But since the drilled shafts can be noncircular or the 
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rebars in circular shafts can be asymmetric, the shafts of the abutments have been 

changed to rectangular ones to study the effect of the shafts orientation. It was discovered 

that even for rectangular concrete shafts, the strong-axis bending would result in more 

economic designs. Therefore, the result of pile orientation study is the same for the 

studied steel and concrete bridges. 

6.3.3 Bearing-Isolated Piers versus Integral Piers 

Two different types of pier-to-superstructure connections were studied for the integral 

concrete bridges: integral and bearing-isolated. In the integral one, the pier columns are 

integrally connected to the superstructure, while in the other type of bridges, the columns 

are framed into a cap beam and the superstructure seats on the cap beam by means of 

elastomeric bearings. The results of the finite element study reveals that the bridges with 

integral piers have larger moments in the abutment piles compared to those with bearing-

isolated piers. But the increase in the moments in all cases is less than 15 percent (in most 

of them about 5 percent). Therefore, there should not be a major concern about designing 

integral piers in this type of bridges.  

6.3.4 Mitigation of Moment Magnification Factor 

In the current design codes, two modes of buckling are assumed for the columns of a 

multi-bay structure. One is buckling of a single column without any lateral sway. The 

other is buckling of a column in a story that all the columns sway laterally at the same 

time. Based on these two modes of buckling, two different moment magnification factors 

are defined. In the present study, it is shown that these two modes are not the only modes 

of buckling for columns of bridges. Due to bridge expansion and contraction, another 
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mode of buckling can happen that is much more critical that the other two. In this mode, 

the relative lateral translation of the column ends happen due to changes of the bridge 

length while the moments are magnified by vertical loads, such as live load. It is shown 

that this phenomenon is more critical in the case of jointed bridges. In integral abutment 

bridges, at least one the abutments is helping the loaded column to mitigate its moment 

magnification. The moment magnification factor for the new mode of buckling is also 

recommended. 

6.4 Recommendations for Future Research 

In this dissertation, the behavior and responses of curved integral abutment bridges 

were studied. The effects of several parameters were considered. But, there is still a need 

to continue the research on this topic and develop a comprehensive design guide for this 

type of bridges. One of the main problems that should be continued is to study the bridge 

movement in other types of integral bridges. In this dissertation, a method for finding the 

displacements of curved steel bridges was proposed. The displacements of other types of 

bridges such as prestressed concrete girder bridges should also be studied. The effect of 

different span length and number of spans should be investigated as well. The other 

problem is to continue the study on pile orientation for other types of bridges and other 

span lengths or ratios. 

As some curved bridges are skewed at the ends, skewness is another topic that should 

be incorporated into the effects of curvature. In the case of skew bridges, in several 

previous reports, the only limitation that is set on the bridge geometry is a skew angle 

less than 20 degrees. But, what is forgotten is that the skew angle is not the only factor 
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causing the rotation of the bridge. The other factor is the length-to-width ratio. When a 

bridge has large length-to-width ratios, a small skew angle can cause a huge rotation in 

the bridge structure. While for small ratios, the bridge may be able to tolerate larger skew 

angles. 
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Appendix A  

Effect of Bridge Length and 

Curvature on Shear Force of 

Abutment Piles 

In Appendix 1, the developed shear force in the abutment piles of the studied steel 

integral bridges is investigated in more details. First, the shear force of piles due to each 

load or load effect is plotted and discussed. Then, the envelope of the shear forces in 

different load combinations which is a design parameter is studied. Similar to the section 

4.4.1A), the loads are presented based on their normalized weight factor. 

A1 Contraction 

Figure A-1. shows the abutment piles shear forces under contraction loading for 

different bridge length and radii of curvature. One can see that the shear forces decrease 

as the radius of curvature decreases. The other observation is that in a straight bridge the 

shear force increases as the bridge gets longer. But in a curved bridge when the length 

increases the shear forces increases up to a certain length and after that it starts to reduce. 
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Figure A-1.  Maximum Shear Force in Abutment Piles Due to Contraction 

 

The piles shear forces are normalized in Figure A-2. by dividing the shear force of the 

curved bridges by that of the straight bridge of the same length. It can be seen that the 

shear forces of curved bridges can reduce about 75 percent when the bridge has a small 

radius of curvature.  

 

0

10

20

30

40

50

60

70

80

90

300 400 500 600 700 800 900

Sh
ea
r 
Fo
rc
e 
(k
ip
)

Bridge Length (ft)

Integral Abutment ‐ Piers Bearing Type: Elastomeric

R=infinity

R=1000'

R=538'

R=300'



319 
 

Figure A-2.  Normalized Shear Force in Abutment Piles Due to Contraction 

A2 Expansion 

In the list of normalized weight factors, expansion has the second rank. This shows 

that expansion can create large internal forces in the abutment piles. The values of shear 

forces in the piles of studied steel bridges are plotted in Figure A-3.  It is shown that for 

shorter bridges, curvature causes creation of larger shear forces in the piles. But, the shear 

force for all curved bridges has a concave shape. This means it starts reducing after a 

specific length.  
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Figure A-3.  Maximum Shear Force in Abutment Piles Due to Expansion 

The shear forces are Normalized in Figure A-4.  This picture shows that the shear 

force of piles of curved bridges are about two times of that of equivalent straight bridges. 

But for highly curved bridges it can be half of the shear force of straight bridge for long 

bridges of length about 900 feet. 
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Figure A-4.  Normalized Shear Force in Abutment Piles Due to Expansion 

A3 Live Load 

Among gravity loads, live load has the biggest weight factor which is because of its 

larger load factor. Figure A-5. shows the shear force in abutment piles as a result of 

application of live load to the models. This graph demonstrates that the shear forces do 

not change drastically as the length of the bridge increases. 
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Figure A-5.  Maximum Shear Force in Abutment Piles Due to Live Load 

The ratios of variation of shear forces are shown in Figure A-6. From this graph, it can 

be observed that the shear force does not change drastically when the length or the 

curvature of the bridge changes. All the variations are within plus/minus 26 percent even 

if the length or radius changes three times. 
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Figure A-6.  Normalized Shear Force in Abutment Piles Due to Live Load 

A4 Wind Load 

The shear forces of the abutment piles are given in Figure A-7. This plot shows that up 

to a length of about 600 feet, the shear forces in bridges with different radius of curvature 

are almost the same as that of the straight bridge of equal length. However, as the length 

of the bridge goes beyond 600 feet, the effect of bridge curvature is more profound and 

larger differences are observed.   
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Figure A-7.  Maximum Shear Force in Abutment Piles Due to Wind Load 

Figure A-8. discusses the ratios of the shear forces due to wind load. It is seen that for 

a bridge of about 900 feet length, the shear force in a curved bridge can be about 50 

percent larger than that of a straight bridge. 
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Figure A-8.  Normalized Shear Force in Abutment Piles Due to Wind Load 

A5 Dead Load 

The shear response of the piles of integral steel bridges subjected to dead load is 

depicted in Figure A-9. Like live load, deal load has a decreasing trend as the length of 

the bridge increases. The other remark is that, although the straight bridge shows lower 

shear force for shorter bridges, as the length increases the curves of non-straight bridges 

fall below that of straight ones. 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

300 400 500 600 700 800 900

N
or
m
al
iz
ed

 S
he

ar

Bridge Length (ft)

Ratio of Maximum Shear Forces in Abutment Piles
(V curved / V straight)

Integral Abutment ‐ Piers Bearing Type: Elastomeric

R=infinity'

R=1000'

R=538'

R=300'



326 
 

Figure A-9.  Maximum Shear Force in Abutment Piles Due to Dead Load 

Figure A-10. illustrates the normalized shear force of the abutment piles. It shows that 

the greatest drop in shear force per length increment is for the highest curvature, i.e. 

R=300 feet. When the bridge has lower curvature, the response is closer to that of straight 

bridge, which seems reasonable. 
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Figure A-10.  Normalized Shear Force in Abutment Piles Due to Dead Load 

A6 Concrete Shrinkage 

Figure A-11. shows the shear force of piles when the bridge is subject to the effects of 

concrete shrinkage. The response of straight bridges and curved bridges with large radius 

is a convex curve, while that of highly curved bridges is concave. As such, shear forces 

increase for larger radii of curvature (including infinity) and finally decrease for smaller 

radii (after the maximum point). The other point is that the shear force of curved bridges 

longer than about 700 feet is less than the force of a straight bridge of the same length. 
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Figure A-11.  Maximum Shear Force in Abutment Piles Due to Concrete Shrinkage 

Normalized shear forces of the abutment piles are plotted versus length in Figure A-

12. This picture shows the shear force from another perspective. In shorter bridges, the 

shear forces of piles of highly curve bridges due to shrinkage are about two times larger 

than that of straight bridges. As the length goes up to about 900 feet, the shear force 

drops down to about 60 percent of the shear of the equivalent straight bridge. Also, a 

pivot point with approximate length of 700 feet is observable. 
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Figure A-12.  Normalized Shear Force in Abutment Piles Due to Concrete Shrinkage 

A7 Horizontal Earth Pressure 

Figure A-13. shows the shear forces of the abutment piles when horizontal earth 

pressure is applied to the bridge. The shear force in straight bridges does not depend on 

the length of the bridge which is reasonable. But, in the case of curved bridges, it changes 

as the length changes. For small radii of curvature like 300 feet, it has the largest values 

which tend to be constant for longer bridges. For larger radii like 1000 feet, it shows 

increasing trend as the length increases.  
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Figure A-13.  Maximum Shear Force in Abutment Piles Due to Earth Pressure 

Figure A-14. illustrates the normalized shear forces of piles versus bridge length. As 

can be seen, the values of shear forces in highly curved bridges can be several times 

larger than those of straight bridges of the same length. The smaller the radius of 

curvature of the bridge is, the larger the shear force can be. The highest ratio is for the 

length of about 700 feet for a bridge with radius equal to 300 feet. 
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Figure A-14.  Normalized Shear Force in Abutment Piles Due to Earth Pressure 

A8 Centrifugal Force 

The shear forces of piles created by centrifugal force of the live load are plotted versus 

length in Figure A-15. As can be observed, the piles shear force is approximately 

unchanged upon variation of bridge length or radius. As there is no centrifugal force in 

straight bridges, a normalized shear force is not defined for this load in the same way as 

the other loads. 
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Figure A-15.  Maximum Shear Force in Abutment Piles Due to Centrifugal Force 

A9 Weight of Wearing Surface 

Figure A-16. represents the shear force of abutment piles for different bridge length 

and curvature. As can be seen, the general trend is similar to the other gravity loads. The 

shear force reduces as the length of the bridge increases and the slope of reduction is 

larger for smaller radii of curvature. As expected, the shear force for straight bridges is 

almost the same for different bridge lengths. This is attributed to the fact that this shear 

force in a straight bridge is mainly a function of the end span length which has been the 

same for all studied bridge. 
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Figure A-16.  Maximum Shear Force in Abutment Piles Due to Weight of Wearing Surface 

By dividing the shear force of the curved bridges by that of the straight bridge of the 

same length, the shear forces are normalized which are graphed in Figure A-17. As one 

can observe, the normalized shear graph is very similar to that of dead load. This is 

because these two loadings are of the same nature. Again, it is seen that the rate of 

changes is maximum for smallest radius of curvature. 
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Figure A-17.  Normalized Shear Force in Abutment Piles Due to Weight of Wearing Surface 

A10 Braking Force 

The shear force caused by braking load of the live loads is illustrated in Figure A-18. 

Braking force has one of the smallest weight factors among various loads. That can be 

ascertained by looking the shear values developed in the piles by this loading. The shear 

forces are tiny. The change in the rate of forces which starts for lengths larger than 450 

feet, is because of the change in definition of the load in that range of lengths. The 

normalized shear forces are also shown in Figure A-19.  
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Figure A-18.  Maximum Shear Force in Abutment Piles Due to Braking Force 

Figure A-19.  Normalized Shear Force in Abutment Piles Due to Braking Force 
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A11 Positive Temperature Gradient 

The shear forces due to positive temperature gradient are shown in Figure A-20. As 

can be seen, the shear forces are ignorable compared to the shear forces developed by 

other load effects. The change of these forces is out of order. But it can be seen that the 

shear force of curved bridges has been less than straight bridges in all cases. Figure A-21. 

shows the normalized shear forces. 

Figure A-20.  Maximum Shear Force in Abutment Piles Due to Positive Temperature Gradient 
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Figure A-21.  Normalized Shear Force in Abutment Piles Due to Positive Temperature Gradient 

A12 Negative Temperature Gradient 

Having the smallest weight factor among all loads proves trifling nature of negative 

temperature gradient in design procedure of studied bridges. The shear forces are all less 

than 0.2 kips. Therefore, the regime of their changes is not discussed. The normalized 

shear force is shown in Figure A-23. It shows that this tiny shear force in curved bridges 

can be in some conditions smaller and in some other cases greater than that of straight 

counterpart which is not of great importance. 
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Figure A-22.  Maximum Shear Force in Abutment Piles Due to Negative Temperature Gradient 
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Figure A-23.  Normalized Shear Force in Abutment Piles Due to Negative Temperature Gradient 

A13 Combination of the Loads 

After discussing the effect of bridge length and curvature on the shear force of 

abutment piles of studied bridges, in this section the envelope of shear force in different 

load combinations of AASHTO code is studied in more details. As can be observed from 

Figure A-24. the shear forces of piles in straight bridges increase as the length of the 

bridge increases. But, in curved bridge variations is a function of curvature. In bridges 

with large radius of curvature, the trend is somehow similar to straight bridges, but with a 

more moderate rate of change. In highly curved bridge, the slope of changes reduces so 

that the shear forces can decrease as the length increases.  
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Figure A-24.  Envelope of Maximum Shear Force in Abutment Piles in Different Load 

Combinations 

Figure A-25. shows the normalized factored shear force envelope in the abutment 

piles. it can be observed that the design shear force in a curved bridge of small length 

(L=300’) is larger than that of the equivalent straight bridge. It also shows that depending 

on the bridge curvature, the shear force of curved bridge is equal to that of the straight. 

For bridge longer than that specific length, the shear force starts to be smaller than that of 

the straight bridge so that at the length of about 900 feet, the shear force of the pile can be 

as small as 45 percent of the shear force of straight bridge. This shows that piles of long 

curved bridge are more designable compared to straight bridge with equal length from 

shear design point of view. 
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Figure A-25.     Envelope of Normalized Shear Force in Abutment Piles in Different Load 

Combinations 
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Appendix B  

MATLAB Moment-curvature 

Program 

In this appendix, the MATLAB program developed to analyze the moment capacity of 

the composite steel section at the face of integral abutment is presented: 

 

disp('Units: kips, inch'); 

format long; 

disp('Is it the first time you are running the program (after loading MATLAB)?'); 

first=input('y for "yes" or n for "no" (Default= no): ','s'); 

if isempty(first) 

    first='n'; 

end 

if first=='y' 

    B=zeros(100,1); 

    D=zeros(100,1); 

    material=zeros(100,1); 

end 

% color('green'); 

n_sec = input('Number of section changes? (Default=5)'); 

if isempty(n_sec) 

    n_sec = 5; 
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end 

sum_D=zeros(n_sec,1); 

for i=1:n_sec 

    disp('%%');     disp('%%');     disp('    Width B(i,1)was:'); 

    disp(B(i,1)); 

    disp('Press "Enter" if there is no changes in the section width.'); 

    Btemp= input('Width of the section? '); 

    if isempty(Btemp) 

        aaaa=1; 

    else 

        B(i,1) = Btemp; 

    end 

    disp('%%');    disp('%%');    disp('    Depth(i,1)was:'); 

    disp(D(i,1)); 

    disp('Press "Enter" if there is no changes in the section depth.'); 

    Dtemp= input('Depth of the section? '); 

    if isempty(Dtemp) 

        aaaa=1; 

    else 

        D(i,1) = Dtemp; 

    end 

    disp('%%');    disp('%%'); 

    disp('Material of the section:'); 

    disp('       Enter 1 for GR50 Steel'); 

    disp('             2 for GR60 Steel'); 

    disp('             3 for GR100 Steel'); 

    disp('             4 for NSC'); 

    disp('             5 for HSC'); 

    disp('             6 for UHPC'); 

    %     material(i,1)= input('Select a Material (1 to 6):'); 

    disp('     Material(i,1)was:'); 
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    if material(i,1)== 1; 

        disp('    1: GR50 Steel'); 

    elseif material(i,1)==2; 

        disp('    2: GR60 Steel'); 

    elseif material(i,1)==3; 

        disp('    3: GR100 Steel'); 

    elseif material(i,1)==4; 

        disp('    4: NSC'); 

    elseif material(i,1)==5; 

        disp('    5: HSC'); 

    elseif material(i,1)==6; 

        disp('    6: UHPC'); 

    end 

    disp(material(i,1)); 

    disp('Press "Enter" if there is no changes in the section material.'); 

    mattemp= input('Material of the section? '); 

    if isempty(mattemp) 

        aaaa=1; 

    else 

        material(i,1) = mattemp; 

    end 

end 

% forming the total height 

h=0; 

for i=1:n_sec 

    h=h+D(i,1); 

end 

disp('%%');    disp('%%'); 

disp('Total Height='); 

disp(h); 

% forming the partial depths 
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sum_D(1,1)=D(1,1); 

for i=2:n_sec 

    sum_D(i,1)=sum_D(i-1,1)+D(i,1); 

end 

disp('%%');    disp('%%'); 

n = input('Number of increments in the section (for Default n=1000 Press "Enter")?'); 

if isempty(n) 

    n = 1000; 

end 

% setting breadth and material for each increment 

b=zeros(n+1,1); 

d=zeros(n+1,1); 

mat=zeros(n+1,1); 

for j=1:n_sec-1 

    for i=1:n+1 

        d(i,1)=(i-1)/n*h; 

        if d(i,1)<=sum_D(1,1) 

            b(i,1)=B(1,1); 

            mat(i,1)=material(1,1); 

        elseif d(i,1)>sum_D(j,1) 

            b(i,1)=B(j+1,1); 

            mat(i,1)=material(j+1,1); 

        else 

            b(i,1)=b(i,1)+0; 

        end 

    end 

end 

% k represents the current location of N.A. 

k=round(n/2); 

% integer 

% incofe is the increments of strain 
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incofe=0.00022; 

% n_inc is the number of increments of strain to be considered (ie max strain) 

n_e_inc=100; 

strain=zeros(n+1,1); 

stress=zeros(n+1,1); 

f=zeros(n+1,1); 

m=zeros(n+1,1); 

curvature=zeros(n_e_inc+1,1); 

M=zeros(n_e_inc+1,1); 

M(1,1)=0; 

curvature(1,1)=0; 

%E=20; 

%a=2; 

%Fy=2; 

%ey=Fy/E; 

dy=h/n; 

% an approximate method for calculating the convergence limit 

dummy_force=zeros(n_sec,1); 

for i=1:n_sec 

    if material(i,1)== 1; 

        ff=50; 

    elseif material(i,1)==2; 

        ff=60; 

    elseif material(i,1)==3; 

        ff=100; 

    elseif material(i,1)==4; 

        ff=4; 

    elseif material(i,1)==5; 

        ff=15; 

    elseif material(i,1)==6; 

        ff=18.4; 
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    end 

    dummy_force(i,1)=B(i,1)*D(i,1)*ff; 

end 

dum_force=0.003*sum(dummy_force(:,1)); 

disp('%%');    disp('%%'); 

disp('3/1000 of yield axial force of the section is:'); 

disp(dum_force); 

CL= input('Convergence Force Limit (for Default=0.003*Yield force Press "Enter")?'); 

NoConv=0; 

if isempty(CL) 

    CL = dum_force; 

end 

disp('%%');    disp('%%'); 

disp('RUNNING ...'); 

pause(0.1); 

rup_flag=0; 

if NoConv==0 

    for j=2:n_e_inc+1 

        if (rup_flag==0 && NoConv==0) 

            etop=(j-1)*incofe; 

            for i=1:n+1 

                strain(i,1)=-etop+(i-1)/k*etop; 

                if mat(i,1)== 1; 

                    StressGR50; 

                elseif mat(i,1)==2; 

                    StressGR60; 

                elseif mat(i,1)==3; 

                    StressGR100; 

                elseif mat(i,1)==4; 

                    StressNSC; 

                elseif mat(i,1)==5; 
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                    StressHSC; 

                elseif mat(i,1)==6; 

                    StressUHPC; 

                end 

            end 

            for i=1:n 

                f(i,1)=(stress(i,1)+stress(i+1,1))/2*(b(i,1)+b(i+1,1))/2*dy; 

            end 

            F=sum(f(:,1)); 

            while (abs(F)>CL && NoConv==0) 

                if (F>0 && k<n-1) 

                    k=k+1; 

                    for i=1:n+1 

                        strain(i,1)=-etop+(i-1)/k*etop; 

                        if mat(i,1)== 1; 

                            StressGR50; 

                        elseif mat(i,1)==2; 

                            StressGR60; 

                        elseif mat(i,1)==3; 

                            StressGR100; 

                        elseif mat(i,1)==4; 

                            StressNSC; 

                        elseif mat(i,1)==5; 

                            StressHSC; 

                        elseif mat(i,1)==6; 

                            StressUHPC; 

                        end 

                    end 

                    for i=1:n 

                        f(i,1)=(stress(i,1)+stress(i+1,1))/2*(b(i,1)+b(i+1,1))/2*dy; 

                    end 
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                elseif (F<0 && k>1) 

                    k=k-1; 

                    for i=1:n+1 

                        strain(i,1)=-etop+(i-1)/k*etop; 

                        if mat(i,1)== 1; 

                            StressGR50; 

                        elseif mat(i,1)==2; 

                            StressGR60; 

                        elseif mat(i,1)==3; 

                            StressGR100; 

                        elseif mat(i,1)==4; 

                            StressNSC; 

                        elseif mat(i,1)==5; 

                            StressHSC; 

                        elseif mat(i,1)==6; 

                            StressUHPC; 

                        end 

                    end 

                    for i=1:n 

                        f(i,1)=(stress(i,1)+stress(i+1,1))/2*(b(i,1)+b(i+1,1))/2*dy; 

                    end 

                else 

                    NoConv=1; 

                    disp('There is no convergence!'); 

                end 

                F=sum(f(:,1)); 

            end; 

            for i=1:n 

                m(i,1)=f(i,1)*(i-0.5)*dy; 

            end 

            M(j,1)=sum(m(:,1)); 
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            curvature(j,1)=etop/(k*dy); 

            for i=1:n+1 

                if rup_flag==0 

                    if mat(i,1)== 1; 

                        StrainGR50; 

                    elseif mat(i,1)==2; 

                        StrainGR60; 

                    elseif mat(i,1)==3; 

                        StrainGR100; 

                    elseif mat(i,1)==4; 

                        StrainNSC; 

                    elseif mat(i,1)==5; 

                        StrainHSC; 

                    elseif mat(i,1)==6; 

                        StrainUHPC; 

                    end 

                end 

            end 

        elseif rup_flag==1 

            M(j,1)=M(j-1,1); 

            curvature(j,1)=curvature(j-1,1); 

        end 

        disp(curvature(j,1)); 

        disp(M(j,1)); 

        %     plot(curvature(j,1),M(j,1)); 

    end 

else 

    disp('There is no convergence!'); 

end 

disp('Total Height='); 

disp(h); 
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disp('Maximum Curvarture='); 

disp(curvature(j,1)); 

disp('Maximum Moment='); 

disp(M(j,1)); 

disp('Top Strain='); 

disp(strain(1,1)); 

disp('Bottom Strain='); 

disp(strain(n+1,1)); 

plot(curvature,M); 

% plot stress 

z=zeros(n+1,1); 

for i=1:n+1 

    z(i,1)=h-d(i,1); 

end 

plot(stress,z); 
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