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This thesis describes the development and application of a virtual microstructure 

generator incorporated with post-processing image analysis methods that can be used to 

fabricate a virtual, two-dimensional microstructure of asphaltic mixtures. In the 

generator, geometrical characteristics such as aggregate gradation, aggregate area 

fraction, angularity, orientation, and elongation were used to transform data from a three-

dimensional (3D) mixture into its two-dimensional (2D) microstructure. The 2D virtual 

microstructures were generated from real 3D mixture information of asphaltic 

composites. Resulting virtual microstructures were then compared to real cross-sectional 

microstructure images obtained from actual samples for validation. Comparison 

presented a good agreement between the virtual and real microstructures, which 

demonstrates that the new 3D-2D transformation algorithms were properly developed and 

implemented into the virtual microstructure generator. Although much future work is 

required, the current development is at least sufficient to demonstrate the benefits and 

potential of this effort. Virtual fabrication and testing can result in significant time and 

cost savings compared to more expensive and repetitive laboratory fabrication and 

performance tests of actual specimens.  
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CHAPTER 1  

INTRODUCTION 

To characterize the mechanical properties and performance behavior of asphaltic 

mixtures in pavement structures, mixture specimens have usually been fabricated and 

tested in the laboratory. This laboratory work is time-consuming and expensive, because 

it requires physical fabrication and testing of multiple specimens as well as equipment 

and devices. Therefore, to reduce the cost and time required to perform actual tests, 

researchers (Abbas et al. 2005; Song et al. 2006; You  and Buttlar 2006; Dai and You 

2007; Aragao and Kim 2010, 2011; Aragao et al. 2010, 2011; Karki 2010; Kim et al. 

2010a; Aragao 2011; Lutif 2011) have pursued computational microstructure modeling 

approaches. Computational microstructure modeling is an appropriate way to predict the 

mechanical behavior of mixtures based on the proper characterization of the individual 

mixture constituents and their interactions in the mixtures. Computational microstructure 

modeling does not require a large number of expensive and time-consuming laboratory 

experiments because it typically relies on numerical techniques such as the finite element 

method (FEM) or discrete element method (DEM) on a mostly realistic scale and merely 

requires individual mixture constituent properties as model inputs. 

Although computational microstructure modeling can significantly reduce the 

time and costs required to conduct mixture tests, it still requires the physical fabrication 

of mixture specimens and their further processes to obtain mixture microstructures. In 

two-dimensional (2D) modeling approaches, a digital image processing technique is 

usually necessary to treat surface images obtained from a mixture. As illustrated in Figure 
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1.1, after sample fabrication, the samples are sawn to form the physical 2D surface 

microstructure which is digitalized using electronic devices, such as scanners or digital 

cameras. The 2D raw image is then rendered in black and white to distinguish the 

multiple phases (such as asphalt and aggregates) in the mixture. The use of the digital 

image process has significantly improved the microstructure characterization and 

modeling of asphalt mixtures, but this method is also time consuming and labor intensive. 

Another issue is that the digital image processing technique is limited by the resolution of 

the digital image device, and is thus unable to capture the details of microstructure 

characteristics unless a very high resolution is adopted. 
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(a) physical microstructure fabrication 

 

 
(b) virtual microstructure fabrication 

 

Figure 1.1 Physical fabrication vs. virtual fabrication (Souza 2009).  

 

Due to the limitations and practical drawbacks of computational modeling with 

physically obtained mixture microstructures, some researchers (Zhang 2003; Bullard et 

al. 2004; Stroeven et al. 2006; Souza 2009) have pursued virtual microstructure 

generation and its use for virtual laboratory testing. As illustrated in Figure 1.1, which 

Fabrication Coring Cutting Digitalization Treatment

Digital Image ProcessDigital Image Process
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compares digital image processing of physical mixture microstructure and virtual 

microstructure generation, virtual microstructure generation is much faster and more 

cost-effective than digital image processing of physical microstructure. However, 

accurate algorithms are necessary in the process of virtual microstructure generation in 

order to obtain precise representations of the real mixtures. 

The precise representation of the real microstructures through virtual 

computational generation is not a trivial task. In particular, composites such as asphaltic 

mixtures present significant heterogeneity due to aggregate particles that are irregularly-

shaped, of different sizes, and randomly embedded in the asphaltic matrix. As illustrated 

in Figure 1.2, aggregates in a three-dimensional (3D) real sample can be misrepresented 

in an arbitrary 2D approximation. As can be seen in the figure, 2D images arbitrarily 

obtained from a cut 3D asphalt sample do not represent the same microstructure 

characteristics (in particular, the area fraction of particles and gradation of particles) due 

to somewhat unclear relationships between 3D and 2D. Therefore, the direct use of the 

volumetric mixture characteristics such as the 3D gradation from a typical aggregate 

sieve analysis, as an input to generate a 2D microstructure, is not appropriate. Zhang 

(2003) demonstrated in his dissertation that, when the 3D particle gradation is used to 

generate a 2D virtual microstructure, virtually generated 2D microstructures have many 

more large aggregate particles and larger particle density than 2D microstructures from 

cut surfaces of an actual 3D sample. This implies that volumetric aggregate gradation 

cannot be used directly to generate 2D virtual microstructures. 
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Figure 1.2 Difference between 3D and 2D aggregate representations (Zhang 2003). 

 

To achieve the conversion from the actual 3D microstructure to its 2D 

representation in a more scientific manner, some studies (Higgins 2000; Zhang 2003; Hu 

and Stroeven 2006; Brandes and Hirata 2009; Souza 2009) have employed inverse 

stereology which is, as the name implies, the inverse process of general stereology. 

Stereology (Underwood 1970; Zhang 2003) is the process of predicting the 3D 

geometrical structure from 2D information, namely the geometry of cross-sections on 

several parallel planes. One of the most commonly used approaches is based on a 

statistical-geometrical approach; it measures a large number of 2D images to build up an 

actual picture of the average 3D structure. In an analogous manner, inverse stereology 

reconstructs the 2D cross-sections based on given 3D volumetric information. As 

illustrated in Figure 1.3, Zhang (2003) used the inverse stereology concept to convert the 
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3D volumetric microstructure into a 2D apparent microstructure in a cut surface.  

Generally, inverse stereology could improve virtual microstructure generation, but it still 

presents several limitations and challenges. The percent passing for 2D was always larger 

than that of 3D for the same sieve size, which means that there are more fine aggregates 

in 2D cut sections. Therefore, deviations in the aggregate gradation and area fraction 

between the virtual microstructure and physical microstructure exist, which become 

larger when one considers other geometric characteristics: angularity of aggregates, 

aspect ratio of aggregates, and orientation of aggregates in the mixture. 

     

1.1. STUDY OBJECTIVES 

The primary objective of this study is to develop an accurate, time-efficient, and lower-

cost method for virtual microstructure generation of particulate composites in general, 

and of asphaltic mixtures in particular. Successful development of the method can 

potentially replace the physical sample fabrication and testing of mixture specimens, 

which is time-consuming and expensive. Some specific objectives of this study are as 

follows: 

 To propose a rational method for converting 3D volumetric mixture gradation (which 

is known and given as an input) to 2D microstructure gradation; 

 To propose a rational method for converting 3D volume fraction (which is known 

and given as an input) of each phase in the asphaltic mixture to 2D area fraction; 

 To validate the newly developed methods by comparing the microstructure 

characteristics of virtual generations and actual microstructures from physical cuts of 

mixture samples.  
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Figure 1.3 2D gradation through inverse stereology:  

(a) 3D specimen; (b) 2D cut surfaces; (c) 3D gradation; (d) 2D gradation (Zhang 2003).  
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CHAPTER 2  

VIRTUAL MICROSTRUCTURE GENERATION  

Virtual microstructure generation as an alternative to physical fabrication is described in 

this chapter. Since the virtual specimen must imitate the geometrical characteristics of the 

actual specimen, virtual fabrication first utilizes the geometrical properties of aggregates, 

such as gradation, angularity, and aspect ratio. Then, the volume fraction and orientation 

of aggregates in the mixture are considered to appropriately represent aggregate particles 

in the mixture. As discussed in the following subsections, 3D to 2D conversion is 

necessary for the aggregate gradation and volume-area fraction, while other geometric 

characteristics (i.e., angularity, aspect ratio, and orientation) are based on 2D 

measurements and their statistical analysis results. Figure 2.1 summarizes how the virtual 

generation process is achieved in this study.  

 

 

Figure 2.1 The virtual microstructure generation process employed in this study. 
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2.1. AGGREGATE GRADATION: 3D TO 2D TRANSFORMATION 

Many studies have assumed, for simplicity, an equal third dimension for all the particles 

in the cross-section (Mora et al. 1998; Masad et al. 1999; Kwan et al. 1999; Marinoni et 

al. 2005; Brandes and Hirata 2009). However, this assumption is not clearly valid for the 

accurate transformation of asphaltic composites from 3D to 2D due to the irregular-

shaped particles randomly embedded in the mixture. To improve the transformation 

accuracy, some other researchers (Higgins 2000; Zhang 2003; Bullard et al. 2004; Hu and 

Stroeven, 2006; Stroeven et al. 2006; Zelelew et al. 2008; Brandes and Hirata 2009; 

Souza 2009) have pursued different types of stereology methods, which certainly better 

represent the physics but remain limited in various ways.  

3D aggregate particles in the mixtures present different 2D cross-sections based 

on different cutting planes. For instance, a 3D particle shown in Figure 2.2 is retained on 

standard sieve No. 8, but its two cross-sections (A-A and B-B) present different 

gradations. Thus, a proper transformation algorithm is necessary in the virtual generation 

process to convert the 3D gradation information into a 2D microstructure gradation when 

the mixture is a particulate composite in which particles with different sizes are randomly 

oriented in the mixture. 
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Figure 2.2 A 3D particle and its different cross-sections: 

 (a) the 3D particle and its 3D sieve size; (b) two different sections; (c) cross-section A-

A; (d) cross-section B-B. 

 

The 3D-2D gradation transformation method developed in this study is based on 

statistical simulation of individual aggregate particles that are defined by five imaginary 

geometric parameters (i.e., L, v, lM, lm, a). 

As illustrated in Figure 2.3, an arbitrary aggregate particle is virtually generated 

with a maximum length (L) and volume (v). Then, the largest cross-section perpendicular 

to the maximum length can be defined by a major axis (lM), minor axis (lm), and an area 

(a). These five geometric characteristics defining an arbitrary particle are simulated by 

the following steps. 
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Figure 2.3. Five geometric characteristics defining an arbitrary aggregate particle. 

 

Step 1: The maximum length (L) of the particle is generated randomly as a length 

between the diagonal distance of a sieve eye and the average maximum length of 

particles (AMLP) that are retained on the sieve. The AMLP is a physical quantity that can 

be measured from simple laboratory tests of aggregate particles. To conduct the whole 

process in a normalized manner, C-value, a ratio of AMLP to the sieve size (S), is 

introduced as follows: 

 

S

AMLP
C 

          [2.1]
 

 

Step 2: The major axis of the cross-section (lM) is virtually generated as a random 

length between the diagonal lengths of two sequential sieve sizes to retain the particle on 

the smaller sieve, as illustrated in Figure 2.4.   
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Figure 2.4 Major and minor axes in the cross-section of a randomly generated particle. 

 

Step 3: The minor axis (lm) of the cross-section, which is smaller than the major 

axis, is randomly generated as a length less than the major axis (lM). 

Step 4: The area (a) of the cross-section is a random area defined by a randomly 

generated ratio (ra) multiplied by the area (ar) of a reference cross-section (an ellipse with 

the same major and minor axes). Figure 2.5 illustrates this.  
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Figure 2.5 Area of a random particle and its reference cross-sectional area. 

 

Step 5: Similar to Step 4, the volume (v) of the particle is a random volume 

defined by a randomly generated ratio (rv) multiplied by the volume (vr) of a reference 

object (a cylinder with the same cross-sectional area (a) and maximum length (L)). Figure 

2.6 illustrates this. 

 

 

Figure 2.6 Volume of a random particle and its reference volume of an object. 
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Step 6: The 3D aggregate particle generated by the five random geometric 

parameters is cut to produce a random plane. The 2D gradation of the cut plane is then 

determined. This process is repeated in a large number of simulations for all different 

aggregates until a satisfactory level of statistical convergence is met for all sieve sizes. 

Through this computational simulation and resulting statistical analysis, the 2D gradation 

of a mixture can be obtained from the 3D mixture information. This 3D to 2D gradation 

transformation algorithm was implemented in the virtual microstructure generator.  

 

2.2. AGGREGATE ANGULARITY: 3D TO 2D TRANSFORMATION 

Aggregate angularity can be defined as the measurement of the sharpness of the corners 

of a particle. Thus, a rounded particle can be classified as a particle with low angularity 

and a non-rounded particle can be classified as a particle with high angularity. Figure 2.7 

(Sukhwani et al. 2006) illustrates the geometric characteristics of an aggregate particle to 

help clarify the angularity and other shape features. 

 

 
 

Figure 2.7 Geometric characteristics of an aggregate particle (Sukhwani et al. 2006). 
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Angularity can be estimated by gradient methods. The gradient method is based 

on the concept of gradient vectors. The direction of the gradient vector is used to 

calculate the measure of angularity of aggregate particles. In the gradient method, the 

direction of the gradient vector for adjacent points changes rapidly at the edge if the 

corners are sharp. On the other hand, the direction of the gradient vector changes slowly 

for adjacent points on the edge of the particle for rounded particles. Figure 2.8 

exemplifies the concept with two cases: a rounded particle and an angular particle. 

Clearly, the change in the gradient vectors in the angular particle is much more rapid than 

the change from the rounded particle.  

 

 
 

Figure 2.8 Gradient method to quantify aggregate angularity (Souza 2009). 

 

Angles of the gradient vectors estimated at the total number of points on the edge 

of the particle are accumulated to finally produce the angularity index of the aggregate 

particle. The angularity index based on the gradient method (AIG) is defined as follows 

(Masad 2004):  
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3

1

3

n

i

iiGAI           [2.2] 

where    = angle of the gradient vector with the horizontal axis of the image; 

i  = the ith point on the edge of the particle; and 

n  = the total number of points on the edge of the particle. 

 

As noted in Figure 2.8 and Equation [2.2], evaluation of aggregate angularity is 

based on the analysis of a 2D image of aggregates by monitoring differences among the 

gradient vectors at different edge points of the aggregate image. Therefore, the number of 

edge points selected affects the final value of angularity index.   

The aggregate imaging system (AIMS), which is one of the approaches to 

characterize aggregate angularity, has been developed and popularly used by many 

researchers and practitioners. AIMS consists of a video microscope, video camera, data 

acquisition system, lighting system, automated carriage, and associated software. The 

aggregate particles are randomly spread on a disk tray. A video microscope is coupled 

with a black-and-white video camera to acquire images. The images are then analyzed to 

identify aggregates’ geometric characteristics, including angularity, based on the gradient 

method.  

The AIMS angularity index has been adopted by a previous study (Souza 2009) to 

represent aggregate sharpness in the mixture during the process of virtual microstructure 

generation. Sousa (2009) recommended using 40 edge points for angularity index 

calculation instead of the large number of points utilized in the AIMS method. He 

selected the number of points based on two limiting criteria: the image quality of the 

particles and computational efficiency in virtual microstructure generation. He found a 
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strong linear relationship between the AIMS angularity index and a 40-point angularity 

index, as demonstrated in Figure 2.9. This indicates that the use of 40 edge points in the 

virtual generation of aggregate particles in the 2D microstructure is approximate but 

sufficient to accurately represent realistic characteristics of aggregate angularity in actual 

mixtures. Based on this implication, this study also used the 40-point angularity index 

and resulting linear relationship in the conversion process from the actual angularity to 

the virtual angularity.   

 

 
 

Figure 2.9 Relationship between AIMS angularity and 40-point angularity. 

 

2.3. AGGREGATE ELONGATION: 3D TO 2D TRANSFORMATION 

Among various indicators to characterize aggregate elongation, this study uses a simple 

indicator, aspect ratio (AR), which is defined in this study as the ratio of the major axis 

(lM) to the minor axis (lm) of a particle. Figure 2.10 illustrates the aspect ratio with two 

different cases: high elongation and low elongation.   
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(a)     (b) 

Figure 2.10 Elongation by aspect ratio: (a) high elongation; (b) low elongation. 

 

As mentioned earlier, when an aggregate particle is cut, its 2D representation can 

be different from the original 3D form. Therefore, 2D aggregates obtained from the cut 

planes may result in different aspect ratios because they are dependent on several factors, 

including particle shape and cutting directions. Such dependence is not only complex but 

also highly mixture specific; thus, the best practical approach is probably to use a digital 

image technique and a corresponding statistical analysis of cut planes obtained from 

some representative mixtures. To that end, Souza (2009) selected three different mixtures 

(two dense-graded mixtures with different nominal maximum aggregate sizes (NMAS) 

and one gap-graded mixture) and conducted image analyses of several cut planes taken 

from individual mixtures. From the image analysis, it has been noticed that the aspect 

ratio is mostly between 1 and 2, although the elongation trend depends somewhat on the 

size of aggregates in the mixture. Based on this finding, and for simplicity, the elongation 

parameter (i.e., aspect ratio AR) was implemented in the virtual microstructure generator 

in such a way that the aggregates are randomly elongated up to twice their width 

following a uniform random distribution.  
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2.3. TRANSFORMATION: 3D VOLUME FRACTION TO 2D AREA FRACTION 

Similar studies (Zhang 2003; Souza 2009) have assumed that the 2D area fraction (AF) of 

aggregates is equal to the 3D volume fraction (VF). Since the aggregate particles are in 

random 3D shapes and present different cut surfaces, such a simple assumption cannot be 

made. Therefore, in this study, a new transformation method from the VF to AF is 

developed, as expressed by the following steps.  

Step 1: The original 3D mixture sample (denoted hereafter as the first sample), a 

unit cube (1 × 1 × 1), is transformed to a new 3D mixture sample (denoted hereafter as 

the second sample). As shown in Figure 2.11, the second sample is prismatic (1 × 1 × h) 

with a constant unit square cross-section. Aggregate particles in the first sample are also 

transformed to prismatic bars in the second sample with the same volume fraction of 

aggregates. Since the aggregates in the second sample are prismatic bars, the AF of 

aggregates in the second sample (i.e., AF2) is equal to the VF of the second sample (VF2) 

and the VF of the first sample (VF1). Correspondingly, the resulting height (h) of the 

second sample does not affect the AF and VF. In addition, because the first sample is a 

unit cube, the aggregate VF of the first sample (VF1) is the same as the volume of 

aggregates in the first sample (V1), and the aggregate AF of the second sample (AF2) is 

equal to the cross-sectional area of aggregates in the second sample (A2). All of these 

relations are summarized in Equation [2.3]. 
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(a)       (b) 

Figure 2.11 Transformation from (a) original sample (first sample) to (b) second sample. 

 

22211 AAFVFVFV 
        [2.3] 

where, V1 = volume of aggregates in the first (original) sample; 

VF1 = VF of aggregates in the first sample; 

VF2 = VF of aggregates in the second sample;  

AF2 = AF of aggregates in the second sample; and 

A2 = area of aggregates on the cross-section of the second sample. 

 

The h-value of the second sample can be estimated from the gradation 

transformation discussed earlier: Section 2.1. To make this estimation, all of the 

simulated particles in the gradation transformation process are first transformed to 

prismatic bars with the same cross-sectional areas. Then, a quantity (α) is obtained by 

dividing the volumes of all simulated particles by the areas of their cross-sections.  
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where, α = average height of all particles; 

vi = volume of ith particle simulated; 

ai = area of ith particle simulated; and 

n = total number of particles simulated.  

 

The h-value is then calculated by multiplying the α-value by the aggregate 

volume fraction of the second sample, VF2 as follows:  

 

2VFh 
          [2.5] 

 
 

Step 2: In this step, the second prismatic sample is transformed to another 

prismatic sample (denoted hereafter as the third sample) with unit height (1 × 1 × 1), as 

illustrated in Figure 2.12. The same volume of aggregates in the second sample is 

maintained for the third sample; thus, the cross-sectional area of aggregates of the third 

sample is different from the cross-sectional aggregate area of the second sample. Through 

this second transformation, the following relationship can be written: 

 

hAVAV  2233 1
        [2.6] 

 

where, V3 = volume of aggregates in the third sample; and 

A3 = area of aggregates on the cross-section of the third sample. 
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(a)       (b) 

Figure 2.12 Transformation from (a) second sample to (b) third sample. 

 

Combining Equations [2.3], [2.5], and [2.6] yields the following relationship: 

 

2

23 )(VFA 
         [2.7] 

 

 

Since the aggregates in the third sample are also prismatic bars embedded in a 

unit square cross-section, the AF of aggregates in the third sample (i.e., AF3) is equal to 

the cross-sectional area of aggregates in the third sample (A3). With this relationship and 

the relationship in Equation [2.3] indicating that the aggregate volume fraction of the 

second sample (VF2) is equal to the aggregate volume fraction of the original sample 

(VF1), the following equation linking VF1 to AF3 can be written as follows: 

 

2

13

2

23 )()( VFAFVFA  
       [2.8] 
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Equation [2.8] implies that the aggregate AF necessary to achieve the 2D virtual 

microstructure generation can be simply estimated by the aggregate VF of the actual 3D 

mixture and the α-value which is obtained from the particle simulations in the process of 

3D-2D gradation transformation. This 3D volume to 2D area transformation algorithm 

was implemented in the virtual microstructure generator.  

 

2.4. AGGREGATE ORIENTATION: 3D TO 2D TRANSFORMATION 

Aggregate orientation can be determined by measuring the angle between the major axis 

of each aggregate and a horizontal line, which ranges from 0
o
 to 180

o
, as illustrated in 

Figure 2.13 (Zhang 2003). It is commonly accepted that aggregates in asphalt mixtures 

are randomly oriented; however, the compaction process might induce preferred 

orientation, as several studies (Zhang, 2003; Souza, 2009) have demonstrated.  

 

 
 

Figure 2.13 Definition of aggrerate orientation (Zhang 2003). 

 

Similar to other geometric factors discussed earlier, 2D aggregates observed from 

cut planes of asphalt mixture samples present orientation characteristics different from 

their actual 3D aggregate particles in the mixtures as a result of several factors, including 

particle shape and cutting directions. Such dependence is not easy to identify and also 
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highly mixture specific. Therefore, as pursued in the analysis of particle aspect ratio, the 

digital image technique and corresponding statistical analysis of cut planes obtained from 

several representative asphalt mixtures was conducted by Souza (2009). He selected three 

different mixtures (i.e., two dense-graded mixtures with 9.5-mm NMAS and 12.5-mm 

NMAS, respectively, and one gap-graded SMA mixture) and conducted image analyses 

of multiple cut planes taken from individual mixtures. Figure 2.14 shows analysis results 

of the aggregate orientation. As can be seen in the figure, aggregates of all three types of 

mixture follow a similar trend, having a very clear concentration of aggregates with an 

orientation angle between 40
o
 and 50

o
. 

 

 
Figure 2.14 Analysis results of aggregate orientation from three different mixtures. 

 

Based on the finding by Souza (2003), and for simplicity, the average cumulative 

distribution curve presented in Figure 2.15 was implemented in the virtual microstructure 

generator to represent the orientation characteristics of aggregates.  
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Figure 2.15 Average cumulative distribution curve of aggregate orientation. 

 

2.1.  COMPUTATIONAL GENERATION OF VIRTUAL MICROSTRUCTURE 

Based on the 3D gradation, 3D volume fraction, orientation, elongation, and angularity, 

the virtual 2D aggregates are generated and embedded in the virtual mixture. To generate 

each particle retained on a specific sieve but passing one larger sieve, 40 points are 

placed between two squares in which the edge of the inner square is equal to the eye 

width of the smaller sieve size, and the edge of the outer square is equal to the eye width 

of the next consecutive larger sieve size. This process is illustrated in Figure 2.16(a) and 

2.16(b). In order to control the angularity of the particle, the 40 points are interpolated by 

different types of splines to obtain the target angularity, which is illustrated in Figure 

2.16(c) and 2.16(d).  

Subsequently, the aggregate is elongated, rotated, and finally randomly placed in 

the virtual 2D sample area. When the aggregate is placed, overlapping with other 

aggregates that have already been placed is checked. When overlapping occurs, the 

aggregate is placed in a different location. This process continues until all aggregates are 
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generated to meet their target values of gradation and volume fraction. Aggregate 

generation starts from the largest and proceeds to the smallest sieve size. Figure 2.17 

illustrates the steps (or algorithm) conducted to complete the virtual microstructure 

generation in a form of flowchart. 

 

 
 

Figure 2.16 Aggregate generation process: 

(a) two consecutive sieves; (b) 40 points randomly placed between the two sieves; (c) 

smooth aggregate; (d) angular aggregate. 
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Figure 2.17 Flowchart of the virtual microstructure generation. 
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The procedure presented above and transformation algorithms developed for 

converting the 3D volumetric inputs into the 2D characteristics of individual geometric 

parameters are implemented into virtual microstructure generator software, namely VMG 

1.0, which was originally developed by Souza (2009). Figure 2.18 shows the interface of 

the software. By inputting the virtual microstructure type (either rectangular or circular), 

dimension of the microstructure, 3D volume fraction of aggregates, 3D gradation of 

aggregates, and AIMS aggregate angularity, VMG 1.0 can generate the graphical 2D 

virtual microstructure image with data files. VMG 1.0 was written using C
++

 language 

based on object oriented programming. 

 
 

Figure 2.18 Interface of the software, VMG 1.0. 
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CHAPTER 3  

VALIDATION OF VIRTUAL MICROSTRUCTURE  

The validation of the virtual microstructure generator developed in this study is presented 

in this chapter. Among various possible approaches, this study adopted the validation by 

comparing outputs resulting from the virtual microstructure generator and analysis results 

obtained from real cross-sectional images of asphalt mixtures with the same geometric 

inputs, such as 3D gradation, volume fraction, AIMS angularity, aspect ratio, and 

orientation of aggregate particles. To that end, a typical asphalt concrete mixture was 

selected for this study, and its geometric inputs necessary for the virtual generation are 

summarized in Table 3.1.  

 

Table 3.1 Geometric inputs of the asphalt mixture selected in this study for validation.  

Geometric Characteristic Values (Inputs) 

3D 
Aggregate 

Gradation 

Sieve Size (mm) 19.0 12.7 9.51 4.75 2.38 1.19 0.60 0.30 
AMLP - 26.25 19.95 12.35 5.66 3.54 - - 

C - 2.10 2.10 2.60 2.40 3.00 - - 
% Passing 100 95 89 72 36 17 7 4 

3D Aggregate Volume Fraction 17.9% 
AIMS Aggregate Angularity 2779 
Aggregate Elongation (AR) Uniform distribution of AR (1 to 2) 

Aggregate Orientation () Cumulative distribution curve (Figure 2.15) 

 

 

Using the geometric inputs, a total of six virtual microstructure images were 

generated, and they were compared with the same number of real cross-sectional 

microstructure images obtained from the mixture sample compacted. To conduct image 

analyses of the microstructures, a well-known shareware, ImageTool (Wilcox, Dove, 

McDavid, & Greer, 2002), was used. Image analysis results of the virtual and real images 

were then statistically compared to determine whether those two approaches yield 
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statistically identical microstructure characteristics. A good agreement between the two 

approaches indicates that the virtual microstructure generator has been well developed 

and can potentially replace the physical fabrication and testing of asphaltic mixtures, 

which can lead to significant time and cost savings. Figure 3.1 illustrates the overall 

process of the validation effort adopted in this study.   

 

 

Figure 3.1 Overall process of the validation effort adopted in this study.  

 

3.1. MICROSTRUCTURE IMAGES: REAL AND VIRTUAL 

As mentioned earlier, the asphalt mixture was compacted using a Superpave gyratory 

compactor to produce asphalt concrete samples (150mm in diameter and 175mm in 

height). The compacted sample was cut vertically using a diamond saw, and the vertical 

section was placed on a high-resolution scanner to capture inner microstructure images.  

The virgin inner microstructure image was then processed with sequential image analysis 

stages as proposed by Papagiannakis et al. (2002). Each surface of the asphalt samples 

was digitally scanned at a resolution of 100 pixels per inch, where a pixel is defined as 
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the smallest square unit with the same length on each side. At a resolution of 100 pixels 

per inch, each pixel was 0.250.25 mm
2
 in size. The original scanned images of the 

asphalt mixture samples were then cropped to a length of 90mm and a width of 90mm to 

make edges clearer, as presented in Figure 3.2(a). The two-dimensional original color 

images were converted into black and white images by defining a threshold level to 

identify two separate phases: coarse aggregates in white and the asphalt matrix phase in 

black (as shown in Figure 3.2(b)). The black and white images of the mixture 

microstructure required further treatment, since a number of boundaries between the 

coarse aggregates and the asphalt matrix were indistinguishable, which was not the case 

in the original images. This blurring typically occurs during the image conversion 

process. Therefore, thin boundaries were drawn manually between the aggregates and the 

matrix phase by comparing the black and white image with the color image. This process 

was performed with great care so as not to violate the mixture microstructure 

characteristics, such as gradation, orientation, and angularity. Figure 3.2(c) shows a final 

black and white image after the treatment of unclear aggregate boundaries was 

completed. The treated image was then finally converted to an image in which fine 

aggregates (passing No.4 sieve) were removed as shown in Figure 3.2(d). This process 

was intended for better comparison with results from the virtual microstructure generator, 

which is limited to representing the actual level of aggregate area fraction and fineness at 

the current stage of development. Figure 3.3 presents all six real microstructures after 

image treatment.   
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(a)      (b) 

 

   
(c)      (d) 

 

Figure 3.2 Digital image acquisition process of asphalt microstructure: 

(a) original scanned color image; (b) untreated black and white image; (c) treated black 

and white image; (d) final black and white image without fine aggregates.  
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Figure 3.3 Six real microstructure images obtained from the asphalt mixture.  

 

For comparison with the real microstructure images, the same number (six) of 

images were then produced using the virtual microstructure generator, VMG 1.0, with the 

geometric inputs presented in Table 3.1. Since the validation is based on statistical 

analysis as mentioned earlier and is discussed later in more detail, a large number of 

images would be preferred in order to reach more representative findings and 

conclusions; however, this study utilized the six images because of limited time. Figure 

3.4 presents the six microstructure images virtually generated from VMG 1.0.       
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Figure 3.4 Six virtual microstructure images generated from VMG 1.0.  

 

3.2. IMAGE ANALYSIS AND POST-PROCESSING 

For both real and virtual microstructure images, the shareware ImageTool was used to 

identify the geometric characteristics of aggregate particles in the images so that the 

overall microstructure characteristics of the real and virtual images could be compared. 

ImageTool can recognize individual particles and identify various geometric 

characteristics of each particle, such as the area (a), the major axis (lM), the minor axis 

(lm), the angle of the major axis from horizontal line (θM), the angle of the minor axis 

from horizontal line (θm), and coordinates (Xi, Yi) at corners (i) of the particle boundary.   

From the five geometric values of aggregates, the aggregate area fraction (AF), 

aspect ratio (AR) of aggregates, and orientation of aggregates can be easily identified by 

estimating the percentage of the area occupied by aggregates, the ratio of major axis (lM) 
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to minor axis (lm), and the angle of the major axis from the horizontal line (θM), 

respectively. Therefore, those three microstructure characteristics (i.e., area fraction, 

elongation, and orientation of aggregate particles in the mixture) from the virtual 

generation can be easily validated.  

Regarding the validation of aggregate gradation, this study attempted a new post-

processing approach for more accurate evaluation. Similar studies (Masad et al.1999; 

Kim et al. 2009; Karki 2010; Kim et al. 2010; Aragao 2011; Lutif 2011) have performed 

2D sieve analysis of cross-sections with simplified methods, such as comparing the 

length of the major axis or the area of particles with sieve eyes. The results of those 

simplified approaches do not accurately match with the actual 2D gradation of the 

mixtures because of the irregular shapes of aggregates. The new approach proposed in 

this study converts actual irregular-shaped aggregate particles into a simple geometry to 

perform the sieve analysis without violating the passing/retaining criterion.  

Figure 3.5 illustrates the new post-processing approach for aggregate gradation. 

As shown in the figure, an aggregate is modeled as a general ellipsoidal particle (Figure 

3.5(a)). Then, the particle shape at the end of the major axis and the length of the major 

axis play a significant role in affecting passing (or being retained on) the sieve eye, while 

the shape in the middle of the particle does not change its gradation. The ellipsoidal 

particle is then converted into an ideal geometry which is composed of a rectangle and 

two semicircles attached to both ends of the rectangle, as shown in Figure 3.5(b). The 

ideal particle geometry in Figure 3.5(b) is not different from the general aggregate shape, 

Figure 3.5(a) in terms of its gradation; therefore, the ideal particle can be used to check 

its gradation characteristics. Two lengths are required to define the ideal particle: the 
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length of the major axis (lM) and the diameter of the semicircles which is equal to the 

length of the minor axis (lm) of the ideal particle.  

 

 
                               (a)      (b) 

Figure 3.5 New post-processing approach for aggregate gradation analysis.  

 

In the gradation analysis, the diagonal length of the square, which is in contact 

with the ideal particle shown in Figure 3.5(b), is estimated and compared to the diagonal 

length of sieve eyes to determine if the particle passes or is retained on the sieve. The 

diagonal length of the square, denoted herein as Length Index (LI), can be calculated 

geometrically by using the aggregate geometry information (lM, lm, θM, and θm) obtained 

from the ImageTool analysis. A finally derived equation can be written as follows: 

 

   MmmMM llllLI   cos122 '

     [3.1] 
 

 

Lastly, the angularity of aggregates is an important geometric property that needs 

to be estimated to validate the quality of VMG 1.0. As mentioned earlier, AIMS 
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angularity is used as an input in VMG 1.0, but a different angularity index based on 40 

edge points was implemented in the software to represent the target AIMS angularity. 

This is because the 40-point angularity index, although it is approximate, presents a 

strong relationship with the AIMS angularity (Souza 2009) and can sufficiently simulate 

the realistic characteristics of aggregate angularity in actual mixtures with much less 

computational effort.  

Using the ImageTool analysis results (i.e., coordinates (Xi, Yi) identified at sharp 

corners (i) of an arbitrary aggregate particle), average angularity index (AAI) was 

calculated to equivalently compare the angularity characteristics of aggregates 

represented by virtual images and real microstructures. AAI represents aggregate 

angularity by taking an average of angles from gradient vectors (i) at sharp corners, 

instead of taking the summation of the angles from gradient vectors at corners as the 

AIMS estimates. This is beneficial to removing the effects of image resolution and the 

number of edge points selected per particle. The following expression is used to calculate 

AAI.       
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         [3.2] 
 

where ij = gradient vector at ith corner of jth particle;  

m = total number of particles analyzed; and 

n = total number of corners of jth particle.  
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To check the validity of the new angularity index (AAI) for post-processing, AAI 

values were compared to the 40-point angularity index values with the same aggregate 

particles. As expected and as demonstrated in Figure 3.6, both indices are correlated with 

a strong linear relationship, which implies that the use of AAI is appropriate for validation 

of the virtual microstructure generator in terms aggregate angularity.  

 
 

Figure 3.6 Relationship between AAI and 40-point angularity index. 

 

3.2.  ANALYSIS RESULTS AND DISCUSSION 

Analysis results of individual images from the real and virtual microstructures are 

summarized in Table 3.2. Mean values and standard deviations of each case are also 

presented in the table for statistical analyses. Since the number of samples for each case 

is limited to only six with normal distributions assumed, the Student t-test was selected to 

perform statistical analysis comparing real and virtual microstructures. The null 

hypothesis for this test is μ1- μ2 = 0 (or μ1 = μ2) against μ1 < > μ2 with a 0.5% 

significance level. If the P-value (Pr. > |t|) is less than the significance level, the null 

hypothesis is rejected and it is concluded that the two mean values are significantly 
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different. The results of the statistical analysis are presented in Table 3.3. As can be seen 

in the table, all of the null hypotheses except the elongation were accepted, which 

indicates that geometric characteristics between the virtual microstructures and real 

microstructures are statistically identical for various geometrical characteristics excluding 

the aggregate elongation with a significance level of 0.5%. The assumption made to 

aggregate elongation in the previous studies was not valid. It further demonstrates that the 

new 3D-2D transformation algorithms were properly developed and implemented into the 

virtual microstructure generator, VMG 1.0.   

 

Table 3.2 Image analysis results: real microstructures vs. virtual microstructures. 

Geometric Characteristics 1 2 3 4 5 6 Mean St. Dv. 

2D 
Aggregate 

Gradation 

Sieve Size Real Microstructure Images 

12.7mm 25.4 28.6 18.8 19.0 21.2 46.4 26.6 10.5 

9.51mm 15.5 14.3 20.9 23.7 27.0 13.1 19.1 5.6 

4.75mm 59.2 57.0 60.3 57.4 51.8 40.5 54.4 7.4 
Sieve Size Virtual Microstructure Images 

12.7mm 32.4 28.7 27.8 25.8 26.5 24.8 27.7 2.7 

9.51mm 15.2 19.6 16.1 20.8 19.2 21.5 18.7 2.5 

4.75mm 52.3 51.7 56.0 53.5 54.3 53.2 53.5 1.5 

Aggregate Area Fraction (AF) 

Real Microstructure Images 

23.1 25.3 28.9 29.1 26.5 29.3 27.0 2.5 
Virtual Microstructure Images 

28.0 28.1 26.8 28.2 27.7 27.5 27.5 0.5 

Aggregate Angularity (AAI) 

Real Microstructure Images 

61.2 64.7 63.5 65.8 66.4 66.0 64.6 2.0 
Virtual Microstructure Images 

66.1 64.1 61.5 64.5 66.8 66.4 64.9 2.0 

Aggregate Orientation ( 

Real Microstructure Images 

31.3 28.6 30.7 29.4 27.3 31.3 29.8 1.6 
Virtual Microstructure Images 

30.2 29.1 33.6 20.3 33.3 33.8 30.1 5.2 

Aggregate Elongation (AR) 

Real Microstructure Images 

2.44 2.27 2.11 2.44 2.27 2.23 2.29 0.13 
Virtual Microstructure Images 

1.58 1.66 1.63 1.57 1.66 1.63 1.62 0.04 
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Table 3.3 Statistical analysis results.  

Geometric Characteristics t-test P-value (Pr. > |t|) Ho Status 
2D 

Aggregate 
Gradation 

% passing 12.7mm sieve 0.013 0.9896 Accepted 
% passing 9.51mm sieve 0.190 0.8520 Accepted 
% passing 4.75mm sieve 0.146 0.8860 Accepted 

Aggregate Area Fraction (AF) 0.111 0.9132 Accepted 
Aggregate Angularity (AAI) 0.049 0.9613 Accepted 

Aggregate Orientation ( 0.092 0.9279 Accepted 

Aggregate Elongation (AR) 7.65 0.00002 Rejected 
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CHAPTER 4  

SUMMARY AND CONCLUSIONS 

This thesis describes the development and validation of a virtual generation method for 

mixture microstructures along with post-processing methods of microstructure images. 

These methods were developed so that virtual generation can potentially replace the 

physical fabrication and testing of asphaltic mixtures. In order to accurately represent the 

geometric characteristics of real microstructures, virtual fabrication incorporated new 3D-

2D transformation algorithms for several geometrical properties of aggregates, such as 

gradation, angularity, and aspect ratio, into the virtual microstructure generator. 3D 

volume fraction and orientation of aggregates in the mixture were also converted to 2D 

characteristics to appropriately simulate complex microstructure characteristics. For 

validation, the virtually-generated microstructures were compared to real cross-sectional 

microstructure images obtained from actual samples, which presented a good agreement 

between the virtual and real microstructures. The good agreement demonstrates that the 

new 3D-2D transformation algorithms were properly developed and implemented into the 

virtual microstructure generator, VMG 1.0.   

Further advancements, such as the consideration of air voids as a separate phase, 

the better representation of particle elongation in the mixture, the consideration of 

variances in the statistical analyses, and the extension of the 2D microstructure to the 

actual 3D virtual fabrication, are necessary to improve the virtual fabrication and 

evaluation of mixtures. For this study, only a limited number of samples for one mixture 

were used for validation. To reach general conclusions, this clearly needs further 
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investigation with more cases and different types of mixtures. Although much future 

work is required, the current development is at least sufficient to demonstrate the benefits 

and potential of this effort. Virtual fabrication and testing can result in significant time 

and cost savings compared to more expensive and repetitive laboratory fabrication and 

performance tests of actual specimens. Furthermore, microstructure generation can be 

incorporated into various computational approaches to microstructure characterization 

and performance modeling with much less laboratory effort than conventional 

phenomenological-experimental approaches. 
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