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LAVENDER, A CHICK MELANOCYTE MUTANT
WITH DEFECTIVE MELANOSOME
TRANSLOCATION: A POSSIBLE ROLE FOR
10nm FILAMENTS AND MICROFILAMENTS
BUT NOT MICROTUBULES

PAULA L. MAYERSON®* anp JOHN A, BRUMBAUGH
School of Life Sciences, University of Nebraska, Lincoln, Nebraska 68588, U.S.A4.

SUMMARY

Lavender is a mutation of chick neural-crest-derived melanocytes showing dilute feather
pigmentation. This defect, previously attributed to a lack or attenuation of dendrites, was
found to be due to a defect in melanosome translocation. The mutant phenotype, of melanin-
congested perikarya and pigmentless dendrites is expressed both in vivo and in vitro. Studies
with colcemid and cytochalasin B suggest that the avian melanocyte resembles a dispersing
amphibian melanophore in its requirement for microfilaments but not microtubules.

Ultrastructural analysis revealed a normal complement of intracellular filaments. Micro-
tubules, however, are scarce. Intermediate (10 nm) filaments surround and are closely associated
with intracellular organelles, while microfilaments interconnect all filaments and organelles.
Whole-cell centrifugation at 300 g showed that 10 nm filaments stream behind and appear to
attach to mobile membrane-bound organelles including the nucleus, lipid granules and mito-
chondria, as well as melanosomes. It is suggested that all intracellular filaments, especially
microfilaments and intermediate filaments, interconnect forming a network responsible for
organelle motility.

INTRODUCTION

This study was undertaken to determine the primary cause of feather pigment
dilution in the chick mutant, lavender (lav/lav). Pigment dilution in lavender has
previously been attributed to an absence or attenuation of dendrites (Brumbaugh,
Chatterjee & Hollander, 1972; Chatterjee, 1971). The present study demonstrates,
using light and electron microscopy, that lavender melanocytes possess normal
dendrites that lack pigment granules (melanosomes). In wild-type melanocytes,
melanosomes are produced in the perinuclear region and translocated to the tips of
dendrites (Brumbaugh, Bowers & Chatterjee, 1973; Brumbaugh & Zieg, 1972; Hori,
1969; Hunter, Mottaz & Zelickson, 1970; Toda & Fitzpatrick, 1972). Melanosome
transfer then occurs as melanosome-containing dendritic tips pinch off and are
phagocytized by adjacent epidermal cells (keratinocytes) (Billingham, 1948; Cohen &
Szabo, 1968; Cruickshank & Harcourt, 1964; Klaus, 1969; Mottaz & Zelickson, 1967;
Prunieras, 1969). Lavender melanocytes, both in vivo and #n vitro, produce melano-
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somes normally but are defective in melanosome translocation. This defect resultsin a
congestion of melanosomes perinuclearly and the absence of dendritic pigment.
Lavender, the first mutation of intracellular organelle translocation to be described,
provides a unique opportunity to study this essential but poorly understood process.

Intracellular filaments have been implicated as the primary mediators of directed
intracellular organelle movements in various organisms (Buckley, 1974; Freed &
Lebowitz 1970; Parpart, 1964; Rebhun, 1972). We examined the roles of micro-
tubules and microfilaments in melanosome translocation using the drugs colcemid and
cytochalasin B. These drugs were added to cultures of neural crest-derived melano-
cytes in an attempt to mimic the lavender defect in wild-type cells. Wild-type and
lavender melanocytes were also examined ultrastructurally for the presence and dis-
tribution of the 3 major filament types of non-muscle cells: thin actin-like micro-
filaments (3-8 nm), intermediate filaments (1o nm) and microtubules (25 nm).
Filament-organelle associations were examined using pelleted and unpelleted cells of
both genotypes.

MATERIALS AND METHODS
Genetic stocks

Wild-type (lav*/lavt; Brumbaugh & Hollander, 1965) and lavender (lav/lav; Brumbaugh
et al., 1972) chickens and chick embryos were produced by appropriate matings of stocks
maintained in the School of Life Sciences, University of Nebraska, Lincoln. Wild-type adult
males are dorsally red and ventrally black, while females possess a ‘salt and pepper’ pattern of
black and red pigment. Lavender males and females are similar to wild-type birds, but black
areas are modified to a soft grey and red areas to a very pale buff.

Regenerating feather tissue

Breast feathers were plucked from adult birds. After 2 weeks, the regenerating feathers were
plucked, placed in glutaraldehyde at room temperature (at 3 % in phosphate buffer, pH 7:32)
and the barb ridges dissected out (Brumbaugh, 1971; Brumbaugh et al., 1972). Tissue was
fixed for 1 h at room temperature, then stored in fixative at 4 °C. All tissue was then osmicated,
dehydrated through a graded series of ethanol and embedded in Epon.

Cell culture

Somites, neural tube and associated ectoderm, dissected from stage 16—18 chick embryos
(Hamburger & Hamilton, 1951), were minced, trypsinized and plated out at 150000 cells per
60 mm dish (Falcon Plastics, Oxnard, Ca; Brumbaugh & Lee, 1975). The plating medium was
Fi12 (Grand Island Biological Co. [GIBCO], Grand Island, N.Y.) containing 5 9%, foetal calf
serum (FCS) and 1 9, bovine serum albumin (GIBCO). Medium was replaced after the first
24 h and every 2 to 3 days thereafter using F12 medium containing 10 % FCS (growth medium).
Primary cultures gave rise to pigmented cell colonies after 7-8 days in vitro.

Colcemid (GIBCO) was added directly to growth medium at 1 #g/ml. Cytochalasin B
(Aldrich Chemical Co., Inc., Milwaukee, Wisc.) dissolved in dimethylsulphoxide (DMSO)
(Aldrich) or 95 % ethanol was added to growth medium at 1 #g/ml. The effects of treatment
with cytochalasin B did not vary with the solvent used. DMSO alone, at the final concentration
of 0'1 %, had no noticeable effect on the cultures (also see Schroeder, 1970).
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Fixation and embedding

Some cells were fixed and embedded in the dish while others were treated with trypsin,
rinsed and centrifuged at 300 g for 10 min, fixed and embedded in 15-ml plastic centrifuge
tubes (Corning Glass Works, Corning, N.Y.). For treatment with cytochalasin B, cells were
exposed for 15 min just prior to final pelleting. Cells fixed in the dish were stained with haema-
toxylin prior to embedding (Brumbaugh, unpublished data). All cells were fixed in phosphate
buffer (pH 7-32) with 3 % glutaraldehyde, post-osmicated, dehydrated in a graded series of
alcohols, infiltrated in an ethanol-Epon series, embedded in Epon, and polymerized at 6o °C
for 3 days. Embedded melanocyte colonies were cut out of dishes with a razor blade and glued,
cell side up, onto Epon pegs. Pellets, exposed by sawing off the end of a plastic centrifuge tube,
were cut longitudinally and re-embedded.

Light and electron microscopy

All tissue was sectioned on an LKB Ultratome III. Sections (2 gm thick) were stained
metachromatically with a 1:1 mixture of 1 % methylene blue, 1 % sodium citrate: 1 % azure 11,
both in distilted water (Richardson, Jarett & Finke, 1960). Thick sections were viewed and photo-
graphed with a Wild compound microscope.

Thin sections were obtained with a diamond knife and picked up with acetone-cleaned
150-mesh parloidin-coated grids. Sections were stained for 15 min each with uranyl acetate and
lead citrate. Thin sections were viewed with a Phillips 201 transmission electron microscope.
Light micrographs of living, cultured melanocytes were taken with a Wild inverted microscope
using phase-contrast optics.

RESULTS
Morphology of the mutant lavender

This section examines the morphology of normal and lavender mutant melanocytes
both #n wivo, using Epon thick sections of intact barb ridges, and in vitro, using
cultured neural-crest-derived melanocytes.

In vivo melanocytes. Barb ridges are parallel columns of epidermal cells (keratino-
cytes) that encircle the feather shaft at its growing base. Each barb ridge contains
melanocytes of neural crest origin interspersed among keratinocytes. Fig. 1 shows
unstained (A, ¢) and stained (B, p) Epon thick sections of barb ridge tissue from
regenerating adult feathers.

In wild-type melanocytes, melanosomes are uniformly distributed throughout the
cell body and dendrites (Figs. 14, B). Wild-type dendrites are visible in unstained
sections due to the presence of dendritic pigment (Fig. 14). Melanosome transfer does
occur in wild type cells as demonstrated by the presence of numerous melanosome-
filled dendritic tips that have been ingested by keratinocytes (Fig. 14, arrows).

Lavender melanocytes appear to lack normal dendrites in unstained sections (Fig.
1¢). Lack of dendritic pigment causes some melanocytes to appear adendritic while
others appear to have short stubby dendrites. Metachromatic staining, which stains
melanocyte cytoplasm relatively less than surrounding keratinocyte cytoplasm, reveals
the presence of dendrites in lavender melanocytes (Fig. 1D, arrows). Serial-section
analysis revealed that lavender melanocytes have pigmentless dendrites indistin-
guishable in size and shape from pigmented wild-type dendrites. Thus, pigment

dilution in lavender chickens is not attributable to aberrant dendritic morphology, but
2-2
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rather to a defect in melanosome translocation - apparently the inability to transport
melanosomes dendritically. Since melanosomes are not translocated dendritically ; they
cannot be transferred subsequently to keratinocytes.

D

Fig. 1. Barb-ridge tissue from 2-week regenerating feathers. In the wild-type, pigment
is dispersed permitting dendrite visualization in unstained sections; while in lavender,
pigment is restricted to perinuclear regions making dendrite visualization possible only
after metachromatic staining. A, unstained, wild-type, x 620. B, stained, wild-type,
x 620, ¢, unstained, lavender, x 680. D, stained, lavender, x 68o.

Fig. 2 is a comparative light and electron microscopic study of melanocyte mor-
phology in normal and lavender melanocytes. In wild-type melanocytes (Fig. 24, B)
melanosomes are uniformly distributed and melanosome transfer is normal. Melano-
some-containing dendrites are found interspersed between keratinocytes in the barb
ridge of wild-type chicken (Fig. 2B). However, in lavender melanocytes prominent
pigmentless dendrites emanate from melanosome-congested perikarya (Fig. 2c, D).
Thus, electron microscopy confirms the results of light microscopic observations, that
the apparent defect in lavender melanocytes in vivo involves aberrant melanosome
distribution.

In vitro melanocytes. Fig. 3 shows typical melanocyte morphology in wild-type (a)
and lavender (B, ¢) melanocytes after 7 and 8 days in culture, respectively. In wild-
type melanocytes, melanosomes are distributed throughout the cell body and its
dendrites and accumulate at dendritic tips in preparation for melanosome transfer
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Fig. 2. Comparative light (LM) and transmission electron (TEM) microscopy of
melanocyte morphology #n vivo. In the wild-type, melanosomes are evenly dispersed.
In lavender, melanosomes migrate only as far as the region of dendrite initiation
resulting in melanin-congested perikarya and pigment-less dendrites. A, LM, wild-
type, x2400. B, TEM, wild-type, X 3ooo. c, LM, lavender, x2400. D, TEM,
lavender, x 3500.

29
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Fig. 3. Wild-type and lavender melanocyte morphology in vitro. A. In a wild-type
melanocyte melanosomes are evenly distributed throughout the cell body and den-
drite, and accumulate in the dendritic tip in preparation for melanosome transfer.
x 3000. B. In a lavender melanocyte melanosomes are restricted to perinuclear regions,
x 5900. C. The melanosomes of a lavender melanocyte migrate only as far as the
region of dendrite initiation. X g100.
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(Fig. 3a, arrow). In lavender melanocytes, melanosomes fail to move beyond the
region of dendrite initiation (Fig. 3B, ). Melanosomes are restricted to perinuclear
regions in some lavender melanocytes (Fig. 3B), while in others, melanosomes migrate
as far as the bases of the dendrites (Figs. 2¢, 3c).

Wild-type melanocyte morphology and melanosome distribution appear unaltered
by the tissue-culture environment. Lavender melanocytes possess dendrites mor-
phologically indistinguishable from those of wild-type cells both in vitro and in vivo,
but the lavender genotype is clearly distinguished by a restricted distribution of
melanosomes.

The response of microtubules and microfilaments to colcemid and cytochalasin B

Non-muscle cells contain 3 major filament systems: microtubules (25 nm), thin
actin-like microfilaments (3-8 nm) and intermediate filaments (10 nm). Colcemid and
cytochalasin B were utilized in the present study to determine the respective roles of
microtubules and microfilaments in avian melanosome transolcation. Since no drug is
known that specifically disrupts intermediate filaments (Shelanski, Yen & Lee, 1976),
the role of this filament system must be inferred from ultrastructural studies alone.

Colcemid. Colchicine, and its analogue colcemid, bind to tubulin and cause micro-
tubule disassembly (Wilson & Bryan, 1974). The effect of colcemid on the melano-
some distribution of pre-metaphase cells was examined following up to 24 h of
exposure in vitro. Colcemid was used at 1 xg/ml, a dose sufficient to: (1) disrupt
microtubules (Dollevoet, 1977), and (2) cause metaphase arrest in most colonies after
24 h of treatment.

Both wild-type and lavender melanocyte colonies were treated with colcemid before
and after the appearance of visible pigment. On 2 occasions unpigmented 5-day wild-
type melanocytes were treated with colcemid for 4-6 h prior to the appearance of
visible pigment in an attempt to prevent subsequent melanosome translocation. In
both instances melanosome production and dentritic transport were indistinguishable
from that of untreated controls.

Figs. 4 and 5 show the effects of a continuous exposure of colcemid at 1 x4g/ml on
already pigmented wild-type and lavender melanocytes. At each time point between
o and 24 h, a set of pictures was taken: with the phase-ring in, to demonstrate cell
morphology; and with the phase ring out, to show melanosome distribution. It is
evident that colcemid does not alter the distribution of melanosomes in either cell
type. Even after 18—24 h of treatment with colcemid, melamosomes remain uniformly
distributed in wild-type cells (Fig. 4), while melanosomes remain restricted to
perinuclear regions of lavender melanocytes (Fig. 5).

Thus, treatment with colcemid does not prevent melanosome translocation in wild-
type cells, nor does it alter the distribution of melanosomes in the mutant, lavender.
These results strongly suggest that in the chick, microtubules are not involved in the
dendritic transport of melanosomes.

Cytochalasin B. Cytochalasin B prevents microfilament-dependent processes
(Carter, 1967) by disrupting actin-like, subplasmalemmal microfilaments (Bernfield
& Wessells, 1970; Schroeder, 1970; Spooner & Wessells, 1970; Yamada, Spooner &
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Wessells, 1971). In the present investigation cytochalasin B was used at 1 yg/ml, a
concentration sufficient to disrupt 3—8 nm microfilaments (Dollevoet, 1977; Schroeder,
1972).

b

Fig. 4. Pigmented, cultured wild-type melanocytes were treated with colcemid for up
to 18:5 h. At each time-point pictures were taken both with the phase ring in, to
demonstrate cell morphology, and with the phase ring out, to demonstrate pigment
distribution. Phase ring in: A, oh, control. B, 6 h, colcemid. ¢, 18-5 h, colcemid.
D, 185 h, colcemid. Phase ring out:E, o h, control. F, 6 h, colcemid. G, 18-5 h, colcemid.
H, 185 h, colcemid. x 475.

Figs. 6 and 7 show the effects of continuous exposure to 1 xg/ml of cytochalasin B
on the morphology of wild-type and lavender melanocytes, respectively. Melanosomes
of wild-type cells (Fig. 6) are initially evenly dispersed but appear to clump after
cytochalasin B treatment 6F-1). Melanosome clumping, observable as early as 5 min
after drug addition, is well established by 10 min (Fig. 6G) and intensifies throughout
the 3o-min treatment period (Fig. 6F-1). Pigmentation intensified perinuclearly
(Fig. 6F-1) as cell margins are pulled inward (Fig. 6A-p).

Cytochalasin B also causes dendrite attenuation and occasionally dendrite collapse
in wild-type cells. In Fig. 6F (arrow) the melanosome-rich dendritic tip of one cell
collapsed perinuclearly and failed to re-form after 30 min of recovery (Fig. 6E,
arrow) while the dendrite of a neighbouring melanocyte was maintained proximally
but appears truncated distally (Fig. 6&, double arrow). The collapse of cell margin and
dendrites may in part account for cytochalasin B-induced melanosome movements.

Fig. 7 shows the effects of treatment with cytochalasin B on lavender melanocytes in
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culture. Since lavender melanosomes are already perinuclear, cytochalasin B has little
effect on their distribution, although perinuclear clumping does appear to intensify
slightly (compare Fig. 7F and H). Cytochalasin B also causes the collapse of cell
margins, the attenuation of some dendrites and the collapse of others. In Fig. 7 one
dendrite became thin and broke (a, arrow), being absent from recovered cells (E). In
both genotypes, cell shape and melanosome distribution returned to normal after §
rinses with cytochalasin B-free medium and subsequent incubation at 38 °C for 30

- "~
.

F = G H . 4

Fig. 5. Pigmented, cultured lavender melanocytes were treated with colcemid for up

to 24 h. Phase ring in: A, o h, control. B, 6 h, colcemid. ¢, 24 h, colcemid. D, 24 h, col-

cemid. Phase ring out: E, o h, control. F, 6 h colcemid. G, 24 h, colcemid. H, 24 h, col-

cemid. X 465.

To summarize, cytochalasin B slightly intensified the pigment clumping seen in
lavender melanocytes, while in the wild-type, cytochalasin B caused an apparent
perinuclear clumping of melanosomes. This effect may result from the collapse of cell
margins or may indicate a role for microfilaments in avian melanosome translocation.

An ultrastructual examination of filament systems in normal and lavender melanocytes

Lavender melanocytes were examined ultrastructurally for a possible defect in 1 of
the 3 major filament systems. Fig. 8 is an in situ longitudinal section of a cultured laven-
der melanocyte showing the perikaryon and the region of dendrite initiation. Within the
latter region, the salient feature is an abundance of intermediate (10 nm) filaments,
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which course longitudinally along the dendrite and envelop mitochondria and melano-
somes. Microfilaments are also abundant, forming a network that appears to inter-
connect all intracellular structures. At a higher magnification (inset) microfilaments
appear to link intermediate filaments to each other and to the melanosome that they
envelop. Microtubules are scarce and located primarily at the cell periphery.

Fig. g is a longitudinal section through the dendrite of a cultured wild-type melano-
cyte. Bundles of intermediate filaments surround and appear closely associated with a
melanosome. Analysis of many sections revealed that the amount and distribution of
filament types does not appear to differ between wild-type (Fig. 9) and lavender (Fig.
8) melanocytes. In both genotypes microtubules are scarce; intermediate filaments
surround and envelop intracellular organelles and microfilaments form a network that
appears to interconnect intracellular structures. Thus, lavender melanocytes contain
a normal complement of the 3 major filament types and these filaments are distributed
in an apparently normal fashion.

To investigate the nature of filament-organelle associations in lavender and wild-
type melanocytes, whole cells were trypsinized and pelleted at 300 g, an acceleration
sufficient to cause organelle displacement without cytolysis. Centrifugation of intact
cells resulted in the downwards displacement of nuclei, melanosomes, mitochondria
and other intracellular organelles. Thus, intracellular material was subjected to an
upward cytoplasmic streaming, caused by nuclear displacement, and a downward
acceleration. It was reasoned that intracellular organelles that are sufficiently well
attached to filaments should remain attached following organelle displacement. The
intracellular network of microfilaments, if firmly attached to organelles, would be
expected to move with its associated organelles, or be torn apart as the structures that
attach to it pull away from each other.

The results of serial-section analysis of electron micrographs suggest that inter-
mediate filaments are firmly attached to the membranes surrounding various intra-
cellular organelles in both the wild-type and lavender genotypes. In pelleted whole
cells, intermediate filaments stream behind (Fig. 10) and are closely associated with
the melanosome membranes of both wild-type (Fig. 11, arrow and inset) and lavender
(Fig. 17) melanocytes. Lavender melanocytes show intermediate filament-melanosomne
membrane associations as distinct and as numerous as those of wild-type cells.

Intermediate filaments in both genotypes appear to be attached to the outer mem-
branes of mitochondria. Fig. 12 shows that bundles of intermediate filaments stream
behind the displaced mitochondrion of a pelleted wild-type melanocyte. Higher
magnification (Fig. 14) shows that intermediate filaments surrounding a wild-type
mitochondrion appear to be inserted into the outer mitochondrial membrane. Similar

Fig. 8. Bundles of intermediate filaments fill the dendritic cytoplasm of a cultured
lavender melanocyte, enveloping mitochondria (m) and melanosomes (p). Micro-
tubules (mt) are found at the cell periphery. x 37 500. Inset: intermediate filaments are
closely associated with both ends of a melanosome, which they ensheath. These fila-
ments themselves appear interconnected by microfilament crossbridges (arrow).
x 89 000.
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intermediate filament attachments to mitochondria are seen in pelleted lavender
melanocytes (Fig. 13).

Intermediate filaments appear to beattached to, and extend cytoplasmically from the
nuclear envelope in both genotypes. In Fig. 15, abundant intermediate filaments
stream cytoplasmically from the nuclear envelope in a pelleted wild-type melanocyte.
Intermediate filaments appear to be inserted between 2 nuclear pores (Fig. 15 inset,
arrows) in this melanocyte. A tangential section of the nuclear envelope of a lavender
melanocyte (Fig. 16) also suggests intermediate filament insertion into the outer
nuclear membrane. Thus, intermediate filament attachments to mitochondria,
melanosomes and the nuclear envelope are indistinguishable in wild-type and lavender
melanocytes.

Intermediate filaments are not only attached to, but appear to interconnect, intra-
cellular organelles. This is true for both genotypes. Fig. 17showsintermediate filaments
interconnecting melanosomes, mitochondria, lipid granules and the nuclear envelope
of a lavender melanocyte. Intermediate filament attachments to membrane-bound
lipid granules also occur in both genotypes (Figs. 17, 18). A close association between
intermediate filaments and Golgi vesicles is also found in both wild-type (Fig. 15) and
lavender (Fig. 19) melanocytes. Thus, analysis of cell pellets reveals that intermediate
filaments closely associate with, appear attached to and interconnect, various motile
organelles in both genotypes including: melanosomes, mitochondria, lipid granules
and the nuclear envelope.

The microfilament network, so striking in unpelleted, untrypsinized melano-
cytes (Figs. 8, g), is not apparent and is probably fragmented by viscous shear in
pelleted cells of both genotypes (Figs 10-15). Treatment of melanocytes, prior to
pelleting, with cytochalasin B (an agent known to disrupt microfilaments but not
intermediate filaments or microtubules; Spooner, 1973) did not alter distribution of
filament of filament-organelle associations seen after pelleting.

DISCUSSION

Lavender is an avian pigment-cell mutant with an aberrant melanosome distri-
bution: melanosomes fail to migrate into the dendrites, giving the appearance that
dendrites are attenuated or absent. Examination of lavender melanocytes by light and
transmission electron microscopy revealed normal cell morphology with dendrites

Fig. 9. A bundle of intermediate filaments, coursing longitudinally through the den-
drite of a cultured wild-type melanocyte, making close contact (arrow) with a melano-
some (p). t. X 60000.

Fig. 10. Intermediate filaments stream behind a melanosome (p) to which they appear
attached (small arrow) in a pelleted, wild-type melanocyte. The large arrow indicates
the direction of centrifugal force. X 108000.

Fig. 11. Intermediate filaments appear to be inserted (arrow) directly into melano-
some membranes in a pelleted, wild-type melanocyte that has been treated with
cytochalasin B prior to pelleting. Intermediate filaments appear unaffected by the
drug. x112000. Inset, x 187500.
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present. The production of melanosomes was also normal although their distribution
was not. Thus, the dilute pigmentation of lavender birds is attributable to a lack of
melanosomes within dendrites, which in turn is due to defective melanosome trans-
location. Because melanosomes are absent from the dendrites, they are not transferred
to neighbouring feather keratinocytes, hence the faded appearance of the feathers.

The mouse mutants, dilute and leaden, are described in the literature as adendritic
(Gerson & Szabo, 1969; Market & Silvers, 1956; McGrath & Quevedo, 1964 ; Straile,
1964). In these mouse mutants, as in lavender, pigment is restricted to perinuclear
regions and dendrites are not visible. This striking similarity to lavender suggests that
these mutants may possess dendrites that could be visualized by the techniques used
in this study.

The dilution mutant, lavender, like the mouse mutants, dilute and leaden, appears
to be expressed autonomously. Reed (1938) and Reed & Henderson (1940) found, by
reciprocal grafting experiments with mice, that dilute melanocytes produce dilute
pigmentation and non-dilute melanocytes produce non-dilute pigmentation, regard-
less of the genotype of the hair follicle. Mutant morphology in the chick mutant,
lavender, is expressed in vivo in the barb ridge, as well as #n vitro in the absence of
keratinocyte cell contact. Thus, autonomy is strongly suggested for lavender melano-
cytes in culture, but not absolutely proven, since a few epidermal cells are present in
melanocyte cultures.

While very little is known about the mechanism of melanosome translocation in
avian and mammalian melanocytes, the melanosome translocation of amphibian and
teleost pigment cells (melanophores) is well studied. The latter move rapidly and
reversibly in response to changes in lighting. Aggregation (lightening) occurs when
melanosomes move out of the dendrites into the cell centre; while dispersion (darken-
ing) occurs when melanosomes move into the dendrites (Fingerman, Fingerman &
Lambert, 1975). In amphibian and teleost melanophores, microtubules appear to be
required for aggregation, as colchicine inhibits aggregation and enhances dispersion
(Lyerla & Novales, 1972; Malawista, 1975; Wikswo & Novales, 1969). In amphibian
melanophores, microfilaments appear to mediate melanosome dispersion, as cyto-
chalasin B inhibits dispersion and promotes aggregation (Fisher & Lyerla, 1974;
McGuire & Moellmann, 1972).

Avian and mammalian melanosomes move slowly and irreversibly into the dendrites,
dispersing but not, under normal conditions, aggregating (Fitzpatrick, Miyamoto &
Ishikawa, 1966). In the present study, ultrastructural analysis revealed that the avian
melanocyte, like its mammalian counterpart, contains very few microtubules (Jimbow

Fig. 12. Intermediate filaments (small arrow) stream behind a mitochondrion in a
pelleted, wild-type melanocyte. The large arrow indicates the direction of centrifugal
force. x 108000.

Fig. 13. Intermediate filaments appear attached (arrow) to the mitochondrial mem-
brane of a pelleted lavender melanocyte. x 49000.

Fig. 14. Intermediate filaments surround and appear to be inserted (arrows) into the
outer mitochondrial membrane of a pelleted wild-type melanocyte. x 109800.
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& Fitzpatrick, 1975), while abundant microfilaments and intermediate filaments are
found throughout the cell and its dendrites (Jimbow & Fitzpatrick, 1975; Sauk, White
& Witkop, 1975; Wikswo & Szabo, 1973). Studies using colcemid and cytochasin B
suggest that microfilaments, but not microtubules, may be involved in directing avian
melanosome movements. Avian melanosome dispersion does not appear to require or
be mediated by microtubules, as 1 zg/ml of colcemid, a concentration sufficient to
cause metaphase arrest, neither alters the distribution of melanosomes in mature
melanocytes nor prevents the appearance of phenotypes characteristic of each geno-
type. Microfilaments do appear to be involved in avian melanosome dispersion, as
1 pg/mlof cytochalasin B disrupts cell morphology and alters melanosome distribution
in both normal and mutant melanocytes. In wild-type cells, cytochalasin B partially
mimics the lavender defect, while in lavender it intensifies the already perinuclear
concentration of pigment. Thus, our results suggest an analogous mechanism for
melanosome translocation in amphibian and avian systems. The avian melanocyte
resembles a dispersing amphibian melanophore in that melanosome dispersion is
disrupted by cytochalasin B but unaffected by colcemid.

The present study failed to reveal the cause of the translocation defect in lavender.
No ultrastructural differences were found between wild-type and lavender melano-
cytes in their distribution or in their interconnexions with intracellular filaments. Both
genotypes showed a normal complement of filaments. Microtubules were scarce,
intermediate filaments filled dendrites and enveloped intracellular organelles, and
microfilaments connected intermediate filaments to each other. Intermediate filaments
were connected, directly or via microfilament attachments, to various mobile intra-
cellular organelles including the nucleus, mitochondria, melanosomes and lipid
granules. Microtubules probably do not play any significant role in avian melanosome
translocation because lavender melanocytes are not defective in microtubule content.
Microtubules are minor constituents of avian melanocytes and do not differ in their
distribution or content in either genotype. Colcemid does not alter the distribution of
melanosomes of either genotype whether in mature melanocytes or in melanocytes
treated at the onset of melanogenesis.

The abundance of both microfilaments and intermediate filaments in avian melano-
cytes and the interconnexions of these filament types to each other and to various
intracellular organelles suggest that both filament types may be involved in organelle
motility. Microfilaments are likely candiates for mediators of organelle motility
(Cloney, 1966) for they have been shown to contain actin (Lazarides, 1975; Palevitz &
Hepler, 1975) and to exhibit contractile properties in non-muscle cells (Rodewald,
Newman & Karnovsky, 1976; Schroeder, 1972; Spooner, 1973; Wessells et al., 1971).

Fig. 15. This wild-type melanocyte has been treated with cytochalasin B prior to
pelleting. Intermediate filaments appear unaffected by the drug and extend cytoplas-
mically from their apparent site of attachment at the nuclear envelope or are closely
associated with the Golgi system (g). x 48000. Inset: two 10 nm filaments are inserted
(arrow) between nuclear pores (np) in an en face section of the nuclear envelope.
x 84 800.
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Attachment has been suggested between thin (3-8 nm) microfilaments and mitochon-
dria, chloroplasts, endoplasmic reticulum and nuclei (Buckely & Porter, 1967;
Crawford & Castle, 1975; Palevitz & Hepler, 1975). Actin-like microfilaments also
form a contractile network, which is found just beneath the plasmalemma and may be
inserted into it (Bernfield & Wesselis, 1970; LeBeux & Willemot, 1975; Yamada et al.
1970). This network is thought to be responsible for plasmalemmal motility such as
rufled membranes, growth cones and microspikes (Spooner, Yamada & Wessells, 1971).

Lavender melanocytes showed an extensive and apparently normal microfilament
network interconnecting all intracellular structures. Cell pelleting failed to enhance
visualization of these microfilament associations. Thus, whilethereis evidence tosuggest
that the lavender mutant may represent a defect in microfilament function, lavender
melanocytes appear to be normal in content, distribution and associations of micro-
filaments with other intracellular structures. Despite the lack of any apparent mor-
phological defect in microfilaments, the abundance and extensive interconnexions of
microfilaments found in both genotypes suggest that microfilaments may play some
role in directing organelle movements. These ultrastructural studies do not rule out
the possibility that lavender may be be a defect of microfilament function, perhaps
preventing microfilament-mediated contractions necessary for normal melanosome
movements. The defect might also be one that affects microfilament associations with
each other, with other filament types, or with melanosomes themselves.

Although intermediate filaments are ubiquitous elements of both muscle and non-
muscle cells and have been assumed to be primarily structural, their function is
unknown (Izant & Lazarides, 1974; Eriksson & Thornell, 1979; Lazarides, 1980;
Small & Celis, 1978; Small & Sobieszek, 1977). Other investigators have shown inter-
mediate filaments to be in close physical association with the nucleus (Lehto, Virtanen
& Kurki, 1978; Metuzals & Mushynski, 1974; Small & Celis, 1978), with melanosomes
of amphibian melanophores (Moellmann, McGuire & Lerner, 1973), and with mito-
chondria and endoplasmic reticulum {(Buckley & Porter, 1967). Intermediate filaments
have also been reported to be one of the main constituents of the perinuclear region
(Lehto et al. 1978; Small & Celis, 1978; Starger & Goldman, 1977).

While the present study provided no evidence for an intermediate filament defect
in lavender melanocytes, the abundance and close associations of these filaments with
all motile intracellular organelles in both genotypes suggests that they may participate,
either actively or passively, in directed organelle translocations (Buckley & Raju,
1976; Schliwa & Euteneuer, 1978; Starger & Goldman, 1977).

In the present investigation, intermediate filaments fill the cytoplasm of avian
melanocyte dendrites. Whole-cell pelleting revealed that intermediate filaments appear

Fig. 16. Intermediate filaments appear to be inserted (arrow) into the outer nuclear
membrane in a tangential section of the nuclear envelope (ne) from a pelleted lavender
melanocyte. Nuclear pores (np); nucleus (nu). x 108o000.

Fig. 17. Intermediate filaments appear to connect melanosomes (p) mitochondria (m),
and lipid granules (/) to the nuclear envelope (n¢) in a pelleted lavender melanocyte.
X 72 900.



in a pelleted lavender melanocyte. X 108 000.

Fig. 19. Intermediate filaments are closely associated (arrow) with Golgi vesicles (g)
in a pelleted lavender melanocyte. x 54600.
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to be attached to melanosomes and other membrane-bound organelles in both geno-
types. After centrifugation, intermediate filaments of both genotypes stream behind
displaced organelles and appear to be inserted into the outer membrane surrounding
melanosomes, mitochondria, lipid granules and the nucleus. Although attachment has
not been proven unequivocally, the following observations strongly support filament—
organelle attachment: (1) pelleting greatly enhanced the number and clarity of

Fig. 20. A model for filament—-melanosome associations. Intermediate filaments ( )
attached to melanosomes are connected at one end to the nuclear envelope and at the
other to the subplasmalemmal microfilament network. Actin-like microfilaments ( x )
are attached along the length of intermediate filaments.

filament-organelle associations seen; (2) intermediate filaments trailed behind dis-
placed organelles after centrifugation of intact cells; and (3) intermediate filaments
appear to terminate on, and be inserted into, organelle membranes. This close associa-
tion of intermediate filaments with organelle membranes suggests that these filaments
may play some role in normal organelle positioning and/or motility.

The present investigation provides evidence that microfilaments and intermediate
filaments are closely associated with each other as well as with various intracellular
organelles. Studies on a variety of cell types in different organisms suggest that all 3
major filament types interconnect to form a j3-dimensional filament meshwork
(Buckley, 1975; Buckley & Porter, 1967; Burton & Fernandez, 1973; Lazarides &
Hubbard, 1976; Schliwa & Euteneuer, 1978; Yamada et al. 1970), which is closely
associated with various intracellular organelles (Buckley & Porter, 1967; Buckley &
Raju, 1976; Cloney, 1966; Crawford & Castle, 1975; LeBeux & Willemont, 1975;
Metuzals & Mushynski, 1974) and is continuous with (Buckley, 1975) the contractile
(Wessells et al. 1971) subplasmalemmal microfilament network. It has been suggested
that the filaments within the network are responsible for organelle motility (Buckley &
Raju, 1976; Goldman, 1971 ; Starger & Goldman, 1977). Evidence for the existence of
myosin and tropomysin (Hitchcock, 1977) associated with the intracellular filament
meshwork of non-muscle cells (Buckley & Raju, 1976; Lazarides, 1975; Weber &
Groeschel-Steward, 1974) suggests that actin-myosin-like contractions of micro-
filz ments may direct organelle motility (Buckley & Raju, 1976). Because all filaments
of the intracellular filament meshwork are interconnected, localized actin-myosin-
disected contractions could pull intermediate filaments, and the organelles to which
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they are attached, towards the side of contraction. Thus, intermediate filaments might
act as cables, anchored to organelles at one end and pulled by microfilaments at the
other. Movement of melanosomes into the dendrites would require only that the
magnitude and/or frequency of microfilament-mediated contractions be greatest at
dendritic tips.

Fig. 20 illustrates the filament-filament and filament—organelle associations within
a normal melanocyte. An intracellular meshwork of intermediate filaments and micro-
filaments is shown to interconnect the nucleus and plasmalemma with intracellular
organelles (Metuzals & Mushynski, 1974). This filament meshwork may direct the
translocation of various intracellular organelles including melanosomes. The meshwork
may also be structural, maintaining cell shape and ensuring normal organelle position-
ing.

Lavender melanocytes, although defective in melanosome translocation, show no
apparent ultrastructural defect. Although filament systems are most probably in-
volved in and essential to organelle translocation, the nature of the lavender defect was
not resolved by ultrastructural analysis. Our results show that the lavender mutation is
more complex than previously envisaged and suggest that a microfilament-related
defect may be involved.
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