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Mechanisms of Hemoglobin Adaptation to 
High Altitude Hypoxia

Jay F. Storz1 and Hideaki Moriyama2

Abstract

Storz, Jay F., and Hideaki Moriyama. Mechanisms of hemoglobin adaptation. High Alt. Med. Biol. 9:148–157,
2008.—Evidence from a number of vertebrate taxa suggests that modifications of hemoglobin (Hb) function
may often play a key role in mediating an adaptive response to high altitude hypoxia. The respiratory func-
tions of Hb are a product of the protein’s intrinsic O2-binding affinity and its interactions with allosteric effec-
tors such as protons, chloride ions, CO2, and organic phosphates. Here we review several case studies involv-
ing high altitude vertebrates where it has been possible to identify specific mechanisms of Hb adaptation to
hypoxia. In addition to comparative studies of Hbs from diverse animal species, functional studies of human
Hb mutants also suggest that there is ample scope for evolutionary adjustments in Hb–O2 affinity through al-
terations of the equilibrium constants of O2 binding to deoxy- and oxyHb or through changes in the allosteric
equilibrium constants for the transition between the deoxy- and oxyHb quaternary structures. It may be the
case that certain evolutionary paths are followed more often than others simply because they are subject to less
stringent pleiotropic constraints.
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Introduction

HIGH ALTITUDE ENVIRONMENTS pose a number of unique
physiological challenges to animal life. In addition to

the characteristically cold temperatures, high altitude envi-
ronments are also characterized by lower partial pressures
of oxygen (PO2) relative to low altitude environments at sim-
ilar latitudes. Since the reduced PO2 of inspired air will typ-
ically result in a concomitant reduction in the O2 saturation
of arterial blood, a suite of compensatory physiological ad-
justments may be required to ensure an adequate supply of
O2 to the cells of aerobically metabolizing tissues. These
physiological adjustments may be manifest at multiple hier-
archical levels of biological organization, from the level of
cardiopulmonary organ systems to the molecular level of ox-
idative metabolism (Bouverot, 1985; Hochachka and Somero,
2002; Scott and Milsom, 2006; Weber, 2007). In species that
are native to high altitude environments, the suite of derived
physiological changes that contributes to hypoxia tolerance
may often represent genetically based adaptations that have
evolved under the influence of natural selection. In such
cases, identifying the genetic basis of hypoxia tolerance can

provide important insights into mechanisms of physiologi-
cal evolution.

Since hypoxia impinges on well-characterized physiolog-
ical pathways involved in the transport, storage, and cellu-
lar utilization of molecular oxygen (Hochachka and Somero,
2002; Powell, 2003), the identification of plausible candidate
genes for hypoxia tolerance is greatly facilitated. Although
the genetic basis of hypoxia tolerance has yet to be fully elu-
cidated in any vertebrate species, evidence from a number
of birds, mammals, and amphibians suggests that modifica-
tions of hemoglobin (Hb) function may often play a key role
in mediating an adaptive response to high altitude hypoxia
(Perutz, 1983; Monge and León-Velarde, 1991; Poyart et al.,
1992; Weber, 1995, 2007; Weber and Fago, 2004; Storz, 2007).

Under conditions of extreme hypoxia when pulmonary O2

loading is at a premium, an increased Hb–O2 affinity helps
maximize the level of tissue oxygenation for a given differ-
ence in O2 tension between the sites of O2 loading (the pul-
monary capillaries) and the sites of O2 unloading (the tissue
capillaries; Fig. 1). However, the specific PO2 at which an in-
crease in Hb–O2 affinity is advantageous depends on a num-
ber of taxon-specific physiological parameters (Turek et al.,
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1973, 1978; Bencowitz et al., 1982; Samaja et al., 1986, 2003).
The O2 transport functions of Hb depend on homotropic ef-
fects (the subunit cooperativity of O2 binding) and het-
erotropic effects (the sensitivity of O2 binding to red cell con-
centrations of protons, chloride ions, CO2, and organic
phosphates such as 2,3-diphosphoglycerate (2,3-DPG) in
mammals, inositol pentaphosphate (IP5) in birds, adenosine
triphosphate (ATP) in reptiles, and both DPG and ATP in
amphibians).

Amino acid residues that play especially important roles
in controlling Hb–O2 affinity are located at heme–protein
contacts, the intersubunit contact surfaces (which mediate
the transition in quaternary structure between the oxy and
deoxy states of the Hb tetramer), and binding sites for het-
erotropic ligands that are mainly located at the N- and C-
termini of the subunit polypeptides and in the central cav-
ity of the Hb protein. Functional studies of human Hb
mutants and comparative studies of Hbs from diverse ani-
mal species suggest that there is ample scope for evolution-
ary adjustments in Hb–O2 affinity through alterations of the
equilibrium constants of O2 binding to deoxy- and oxyHb or
through changes in the allosteric equilibrium constants for
the transition between the deoxy- and oxyHb structures.

Here we review several case studies of Hb adaptation to

hypoxia in high altitude vertebrates. Specifically, we high-
light several case studies involving endothermic and ec-
tothermic vertebrates where it has been possible to identify
specific mechanisms of Hb adaptation. We focus mainly on
modifications of Hb function that alter O2-binding affinity,
although it is important to keep in mind that several other
aspects of Hb function may also play an important role in
physiological adaptation to hypoxia. These additional pro-
tein functions might include the transport of vasoactive ni-
tric oxide and the regulation of red cell glycolysis (Weber
and Fago, 2004; Weber et al., 2004). Also, changes in Hb sta-
bility that increase resistance to pH-induced oxidative degra-
dation and denaturation may also be important under con-
ditions of high altitude hypoxia. In reviewing these case
studies of Hb adaptation, we will concern ourselves with the
following question: Do functionally equivalent modifica-
tions of Hb–O2 affinity in disparate taxa typically involve the
same underlying mechanisms? If so, then parallel and con-
vergent evolution of Hb function may be pervasive among
representatives of different vertebrate classes that have in-
dependently colonized high altitude environments. Con-
versely, if a given change in Hb function can be accomplished
in myriad different ways through different mechanisms,
then even similar selective pressures may yield idiosyncratic
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FIG. 1. O2 equilibrium curves showing the theoretical influence of a change in Hb–O2 affinity on blood O2 transport un-
der conditions of moderate hypoxia (open symbols) and severe hypoxia (filled symbols). Each curve is a plot of the O2 sat-
uration of Hb (vertical axis) versus blood PO2 (horizontal axis), with paired values for arterial and venous blood connected
by solid lines. For each pair of arterial and venous points, the PO2 for venous blood (Pv�O2) is marked by a vertical gray line
that extends to the horizontal axis. The sigmoid O2 equilibrium curves are shown for high, intermediate, and low Hb–O2
affinities; P50 � PO2 of blood at which the O2 saturation of Hb is at 50%. Each change in Hb–O2 affinity produces a shift in
Pv�O2, but the PO2 of arterial blood (PaO2) is assumed to remain constant.

In this graph, CaO2 � Cv�O2 is the difference in O2 concentration between arterial and mixed venous blood, and PaO2 �
Pv�O2 is the corresponding arterial–venous difference in PO2. �bO2, the blood O2 capacitance coefficient, is defined as the ra-
tio (CaO2 � Cv�O2)/(PaO2 – Pv�O2) (� the slope of the line connecting the arterial and venous points on the O2 equilibrium
curve). The interrelationships of these parameters are summarized by the following Fick’s equation: MO2 � Vb � �bO2 �
(PaO2 � Pv�O2), where MO2 is the total O2 consumption and Vb is the total cardiac bloodflow. The product �bO2 � Vb is the
circulatory conductance of O2 in the bloodstream. Note that under conditions of moderate hypoxia the right-shifted curve
produces the greatest �bO2 and results in a less severe drop in Pv�O2, the overall index of tissue oxygenation. By contrast,
under severe hypoxia, the left-shifted curve produces the greatest values of �bO2 and Pv�O2. When the kinetics of O2 trans-
fer across the alveolar gas–blood barrier become a limiting step (diffusion limitation), a left-shifted O2 equilibrium curve
may also be advantageous under conditions of less severe hypoxia (Bencowitz et al., 1982; Bouverot, 1985).



outcomes in different evolutionary lineages. We first provide
an overview of Hb structure and function, and we then de-
scribe different mechanisms by which Hb–O2 affinity can be
fine-tuned to match O2 supply and O2 demand under dif-
ferent environmental conditions.

Structure of Vertebrate Hemoglobin

Vertebrate Hbs are heterotetramers, consisting of two �-
chain subunits and two �-chain subunits (141 and 146 amino
acids, respectively). The �-chain polypeptide folds into seven
�-helices and the �-chain folds into eight. These �-helices are
labeled A-H (the D helix is missing from the �-chain) and are
linked together by short interhelical segments, labeled AB, BC,
and so on. The N- and C- terminal extensions of each chain
are labeled NA and HC, respectively (Dickerson and Geis,
1983). In each polypeptide chain, individual residues are la-
beled according to their helical position and their sequential
number from the N-terminus. For example, �58(E7)His refers
to the histidine that occupies the 58th residue position of the
�-chain and the seventh position of the E helix.

The folded globin polypeptide forms a cleft in which the
E, F, and G helices and the CD corner enclose a hydropho-
bic pocket containing the heme group, a porphyrin ring with
a ferrous iron atom capable of reversibly binding a single
dioxygen molecule (Fig. 2). Within this hydrophobic pocket,
the heme is held in place by a coordination bond between
the iron atom and the N� atom of His F8 (�87, �92), the prox-
imal histidine. The residue Phe CD1(�43, �42) assists by
wedging the heme into a stable position. His F8 and Phe CD1
are among the few residues that are completely invariant
among all vertebrate Hb chains (Dickerson and Geis, 1983).
The reversible binding of O2 is further facilitated by the His
E7(�58, �63) residue (the distal histidine), which lies opposite
His F8 on the other side of the heme plane and helps stabi-
lize the Fe–O2 bond, along with other residues lining the
heme pocket that confer an appropriate polarity to the cav-
ity. The other nearly invariant position in vertebrate Hb is
Leu F4(�83, �88), which prevents hydrolysis of the Fe–His
F8 bond by restricting solvent access.

With regard to quaternary structure, the Hb tetramer is
made up of two semirigid �� dimers that rotate around each

other by 15° during the transition between the deoxy [low
affinity (T)] structure and the oxy [high affinity (R)] struc-
ture (Perutz, 1972; Baldwin and Chothia, 1979; Shaanan,
1980; Fermi and Perutz, 1981; Fermi et al., 1984). The mutual
rotation of the �1�1 and �2�2 dimers involves no apprecia-
ble change in the intradimer contact surfaces, but substan-
tial changes occur in intersubunit interactions at the �1�2 and
�2�1 contact surfaces. The intradimer (�1�1 and �2�2) pack-
ing contacts involve 34 residues concentrated in the H and G
helices and the BC corner, whereas the less extensive inter-
dimer (�1�2 and �2�1) sliding contacts involve 19 residues con-
centrated in helices C and G and the FG corner (Fig. 3). Most
of the free-energy difference between the T- and R-states is
concentrated in the sliding contacts (Pettigrew et al., 1982).
In some cases, this free-energy difference can be abolished
by a single amino acid substitution (Dickerson and Geis,
1983). It is therefore not surprising that these intersubunit
contacts are among the most highly conserved sites in ver-
tebrate Hb.

Hemoglobin Function

Homotopic effects: cooperative O2 binding

The binding of O2 at each of the four heme irons in the
Hb tetramer exhibits a positive cooperativity, meaning that O2

binding at one site increases the O2 binding affinity at each
remaining site. Likewise, O2 unloading at one site decreases
the O2 binding affinity at the remaining sites. This coopera-
tivity among the four globin subunits of each Hb molecule
enhances the efficiency of O2 loading and unloading for a
given difference in pulmonary–tissue O2 tensions and is
manifest in the sigmoid shape of the O2 equilibrium curve
(Fig. 1). The cooperativity of O2 binding results from the fact
that the binding of O2 to the heme iron of a given subunit
produces a localized change in tertiary structure that is trans-
mitted to adjacent subunits, thereby triggering the shift in
quaternary structure (Perutz, 1970, 1979; Arnone, 1974; Bald-
win and Chothia, 1979; Gelin et al., 1983; Perutz et al., 1987;
Liddington et al., 1988). This oxygenation-linked shift in qua-
ternary structure between the T- and R-states is central to
the allosteric function of Hb as an O2 transport molecule.
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FIG. 2. Three-dimensional structure of the Hb tetramer (left) and a detailed view of the heme–ligand complex (right). The
distal histidine (E7) and proximal histidine (F8) residues are shown above and below the heme plane, respectively.



Heterotropic effects: binding of allosteric effectors

The respiratory functions of Hb are a product of its in-
trinsic O2-binding affinity and its interactions with allosteric
effectors such as protons, chloride ions, CO2, and organic
phosphates. These effectors exert their influence on Hb–O2

affinity by binding more strongly to deoxy Hb, mainly at
sites located at the N- and C-termini, thereby stabilizing the
low-affinity T structure through the formation of additional
salt bridges within and between subunits (Perutz, 1970, 1989;
Bettati et al., 1983). 

The allosteric effect of proton binding accounts for the
typical reduction in Hb–O2 affinity at low pH (the Bohr
effect) and facilitates O2 unloading under conditions of
metabolic acidosis in working muscles. At physiological pH,
the Bohr effect of human Hb is primarily attributable to
proton binding at the following residues: �1(NA1)Val,
�122(H5)His, �2(NA2)His, �82(EF6)Lys, �143(H21)His, and
�146(HC3)His (Perutz et al., 1969; Kilmartin et al., 1978; Ho
and Russu, 1987; Lukin and Ho, 2004). Chloride ions bind to
one �-chain site between �1(NA1)Val and �131(H14)Ser and
one �-chain site between �1(NA1)Val and �82(EF6)Lys
(Riggs, 1988). Similarly, CO2 combines with the N-terminal
NH3

� residues of each subunit chain of deoxyHb (Arnone,
1974; Perutz, 1983). It has also been hypothesized that Cl�

may modulate O2 affinity through delocalized electrostatic
effects that do not involve binding at specific residues (Pe-
rutz et al., 1994). According to this view, Cl� partially neu-
tralizes the excess of positive charges between the �-chains
of deoxy Hb, thereby stabilizing the T-state conformation. If
this view is correct, then it is possible that Hb–O2 affinity
could be increased not just by substitutions at specific Cl�

binding sites, but also by substitutions at a number of residue
positions that increase the net electropositivity of the central
cavity. 2,3-DPG carries four negative charges, which allows
it to bind between the �-chains of deoxyHb by charge–charge
interactions with the �1(NA1)Val residue of one chain and
with �2(NA2)His, �82(EF6)Lys, and �143(H21)His of both
chains (Fig. 4). In principle, substitutions at any one of these
binding sites can alter the sensitivity of Hb to the various al-
losteric effectors, thereby altering the equilibrium between
the T- and R-state quaternary structures. Since the binding
of allosteric effectors typically stabilizes T-state deoxyHb,
substitutions that inhibit effector binding will typically in-
crease Hb–O2 affinity by shifting the equilibrium in favor of
R-state oxyHb.

Hemoglobin Adaptation Involving Changes in
Homotropic Effects

One of the most celebrated case studies of high altitude
adaptation involves a pair of distantly related waterfowl
species, the bar-headed goose (Anser indicus) and the An-
dean goose (Chloephaga melanoptera), that have indepen-
dently evolved exceptionally high Hb–O2 affinities. The bar-
headed goose spends the breeding season on high alpine
lakes at 4000 to 6000 m on the Tibetan Plateau and spends
the winter months in wetland habitats in different parts of
the Indian subcontinent. This requires an annual roundtrip
migratory flight over the crest of the Himalaya at altitudes
of nearly 10,000 m where ambient PO2 is less than one-third
of that at sea level. As might be expected for an animal ca-
pable of sustaining powered flight at such altitudes, the bar-
headed goose is characterized by an exceptionally high
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FIG. 3. The �2�2 dimer (one-half of a functional Hb tetramer) shown in a side view. The intradimer �2�2 packing contacts
are shown in green and the residues participating in interdimer (�1�2 and �2�2)sliding contacts are shown in purple.



Hb–O2 affinity relative to its lowland sibling species, the
greylag goose (Anser anser; P50, the PO2 at 50% saturation of
Hb � 29.7 vs. 39.5 torr at 37°C, pH 7.4). The observed dif-
ference in P50 is attributable to a small difference in the in-
trinsic Hb–O2 affinity that is amplified by differential sen-
sitivity to IP5 (Petschow et al., 1977; Rollema and Bauer,
1979). Adult Hbs of the two species are distinguished by
three amino acid substitutions in the �-chains, 18(A16)
Gly � Ser, 63(E12)Ala � Val, and 119(H2)Pro � Ala, and
one substitution in the �-chains, 125(H3)Glu � Asp (grey-
lag � bar-headed in each case). The �119(H2)Pro � Ala
substitution is unique among all avian Hbs studied to date,
possibly because it disrupts an important intradimer van
der Waals contact between the C� of the 119(H2)Pro residue
on the �-chain and the 55(D6)Leu residue on the �-chain
(Fig. 5). Since studies of human Hb mutants have demon-
strated that the loss of atomic contacts at intersubunit con-
tact surfaces typically destabilizes the T-state conformation,
Perutz (1983) hypothesized that the loss of this van der
Waals contact is responsible for the elevated O2 affinity of
bar-headed goose Hb. 

Remarkably, a disruption of this same van der Waals con-
tact also appears to be responsible for the high Hb–O2 affin-
ity of the Andean goose (P50 � 33.9 torr at 40°C, pH 7.1),
which is a year-round resident of lakes and marshes in the
high Andes at altitudes � 3000 m. Similar to the case with
the bar-headed goose, the Andean goose exhibits a much
higher Hb–O2 affinity than its lowland sibling species, the
mallard duck, Anas platyrhynchos. The adult Hbs of the An-
dean goose and the mallard duck are distinguished by five
amino acid substitutions in the �-chains and five substitu-
tions in the �-chains (Hiebl et al., 1987a). It is the �-chain
55(D6)Leu � Ser substitution in Andean goose Hb that
eliminates the same intersubunit contact as the �-chain
119(H2)Pro � Ala substitution in bar-headed goose Hb. To
test Perutz’s (1983) hypothesis about the mechanism under-
lying the increased Hb–O2 affinity, Jessen et al. (1991) and
Weber et al. (1993) used site-directed mutagensis to synthe-

size and functionally characterize two recombinant human
Hb mutants: one that contained the bar-headed goose �-
chain mutation 119(H2)Ala and one that contained the An-
dean goose �-chain mutation 55(D6)Ser. These studies re-
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FIG. 4. Dot representation of van der Waals radii at an intradimer �1�1 contact in human Hb (left) and bar-headed goose
Hb (right). Note that in the bar-headed goose Hb the replacement of Ala for Pro at the �119(H2) residue position results
in a loss of atomic contact between the �1 and �1 subunits. The disruption of this interchain van der Waals contact desta-
bilizes the T-state deoxyHb quaternary structure and therefore results in an increased Hb–O2 affinity, because the allosteric
equilibrium is shifted in favor of the R-state oxyHb structure.

FIG. 5. Binding of 2,3-DPG in the central cavity between
the �1 and �2 chains of deoxyHb. Also shown (lower-left cor-
ner) is an intrachain salt bridge that is formed in deoxyHb
between the imidazole ring of the N-terminal �146(HC3)His
and the negatively charged �94(FG1)Asp. This bond in-
creases the affinity of FG1 Asp for protons and therefore con-
tributes to the Bohr effect. The protons are released upon
transition to R-state oxyHb.



vealed that each engineered Hb mutant was characterized
by much higher O2-binding affinities than in wild-type hu-
man Hb and confirmed that the observed differences were
primarily attributable to the loss of a single �1�1 interchain
contact (Jessen et al., 1991; Weber et al., 1993). Thus, in each
of these two species, the evolution of increased Hb–O2 affin-
ity can be attributed to a similar mechanism: destabilization
of T-state deoxyHb through the disruption of intersubunit
contacts. However, in each species the same functional out-
come was achieved through distinct mutational pathways in
different subunit polypeptides of the Hb tetramer. Golding
and Dean (1998:360) provided an apt summary of this phe-
nomenon: “different species, different genes, different re-
placements—same mechanism, same effect.”

The fact that the independent evolution of increased
Hb–O2 affinity in these two bird species involved the same
mechanism for favoring the T-to-R transition in quaternary
structure suggests that there may be relatively few ways in
which a given change in Hb–O2 affinity may be accom-
plished. If this is the case, we might expect to see this same
mechanism replicated in other taxa that have independently
evolved an increased Hb–O2 affinity as an adaptive response
to environmental hypoxia. As explained later, the disruption
of intersubunit contacts clearly does not represent the only
possible mechanism of Hb adaptation to hypoxia, as several
studies have documented evolutionary changes in Hb–O2

affinity that have been accomplished by altering Hb sensi-
tivity to allosteric effectors.

Hemoglobin Adaptation Involving Changes in
Heterotropic Effects

The relatively high Hb–O2 affinity of Andean camelids
(llama, vicuña, alpaca, and guanaco) is attributable to a
�2(NA2)His � Asn substitution that eliminates two of the
seven DPG-binding sites per tetramer. Within this group of
highland camelids, the especially high Hb–O2 affinity of the
vicuña (Vicugna vicugna) appears to be attributable to a
�130(H13)Ala � Thr substitution, which introduces a polar
hydroxyl group that inhibits Cl� binding at the neighboring
�131Asn residue (Kleinschmidt et al., 1986; Piccinini et al.,
1990; Weber, 2007).

Modifications of Cl� binding sites also appear to be re-
sponsible for the increased Hb–O2 affinity of frogs in the
genus Telmatobius that live in snowmelt streams at altitudes
of 3000 to 4600 m in the Andes. A study of Hb function in
the species Telmatobius peruvianus from 3800 m (Weber et al.,
2002) revealed that the high Hb–O2 affinity of the major Hb
isoform (isoHb) of this species is attributable to two modifi-
cations of �-chain Cl� binding sites: acetylation of the NH2-
terminal residue and an amino acid substitution at residue
131(H14) where nonpolar Ala replaces the ancestral polar
residue (� Thr in the lowland clawed-frog, Xenopus laevis).

The suppression of DPG binding that accounts for the high
Hb–O2 affinity of Andean camelids also accounts for the high
O2-binding affinity of human fetal Hb (HbF). The �-chain
subunits of HbF are encoded by the �-globin gene, which is
distinguished from the adult �-globin gene by the substitu-
tion �143(H21)His � �143Ser, a key DPG-binding site. The
increased affinity of HbF relative to adult Hb is advanta-
geous, because it facilitates placental O2 transfer from the
maternal circulation to the fetal circulation. Likewise, as
pointed out by Weber et al. (2002), the suppression of Cl�

binding that accounts for the high Hb–O2 affinity of Andean
frogs also accounts for the high O2-binding affinity of hu-
man embryonic Hb (HbE). The �-chain subunits of HbE are
encoded by the �-globin gene, which is distinguished from
the adult �-globin gene by the substitution �131(H21)Ser �
�131Val, a key Cl� binding site. The increased affinity of HbE
relative to adult Hb may be important for O2 uptake from
the amniotic fluid and for facilitating the transition to a pla-
cental circulatory system (Brittain, 2002).

Other Mechanisms of Hemoglobin Adaptation

Studies of human Hb mutants indicate that Hb–O2 affin-
ity can also be adjusted through subtle changes in the po-
larity of the heme pocket (Dickerson and Geis, 1983). This
mechanism may underlie allelic variation in Hb–O2 affinity
between high and low altitude populations of deer mice (Per-
omyscus maniculatus) in western North America. Deer mice
possess triplicated copies of the adult �-globin gene, and
each of the three copies segregate functionally distinct alle-
les that exhibit pronounced allele frequency differences be-
tween high and low altitude populations (Snyder et al., 1988;
Storz, 2007; Storz et al., 2007, 2008). Allelic variation at these
�-globin genes contributes to fitness-related variation in aer-
obic performance in natural populations of deer mice (Chap-
pell and Snyder, 1984; Chappell et al., 1988; Hayes and 
O’Connor, 1999), and the abrupt altitudinal shifts in allele
frequencies appear to be attributable to spatially varying se-
lection that drives the divergent fine-tuning of Hb–O2 affin-
ity between different elevational zones (Snyder, 1981; Sny-
der et al., 1988; Storz et al., 2007). Two of the three �-globin
genes, HBA-T1 and HBA-T2, segregate the same two alter-
native protein alleles (the shared polymorphism between the
two closely linked gene duplicates is attributable to gene con-
version, a form of recombination between nonallellic se-
quences). At both HBA-T1 and HBA-T2, the two alternative
alleles are distinguished from one another by substitutions
at five solvent-exposed amino acid residues that span the E-
helix domain (Fig. 6). These five residues line the opening 
of the heme pocket and contribute to the polarity of the cav-
ity. The high affinity allele, which predominates in high al-
titude populations, is characterized by the five-site combi-
nation: 50(CD8)Pro, 57(E6)Gly, 60(E9)Ala, 64(E13)Gly, and
71(E20)Gly. The low affinity allele, which predominates in
low altitude populations, is characterized by an alternative
combination of amino acids at these same five sites: His, Ala,
Gly, Asp, and Ser, respectively. Of the five substitutions that
distinguish the high- and low-affinity allele classes, the
64(E13)Asp � Gly substitution is predicted to have the most
important effects on O2-binding affinity. At this site, substi-
tution of the uncharged Gly residue for the negatively
charged Asp residue involves substituting a single H atom
side chain for a much larger carboxylic acid side chain. The
affinity-enhancing effects of this substitution are corrobo-
rated by functional studies of the same 64(E13)Gly mutant
in human Hb (Hb Guangzhou–Hangzhou), a high-affinity
Hb mutant found at low frequency among East Asians. In
deer mice, the other charge-changing substitution that dis-
tinguishes the alternative allele classes, 50(CD8)His � Pro,
may also have an important effect on the geometry of the
heme pocket, because Pro introduces a sharper turn angle in
the CD interhelical segment that could alter the orientation
of the E helix.
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Effects of Hemoglobin Isoform Differentiation on
Blood O2 Transport

Since the individual subunit polypeptides of the Hb
tetramer are encoded by genes that may be present in multiple
copies, many species are capable of synthesizing multiple iso-
Hbs. All gnathostome vertebrates synthesize functionally dis-
tinct isoHbs during different stages of development, and some
species are known to synthesize functionally distinct isoHbs
during the same stage of development. In some cases, func-
tional differentiation among coexpressed globin genes may
provide the basis for a cascade mechanism of blood O2 trans-
port where circulating red cells contain a mixture of isoHbs
with different O2-binding affinities. Adjustments in the com-
position stoichiometry of the different isoHbs may have im-
portant effects on blood O2 transport under hypoxic condi-
tions (van Vliet and Huisman, 1964; Weber, 1990, 2000, 2007).
The high-affinity isoHbs may be specialized for pulmonary
O2 loading at low PO2, whereas the low-affinity isoHbs may
be specialized for O2 unloading in the peripheral circulation
(Weber et al., 1988a, 1988b; Weber, 2007).

The expression of multiple isoHbs with graded O2 affini-
ties is expected to broaden the permissible range of arterial
O2 tensions for pulmonary-tissue O2 transport and may thus
provide a regulatory reserve of O2 transport capacity. This
cascade mechanism of blood O2 transport appears to have
played an important role in the evolution of hypoxia toler-
ance in birds that are capable of flying at extremely high al-
titudes (Hiebl et al., 1987a, 1987b, 1987c, 1988; Weber et al.,
1988a). One of the most striking examples of the role of isoHb
differentiation in high altitude respiration involves a high-
soaring African vulture called Rüppell’s griffon, Gyps ruep-
pelli. As a result of tandem duplication and functional di-
vergence of the �A- and �D-globin genes, the red blood cells
of these birds contain a mixture of four distinct �-chain iso-
Hbs (HbA, HbA�, HbD, and HbD�) with graded O2-binding
affinities (Hiebl et al., 1988; Weber et al., 1988a). Under hy-
poxic conditions, the high-affinity �D-chain isoHbs appear
to help safeguard arterial O2 saturation, whereas the rela-
tively low affinity �A-chain isoHbs ensure efficient O2 de-
livery to the cells of respiring tissues (Weber et al., 1988a).

The differentiation in isoHb O2 affinities appears to be pri-
marily attributable to �-chain substitutions that produce
isoform-specific shifts in the allosteric equilibrium between
the T- and R-states. The reduced O2 affinity of HbA relative
to the other three isoHbs is largely attributable to an �A-
chain substitution at an intradimer �1�1 contact, �134(B15)–
�1125(H3), whereas the increased O2 affinity of HbD and
HbD� relative to HbA and HbA� is largely attributable to
separate �D- and �D�-chain substitutions at the same inter-
dimer �1�2 contact, �138(C3)–�297(FG4)/99(FG6) (Weber et
al., 1988a; Weber, 2007).

Similar types of isoHb differentiation have also been de-
scribed in mammals. Under conditions of high-altitude hy-
poxia, adult alpacas (Vicugna pacos) and yaks (Bos grunniens)
are known to upregulate a fetal �-like globin gene, which re-
sults in the synthesis of a relatively high affinity fetal Hb
(Reynafarje et al., 1975; Sarkar et al., 1999). This high-affin-
ity fetal Hb is adapted to placental-tissue O2 transport in the
hypoxic intrauterine environment and apparently can be co-
opted for pulmonary-tissue O2 transport under hypoxic con-
ditions during postnatal life. In addition to the coexpression
of fetal and adult Hbs under hypoxic conditions, yaks also
possess multiple adult isoHbs due to functional differentia-
tion among tandemly duplicated �- and �-globin genes
(Lalthantluanga et al., 1985; Weber et al., 1988b). Since yaks
inhabit alpine environments at elevations of 3000 to 6000 m
on the Tibetan Plateau, the cascaded O2 affinities of the fe-
tal and adult isoHbs appear to play an important role in the
hypoxia tolerance of these animals during both pre- and
postnatal life. The differentiation in O2-binding affinity
among �-chain isoHbs of deer mice may play a similar role
in hypoxia tolerance (Storz et al., 2007, 2008).

Pleiotropic Constraints on Hemoglobin Evolution

In addition to comparative studies of Hb function in ani-
mal species that are native to high and low altitude environ-
ments, the wealth of functional information about human Hb
mutants also provides insight into molecular mechanisms
that underlie changes in intrinsic Hb–O2 affinity and sensi-
tivity to allosteric effectors (Dickerson and Geis, 1983). Some
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FIG. 6. Homology-based structural model of deer mouse oxyHb showing the location of five amino acid replacement poly-
morphisms that span the E-helix domain of the �-chain subunit. Two charge-changing substitutions at �50(CD8) and
�64(E13) are highlighted in the inset figure.



of the same mutations that alter Hb–O2 affinity of human Hbs
may be involved in adaptive modifications of Hb function in
other species. In humans, high-affinity Hb mutants are typi-
cally associated with reduced levels of tissue oxygenation,
which results in polycythemia due to the increased produc-
tion of erythropoietin. However, affinity-enhancing muta-
tions that have deleterious effects in humans living under
normoxic conditions may be physiologically advantageous in
animal species that inhabit hypoxic environments where the
preservation of arterial O2 saturation is at a premium.

Functional information about human Hb mutations can
also provide insights into the nature of pleiotropic con-
straints on Hb evolution (where pleiotropy here refers to the
case where a single mutation has multiple effects on differ-
ent aspects of protein structure or function). Information on
pleiotropic constraints is important because it can provide
clues as to why certain evolutionary pathways are followed
more often than others. For example, even if mutation X and
mutation Y produce identical effects on one particular aspect
of Hb function, such as O2-binding affinity, the two muta-
tions may have different pleiotropic effects on other aspects
of Hb structure or function. Thus, the two mutations may
differ with respect to their net effects on physiological per-
formance (and fitness).

The majority of human Hb mutants that increase O2-bind-
ing affinity do so by destabilizing the T-state (Dickerson and
Geis, 1983). This is typically accomplished by disrupting hy-
drogen bonds or salt bridges at the chain termini of deoxyHb.
For example, three different �-chain mutations (Hbs Tarrant,
Suresnes, and Legnano) favor the T-to-R transition by dis-
rupting an important salt bridge between 126(H9)Asp and
the C-terminal 141(HC3)Arg in deoxyHb. This is accom-
plished by eliminating a side chain at either one of the two
residue positions. Other mutations impair DPG binding by
adding a negative charge at the binding site (Hbs Shepherds
Bush, Ohio) or by eliminating a positive charge (Hbs Rahere,
Helsinki, Little Rock, Syracuse). In many cases the disrup-
tion is so severe that the Hbs undergo spontaneous oxida-
tion and precipitate to form insoluble inclusions (known as
Heinz bodies) within the red cell, ultimately resulting in he-
molytic anemia.

The available data on human Hb mutants indicate that
there are many potential mutational changes that can pro-
duce an increased Hb–O2 affinity. However, many of these
changes will have negative pleiotropic effects on structural
stability. Thus, even if an advantageous change in Hb–O2

affinity can be attained by means of a single substitution at
a critical residue position, such changes may often require
additional compensatory substitutions to offset negative side
effects of the original change.

Interpretative Challenges Associated with the Study of
Molecular Adaptation

As illustrated by the case studies described above, there
are a number of different mechanisms by which Hb–O2 affin-
ity can be fine-tuned to optimize blood-O2 transport under
hypoxia. In several high altitude species, the evolution of in-
creased Hb–O2 affinity is attributable to amino acid substi-
tutions that shift the allosteric equilibrium in favor of the R-
state oxyHb conformation. If it is true that adaptive
modifications of Hb function are typically attributable to a

very small number of amino acid substitutions at key posi-
tions, as suggested by Perutz (1983), then it may often be
possible to pinpoint the causal substitutions in comparisons
of Hb variation between highland and lowland species or
between high and low altitude populations of the same
species. The other implication of Perutz’s (1983) argument is
that there may be a very limited number of solutions to the
problem of optimizing blood O2 transport under hypoxic
conditions, so the same evolutionary pathways may be ex-
ploited time and time again in different lineages. If Perutz is
correct, we should therefore expect that many additional ex-
amples of convergent or parallel evolution of Hb function
will be revealed by comparative studies of high altitude an-
imals. However, it is important to keep in mind that adap-
tive modifications of protein function may often involve two
steps forward and one step back, as physiologically advan-
tageous changes in one aspect of protein function may often
have pleiotropic effects that need to be compensated for by
multiple auxiliary changes. If this proves generally to be the
case, it suggests that it may not always be easy to identify
causal substitutions in comparisons of Hb variation within
or between species. This is because it will often be difficult
or impossible to determine which substitutions were re-
sponsible for producing the initial adaptive improvement in
protein function and which substitutions represent compen-
satory changes that only became advantageous in the con-
text provided by previous modifications of the genetic back-
ground.

As stated by Golding and Dean (1998:355): “The study of
molecular adaptation has long been fraught with difficulties,
not the least of which is identifying out of hundreds of amino
acid replacements those few directly responsible for major
adaptations.” Even in cases where it is possible to identify a
single substitution of major effect (as in the comparison be-
tween bar-headed goose and greylag goose Hbs), it would
be interesting to know whether the additional amino acid
changes accentuate the main effect of this substitution (in an
additive or epistatic fashion) or whether they represent com-
pensatory changes that offset negative side effects associated
with the initial substitution.
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