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Schistosoma comparative genomics:
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Alex Loukas4, Patrick J. Skelly5 and Karl F. Hoffmann1
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(UCSF), San Francisco, CA, USA
3 Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
4 School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Cairns, Australia
5 Molecular Helminthology Laboratory, Division of Infectious Diseases, Department of Biomedical Sciences, Tufts University,

Cummings School of Veterinary Medicine, Grafton, MA, USA

Schistosoma genomes provide a comprehensive re-
source for identifying the molecular processes that
shape parasite evolution and for discovering novel che-
motherapeutic or immunoprophylactic targets. Here, we
demonstrate how intragenus and intergenus compara-
tive genomics can be used to drive these investigations
forward, illustrate the advantages and limitations of
these approaches and review how post-genomic tech-
nologies offer complementary strategies for genome
characterisation. Although sequencing and functional
characterisation of other schistosome/platyhelminth
genomes continues to expedite anthelmintic discovery,
we contend that future priorities should equally focus on
improving assembly quality, and chromosomal assign-
ment, of existing schistosome/platyhelminth genomes.

Comparative genome basics
July 2009 marked a seminal date in the history of para-
site genomics, helminthology and evolutionary biology.
After more than 20 years of collaborative research, both
Schistosoma japonicum [1] and Schistosoma mansoni [2]
draft genomes were elucidated using whole-genome shot-
gun sequencing (see Glossary). Along with Schistosoma
haematobium, these parasitic trematodes are responsible
for most cases of human hepatosplenic (S. japonicum and
S. mansoni) and urinary (S. haematobium) schistosomia-
sis [3], a chronic and morbid neglected tropical disease
afflicting hundreds of millions of people in sub-Saharan
Africa, Asia and South America [4]. Information con-
tained in these genomes has fuelled optimism that novel
drug targets, vaccine candidates and immunomodulatory
gene products will be found leading to the development of
urgently needed control strategies [5,6].

However, to comprehensively interrogate this vast
amount of sequence information, comparative genome
investigations are necessary. Comparative genomics can

Review

Glossary

Acoelomate: schistosomes lack a coelom (an internal fluid filled body cavity)

and instead, are comprised of a solid, triploblastic (ectoderm, mesoderm and

endoderm), bilaterally symmetrical, body plan. Owing to the acoelomate

(lacking a coelom) nature, schistosome organs develop in direct contact with

these triploblastic tissues and not in fluid filled cavities.

BAC (bacterial artificial chromosome): a DNA construct used in whole-genome,

shotgun sequencing projects that can be propagated through Escherichia coli.

Genomic DNA insert sizes of 150–350 kb are typically found within BACs. BAC

DNA constructs (found in Sm1 and CHORI 103 BAC libraries) were used to map

genome scaffolds to S. mansoni chromosomes via FISH.

Comparative genomics: an informatics based technique used to compare the

DNA sequences that comprise draft or finished genomes of organisms within

the same phylum or across different phyla. By identifying similarities (homolo-

gous synteny blocks, HSBs) and differences (evolutionary breakpoint regions,

EBRs) across genomes, schistosome comparative genomics attempts to: (i)

provide insight into the processes that shape species evolution, (ii) identify

essential genes suitable for chemotherapy development and (iii) predict poten-

tial immunoprophylactic gene products. For this review, intragenus (comparing

draft S. mansoni and S. japonicum genomes) and intergenus (contrasting

Schistosoma genomes to comparator genomes) comparative genomics analy-

ses are discussed.

Contig: a contiguous sequence of DNA assembled from overlapping cloned

DNA fragments. The S. mansoni genome was assembled from 50 376 contigs

and the S. japonicum genome was assembled from 95 265 contigs.

Evolutionary breakpoint regions (EBRs): a non-aligning, genomic interval found

between two adjacent HSB boundaries. These can comprise interchromosomal

or intrachromosomal rearrangements. At 100 kb resolution 52 EBRs were found,

whereas at 10 kb resolution 477 EBRs were uncovered.

FISH (fluorescence in situ hybridisation): an experimental technique by which

genome scaffolds are physically mapped to chromosomes and visualised by

fluorescence microscopy. Upon publication, 43% of the S. mansoni genome

assembly was unambiguously assigned to the seven autosomes and the ZW

sex-determining pairs. A total of 81% of the S. mansoni genome assembly

(version 5.0) has now been physically mapped to the karyotype.

Gap: a portion in the scaffold that is linked to two sequence verified contigs but

has not been sequenced.

Gene ontology (GO): a standardised vocabulary of gene product attributes that

is species neutral and applicable to both prokaryotes and eukaryotes. See http://

www.geneontology.org/ for more information.

Homologous synteny blocks (HSBs): a minimum of two adjacent markers in the

same chromosome/scaffold between S. mansoni and S. japonicum genomes

that share the same order in both species without interruption by an HSB from a

different region of the same chromosome/scaffold or from a different chromo-

some/scaffold. In this preliminary intra-Schistosoma comparative genome

analysis, HSBs of 100 kb and 10 kb were considered.

Interchromosomal rearrangements: an intraspecies genomic rearrangement

that takes place between different Schistosoma chromosomes. At 100 kb reso-

lution 10 interchromosomal rearrangements were found, whereas at 10 kb

resolution 67 EBRs were uncovered.
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be defined on many levels, but for the purpose of this
review, we will discuss how intergenus and intragenus
genome analyses are shaping schistosome post-genomic
activities. Intergenus analyses involve cross-phylum ge-
nome comparisons in the primary search for gene loss/gene
gain events. Both schistosome genome reports employed
intergenus comparative genomics by contrasting the
Schistosoma genomes with other genomes to discover fea-
tures specific to, or shared between, parasitic and non-
parasitic organisms [1,2]. This approach is similar to that
performed for other parasitic helminth genome projects
(e.g. Brugia malayi [7] or Trichinella spiralis [8]) and has
identified metabolic chokepoints, conserved druggable tar-
gets, expanded gene families and protein domain loss
within the Schistosoma.

Intragenus comparative genome analyses involve the
exploration of relatedness/differences between species
(within a single genus), which in turn could provide physical
markers of chromosomal evolution and highlight conserved
regions (e.g. protein coding genes or gene families) of possi-
ble relevance as anti-schistosomal targets. For the apicom-
plexans [9] and trypanosomes [10], intragenus comparative
genomics has already facilitated the discovery of novel
biological observations (i.e. core genomes and lineage spe-
cific expansions) that may lead to innovative anti-protozoan

treatments. To date, similar intragenus analyses have not
been performed for schistosomes.

Here, for the first time, using the most recent
Schistosoma genome assemblies (SJR2 for S. japonicum
and SMA5.0 for S. mansoni), an intragenus comparative
genomic analysis is performed. Utilising a proven strate-
gy to compare phylogenetically related genomes [11],
regions of chromosomal similarity and dissimilarity are
identified between basal- (S. japonicum) and derived-
(S. mansoni) schistosome species [12]. Complementing this
karyotypic analysis is a review of how improvements in
intergenus comparative and functional genomics can be
applied to identify schistosome gene products of potential
importance to parasite viability, development and host
interrelationships. We suggest that the collective applica-
tion of these comparative/functional genomics methodolo-
gies will lead to a better understanding of schistosome
genome structure, gene function and evolution.

Intragenus Schistosoma comparative genomic analyses
For the 2009 S. mansoni genome assembly [2], 43% (dis-
tributed over 153 scaffolds) was unambiguously mapped
onto schistosome chromosomes (seven autosomes and the
Z/W sex-determination pair). Mapping was achieved by
fluorescence in situ hybridisation (FISH) of bacterial arti-
ficial chromosomes (BACs) containing parasite genomic
DNA fragments [13]. In 2011, with improvements in ge-
nome reassembly and additional FISH experiments, 81%
of the S. mansoni genome (comprising 885 scaffolds, ver-
sion 5.0) can now be explicitly mapped to chromosomes
(M. Berriman, unpublished) (Figure 1a). This robust phys-
ical map allowed us to align the S. japonicum whole
genome assembly (Figure 1b) to S. mansoni chromosomes
(Figure 1c) and subsequently generate a comparative
genomic map (Figure 1d). Blocks of intragenus homolo-
gous synteny (at 100 kb and 10 kb minimum size resolu-
tions) are illustrated with the corresponding S. japonicum
protein coding genes contained within these regions de-
scribed in Supplementary Tables S1 and S2. At 100 kb
resolution, the homologous synteny blocks (HSBs) cover
approximately a quarter to one-third of the Schistosoma
genome (101.17 and 112.93 Mb of the S. japonicum and
S. mansoni genomes, respectively) and most probably
represent regions of chromosomes derived from a common
ancestor [14] (Figure 2), which may be shared in all
Schistosoma species. In mammalian genomes, HSBs are
enriched for genes involved in developmental processes,
neurogenesis and cell-to-cell interaction [11]. Accordingly,
in schistosomes, these HSBs (containing 4443 genes at
10 kb resolution, Supplementary Table S2) could encode
products suitable for the identification of pan-species drug
and vaccine targets (further discussed below). Our analy-
sis shows that boundaries of adjacent HSBs found in the
same S. japonicum scaffold tend to flank putative evolu-
tionary breakpoint regions (EBRs) between S. mansoni
and S. japonicum genomes. These EBRs can be derived
either from large-scale interchromosomal (black arrows
and numbers, Figure 2) or intrachromosomal (red arrows
and numbers, Figure 2) rearrangements and are created
from the non-allele joining of broken double-stranded
DNA ends during meiosis [15]. In mammalian genomes,

Intrachromosomal rearrangements: an intraspecies genomic rearrangement

that occurs within the same Schistosoma chromosome. At 100 kb resolution

42 intrachromosomal rearrangements were found, whereas at 10 kb resolution

410 intrachromosomal rearrangements were uncovered.

Resolution: the length threshold (in bps) that defines a HSB. For 100 kb resolu-

tion, all HSBs shorter than 100 kb are excluded from further analyses. Likewise,

for 10 kb resolution, all HSBs shorter than 10 kb are excluded from further

analyses.

Scaffold: a reconstructed portion of the genome made by assembling over-

lapping contigs and gaps. The 50 376 S. mansoni contigs were assembled into

5745 scaffolds and the 95 265 S. japonicum contigs were assembled into 25 048

scaffolds. These scaffolds comprised the draft genome sequences of each

schistosome species.

Schistosomulum: a schistosome lifecycle stage that develops immediately after

cercarial penetration of the definitive vertebrate host. Characteristic features of

this developmental form include a tegumental heptalaminate (seven mem-

branes comprise two opposing trilaminte lipid bilayers) covering and an ability

to initiate haematophagy (blood feeding). The schistosomulum is believed to be

a major target of protective host immune responses [51].

Tegument: a protective syncytium layer sandwiched between the hepatolami-

nate surface covering and the acoelomate schistosome body plan. Nucleated

cell bodies situated below the tegument produce the diverse biomolecules and

vesicles that are transported throughout the syncytium. Owing to the positional

(host–parasite interface) and protective nature of this structure [55], proteins

shuttled from subtegumental cell bodies to the hepatolaminate membrane

surface are of interest for vaccinologists.

Whole-genome shotgun sequencing: a genome sequencing strategy, by which

fragmented genomic DNA (gDNA) is randomly sequenced, assembled into

overlapping contiguous sequences (contigs) and built into large genome scaf-

folds. Scaffolds are subsequently assembled into whole draft genomes of the

studied organism. Whole-genome shotgun sequencing of the S. mansoni

genome (363 Mb at 6X coverage) was initiated with mixed-sex cercariae gDNA,

whereas the S. japonicum genome (397 Mb at 6X coverage) was elucidated by

gDNA isolated from mixed-sex adult schistosomes.

Z/W sex-determination pair: the diploid schistosome genome is maintained

across seven autosomal and one Z/W sex-determining chromosomal pairs. The

gender of individual schistosomes is dependent upon inheritance of these Z/W

sex-defining chromosomes. A female schistosome will, therefore, contain a ZW

combination of sex-determining chromosomes, whereas a male schistosome

will contain a ZZ combination. Owing to challenges with physical mapping of

the S. mansoni assembly (version 5.0) to individual Z or W chromosomes, a

concatenated Z/W description is indicated (in this review as well as in the S.

mansoni genome description [2]). Further studies undoubtedly will facilitate

physical mapping of the most recent genome assembly to specific Z and W

chromosomal regions.
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EBRs contain gene dense-, transcriptionally active-, poor-
ly methylated- and replication initiation-rich elements
[16,17]. These particular features are all associated with
chromatin in a relaxed or open state and probably explain
why evolutionary breakpoints occur here. As such, EBRs
(and the genes contained within them) are subjected to
greater genomic instabilities during normal cellular pro-
cesses and are under increased evolutionary pressure to
mutate [18].

Whereas all schistosome chromosomes, except chro-
mosome 7, contain HSBs interrupted by interchromo-
somal EBRs at 100 kb resolution, closer interrogation of
these EBRs (Figure 2, Supplementary Tables S1 and S2)
revealed that Schistosoma genomes evolve preferentially
by intrachromosomal rather than interchromosomal
rearrangements (42 intrachromosomal EBRs vs 10 in-
terchromosomal EBRs). This is consistent with nema-
tode genomes [7,19] and illustrates a mechanism of
chromosome evolution conserved between worm phyla.
Furthermore, a ninefold increase in the total number
of all genome rearrangements was found when the
10 kb set (477 EBRs comprising 410 intrachromosomal

rearrangements and 67 interchromosomal rearrange-
ments) was compared to the 100 kb set (52 EBRs). Nu-
merical differences may indicate that: (i) a significant
number of rearrangements missing in the 100 kb set are
due to the scattered nature of the S. japonicum genome,
(ii) errors in scaffold-to-chromosome assignments exist in
one or both genomes and (iii) true small-scale synteny
differences in S. mansoni and S. japonicum genomes are
prevalent. We anticipate that resolution of these possi-
bilities will be facilitated in the near future by advanced,
intra-Schistosoma comparative genomics.

Although we have yet to fully detail the molecular
features (e.g. DNA methylation status [20]) found within
these Schistosoma EBRs, long terminal repeat (LTR) and
non-LTR retrotransposable elements are found in a signif-
icantly greater proportion here (Supplementary Table S3).
As these elements drive evolutionary processes [21] and
have been associated with EBRs of mammalian genomes
[22], their enrichment in schistosome EBRs is not surpris-
ing. The extent and role of these (functional or recently
active) LTR and non-LTR retrotransposons in shaping
schistosome evolution has yet to be determined, but is
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Figure 1. Intra-Schistosoma comparative genomic analysis: generation of a preliminary virtual karyotype. An intragenus comparative genome analysis was initiated with

sequence information contained in the originally published S. japonicum genome (http://www.chgc.sh.cn/japonicum/Resources.html, SJR2) as well as the recently

reassembled S. mansoni genome (http://www.sanger.ac.uk/resources/downloads/helminths/schistosoma-mansoni.html, SMA5.0). (a) Version 5.0 of the S. mansoni

genome was reassembled into 885 scaffolds, where 81% of them were unambiguously assigned to chromosomal positions (seven autosomes and Z/W sex-determining

chimera) by FISH (M. Berriman, unpublished). (b) The original S. japonicum genome assembly was assembled into 25 048 scaffolds from 92 265 contigs [1]. (c) To facilitate

intergenus genomic comparisons, S. japonicum scaffolds were aligned to S. mansoni chromosomes by the Satsuma Synteny program [91] followed by detection of

>100 kb (full details found in Supplementary Table S1) and >10 kb (full details found in Supplementary Table S2) homologous synteny blocks (HSBs) defined by the

SyntenyTracker program [92]. (d) Both 100 kb and 10 kb HSB sets are visualised on the virtual S. mansoni comparative chromosomal map (generated by Evolution Highway,

http://eh-demo.ncsa.uiuc.edu/). We used the 100 kb HSB set for identifying interchromosomal evolutionary breakpoint regions (EBRs) between schistosome genomes

(Figure 2), whereas the 10 kb HSB set was used to interrogate gene ontology (GO) enrichment in all putative EBRs found between S. mansoni and S. japonicum genomes

(Figure 3).
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an area of obvious interest. Further gene ontology (GO)
analysis (Supplementary Table S2) suggests that, similar
to mammalian EBRs, these parasite genomic features are
gene-rich and, therefore, probably composed of open chro-
matin. This conclusion is supported by the finding that ‘cell
part’ and ‘catalytic activity’ GO categories, belonging to the
‘cellular component’ and ‘molecular function’ high level GO
terms (populated by gene products involved in transcrip-
tion and DNA replication/repair), are significantly
enriched within the Schistosoma EBRs (Figure 3 and
Supplementary Table S2). It is tempting to speculate that
lineage-specific S. mansoni or S. japonicum markers are
also found within these EBRs and may be mined from
within the 140 and 854 gene products identified at 100 kb
(Supplementary Table S1) and 10 kb resolution (Supple-
mentary Table S2), respectively.

Although this analysis has detected a core set of
HSBs containing �25% of the ancestral Schistosoma ge-
nome, we expect that the number of EBRs in the two
genomes is underestimated because a comparable physical
S. japonicum genome map is not yet available. Progress in
intra-Schistosoma comparative genomics will depend on
improving genome assemblies mapped to chromosomes

(e.g. S. japonicum) and de novo sequencing and draft assem-
blies of other schistosome genomes (e.g. S. haematobium).
Indeed, recent intragenus comparative genome analysis of
Caenorhabditis elegans and Caenorhabditis briggsae have
improved defective gene models, detected potential new
genes and identified missing orthologous relationships
within this free-living nematode genus [23]. Further itera-
tions of the present analysis will help identify molecular
drivers of schistosome evolution (e.g. functional retrotran-
sposable elements within EBRs) and highlight conserved
regions (e.g. protein encoding genes or gene families
within HSBs) of interest as pan-specific, anti-schistosomal
targets. Comparative genomics between the Platyhelminthes
will also be possible in the near future due to the completion
or ongoing sequencing of Schmidtea mediterranea [24],
Taenia solium [25], Echinococcus sp. and Hymenolepsis
microstoma genomes (sequencing/draft assembly in progress
for the last two helminths at the Wellcome Trust Sanger
Institute). These efforts will help us to understand the origin
and nature of parasitism within the phylum as well as
highlight the chromosomal events associated with the evolu-
tion and divergence of parasitic trematodes and cestodes from
free-living turbellarians.
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Figure 2. Schistosoma comparative genome analysis reveals interchromosomal evolutionary breakpoint regions (EBRs). The whole genome alignment output from

Satsuma Synteny [91] was translated into homologous synteny blocks (HSBs, >100 kb) using the SyntenyTracker program [92]. Combined, these HSBs (red blocks, ‘+’

alignment orientation; blue blocks, ‘�’ alignment orientation) cover 112.93 Mb (31%) of the S. mansoni genomes and 101.17 Mb (25%) of the S. japonicum genomes,

respectively. Numbers inside the HSBs indicate S. mansoni chromosome designations (version 5.0) and numbers above HSBs correspond to S. japonicum scaffold IDs

(SJR2). Numbers (indicated as Mb ranges) to the right side of the HSBs are S. mansoni chromosomal positions and the numbers to the left side of the HSBs are coordinates

derived from S. japonicum scaffolds. Black arrows represent positions of all putative interchromosomal rearrangements between the S. mansoni and S. japonicum

genomes with the EBR identifiers (numbered 5, 6, 13, 19, 23, 27, 28, 33, 40 and 49) included in Supplementary Table S1. Red arrows indicate positions of two putative

intrachromosomal rearrangements (out of 42 identified in this analysis) between the S. mansoni and S. japonicum genomes. Details of all intrachromosomal

rearrangements can also be found in Supplementary Table S1.
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Intergenus comparative genomics to predict
Schistosoma drug targets
A major goal consequent on the arrival [1,2] and continu-
ing refinement [26] of annotated schistosome genomes is
the identification of new drug targets. In this regard,
intergenus comparative genomics implements a series
of user-defined criteria to derive short lists of prioritised
and actionable gene targets [27–30]. Short-listed, high-
quality targets are derived from sequence comparisons
between schistosome(s) and comparator(s) genomes to
identify genes for which experimental data indicate that
their products are essential to parasite survival or viabili-
ty. Actionable entails having the experimental tools at
hand to interrogate short-listed targets. So far, target
validation in schistosomes has predominantly used tran-
sient RNA interference (detailed below) or more recently,
employing vector-based small hairpin RNAs (shRNAs)
[31,32]. The alternative or complementary approach of
chemical validation relies on small molecules most often
developed against a distinct (usually human) target with

the implication, and sometimes formal demonstration
[33,34], that the anti-schistosomal effect is associated with
binding to the intended schistosome orthologue(s). Based
on the presented intra-Schistosoma comparative genomic
analysis, an additional criterion for short-list inclusion
and target validation would be chromosomal position. For
example, 252 eukaryotic protein kinases (ePKs) have
recently been identified in S. mansoni and many of these
may be potential drug targets [35]. Our analysis (Figures 1
and 2) indicates that some ePKs (e.g. Sjp_0015710.1,
Sjp_0019720.1, Sjp_0027360.1, Sjp_0056860.1) are phys-
ically positioned within intra-schistosomal EBRs (Supple-
mentary Table S2). As EBRs are actively evolving, the
selection of pan-Schistosoma chemotherapeutic targets
physically positioned within these regions should proceed
cautiously.

Online tools are under development to utilise compara-
tive genomics for short-listing possible drug targets. For
example, the TDR Targets Database (http://tdrtargets.org/)
provides a variety of ‘tunable’ and Boolean-capable filters
to generate user-defined lists of potential targets for 11
different pathogens, including S. mansoni and several
other helminths [29,30]. In addition, SchistoDB (http://
schistodb.net/) [36] will expand considerably in the next
year with improved query functionality, graphical user
interfaces and other features from the EuPathDB family
of genome databases [37] (G. Oliveira, L. Wei, J. Kissinger
and D. Roos, personal communications). Utilising these
resources, intergenus comparative genomics can be used
to identify pathogen-specific proteins or those that are
sufficiently different so as to be functionally absent from
the host [38]. This is in an attempt to limit potential drug
toxicity arising from chemical crossreactivity between the
orthologous parasite and host targets. Yet, the alternative
(i.e. to explore orthologous genes as a source of potential
drug targets) is also useful. Here, genes that are shared
among species are likely to be essential and thus more
attractive as targets due to the severity of phenotypes
produced upon perturbation [38,39]. Sufficient physiologi-
cal, parasitological and/or protein structural circumstances
often exist that can offset possible host toxicity [28] and,
therefore, this concept has been actively exploited in recent
comparative genomic studies involving S. mansoni [28,29].
This approach might also focus on those genes that are
expressed in both juvenile and adult worms [40–42] consid-
ering that the current schistosomicide, praziquantel, is less
effective against immature parasites [43].

Although comparative genomics offers a straightfor-
ward strategy to prevalidate potential drug targets, there
are limitations, both inherent and contextual. For the
latter, perhaps most obvious is the dearth of comprehen-
sive genome, transcriptome and proteome information for
S. haematobium which is more prevalent than S. mansoni
in Africa and is often co-endemic [44]. With the current
operational requirement in sub-Saharan Africa for a single
anti-schistosomal drug, this lack of annotated sequence
information represents a crucial knowledge gap only par-
tially filled by the 0.5 to 1.0x coverage genome sequence
that is currently available (http://www.cebio.org/projetos/
schistosoma-haematobium-genome). Even if highly pro-
cessed/assembled S. haematobium genomic data were at
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Figure 3. Schistosome evolutionary breakpoint regions (EBRs) and surrounding

intervals (<10 kb) are enriched for specific gene ontology (GO) categories. GO

categories (across molecular function, biological process and cellular component

terms) were assigned to S. japonicum genes using an in-house script that

attempted to assign gene products to GO names and synonyms from version 1.2

(release date 15 March, 2011 CVS revision number 1.1836) of the ontology (http://

www.geneontology.org). The script was able to calculate a score for each GO ID by

matching words in the gene product to words in the GO name or synonym. Gene

products that scored above a minimum score (or confidence value) were allocated

to their highest scoring GO ID. The script then followed the links through the GO

hierarchy to identify the corresponding top-level GO categories for each allocated

GO ID. These top-level GO categories were subsequently used in the analysis. In

the case of a gene product for which no GO name or synonym scored above the

confidence value, no GO category was assigned. S. japonicum scaffolds were

divided into 10 kb windows and the number of genes from each GO category that

had >100 assigned genes was counted in each 10 kb window. Next, the average

number of genes for each GO category was calculated separately for the windows

located within EBRs and the remainder of S. japonicum scaffolds. The average

number of genes was calculated for 10 kb windows located within the EBRs and

compared with the average number of genes in 10 kb windows found outside the

EBRs using a t-test with unequal variances as described previously [93]. The

significance threshold (P=0.05) is indicated by a horizontal dashed line. All GO

categories above this threshold are more likely to occur in EBRs when compared to

the rest of the genome, whereas GO categories below this threshold do not

demonstrate any preferential localisation in EBRs compared with other regions of

the genome.
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hand, it might be difficult to predict how even subtle
sequence differences between S. mansoni and S. haema-
tobium targets would impact the successful development of
a single drug. Also, as comparative genomics incorporates
experimental loss-of-function data from model organisms,
the approach may miss potential targets modulated
through gain-of-function, as occurs with many of today’s
anthelmintics [28]. Looking much further forward, com-
parative genomics and the underlying (but increasingly
challenged) drug discovery philosophy of ‘one gene, one
target, one disease’ [45] may oversimplify the process of
identifying new drug targets. Rather, a better understand-
ing of the dynamics of how biological pathways and
networks are perturbed by small molecules (polypharma-
cology) and/or gene disruption would provide the sophisti-
cation necessary to predict new therapeutic targets
[45–47], especially with a view to limiting the establish-
ment of drug resistance. Finally, based on the findings

presented here, selecting compounds that target loci con-
tained within HSBs (Figure 2, Supplementary Tables S1
and S2) presents new opportunities to identify therapeutic
small molecules.

Comparative schistosome vaccinomics/immunomics:
identifying immunoprophylactic targets within the
tegument
Apart from potential drug targets, the schistosome genome
[1,2], various transcriptomes [48,49] and proteomes of the
tegument and excretory/secretory (ES) products (reviewed
in [50]) have also provided researchers with a ‘molecular
haystack’ in which to find a handful of ‘immunoprophylac-
tic needles’. A major challenge is to efficiently and compar-
atively mine this information. DNA microarrays have
partially addressed this issue with several recent reports
[40,41] identifying gene products differentially expressed
throughout the lifecycle of the parasite, including the
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Figure 4. Comparative informatics approaches for identifying vaccine candidates from the schistosome tegument. Owing to advances in ‘omics’ technologies, next-generation

schistosome vaccine discovery has been revitalised. Outlined is an example of how complementary strategies are currently being used to identify next-generation, anti-

schistosomal vaccine targets. (a) To identify tegument proteins exposed at the host–parasite interface, schistosome worms (adults represented here) are labelled with biotin [60]

[tegument visualised here by incubating adult worms with Cy3-labelled anti-biotin Abs (red sinuous band indicated by white arrows) and co-stained with DAPI to distinguish

subtegumental nuclei (blue)]. (b) Subsequent processing of these biotin-labelled tegumental preparations generates a collection of putative, surface-exposed proteins that can

be analysed by Liquid chromatography-mass spectrometry/mass spectrometry (LC–MS/MS). (c) Peptide spectra generated from MS/MS analysis are matched to gene/cDNA

sequences from Schistosoma databases, allowing for the identification of parasite proteins. (d) Protein sequences are filtered through a cyclic round of informatics involving

comparative genomics (protein sequences found only in the Platyhelminthes or also present in other genomes), comparative transcriptomics (intra-Schistosoma gene

expression similarities throughout the parasite lifecycle [40,41]) and comparative proteomics (proteins found in tegumental preparations across the Schistosoma [59–61]). (e)

Selected recombinant proteins that display desirable features (i.e. expressed in schistosomula as well as adults and are surface exposed in the Schistosoma teguments) are

produced in a heterologous expression system (e.g. Escherichia coli or Pichia pastoris), purified and used to (f) vaccinate laboratory animals to (g) assess protective efficacy.
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tissue migrating schistosomulum – a major target of pro-
tective immune responses [51]. As many of these tran-
scripts (e.g. tetraspanins, cathepsins, serpins and
tegumental-associated antigens) are encoded in both
S. mansoni and S. japonicum genomes (i.e. found within
HSBs, Supplementary Table S2) and are also expressed in
all definitive host lifecycle stages, they represent key
vaccine candidates.

Given the acoelomate body plan of the parasite, schis-
tosome tissues and organs cannot easily be manually
dissected to probe for orthologous gene products (identified
by comparative genomics) of possible relevance as vaccine
antigens. To overcome this challenge, laser microdissection
microscopy (LMM) has helped to elucidate gene expression
in specific tissues of both S. mansoni and S. japonicum.
Thus far, the gastrodermis and reproductive tissues have
been scrutinised using a combination of LMM, RNA ex-
traction and DNA microarray analysis [52,53]. This novel
comparative transcriptomics approach aided the assembly
of a schistosome gene atlas for the organs under study [53].
Although this methodology offers an unprecedented oppor-
tunity to identify tissue-enriched transcriptional profiles
(between species), it has its limitations. For example, the
schistosome tegument, a tissue often targeted by vaccinol-
ogists [54] (being situated at the host–parasite interface
[55]) does not readily lend itself to LMM. This is because
the tegumental cell bodies (and their nuclei) are buried
deeply within the musculature.

Alternative approaches to ‘dissect’ the tegument have
utilised comparative proteomics to discover and character-
ise proteins of interest at this host–parasite interface
[50,56–60]. This approach has revealed that several
tegumental proteins are homologous between schistosome
species [56,59,60] with some being localised to the outer,
host-interacting, surface membrane [60,61]. It is these
surface-exposed proteins that are attractive vaccine tar-
gets (Figure 4). For example, many tetraspanin genes
(contained within the S. japonicum and S. mansoni
HSBs, Figure 1 and Supplementary Table S2) are highly
expressed in the intra-mammalian schistosome stages
[40,41], and some of these are located in tegumental mem-
branes [60,61]. The tetraspanins have been experimentally
proven to be protective in small and large animal models of
schistosomiasis [62,63] and Sm-TSP-2 is also selectively
recognised by naturally resistant humans [54,62]. Thus,
(comparative) proteomics has been a successful platform in
the identification and short-listing of candidate protein
vaccines.

Integration of ‘omics’ technologies has accelerated the
development of new post-genomic tools to aid vaccine
discovery. For example, high-throughput protein expres-
sion techniques (e.g. in vitro transcription/translation sys-
tems), coupled to high-throughput immunoscreening with
sera from resistant humans and animals, have propelled
schistosomiasis research into the immunomics era [64].
Recently, the first Schistosoma immunomics protein micro-
array was described as a vaccine discovery tool [65]. Anti-
gens included on this microarray were chosen from those
identified in previous proteomic investigations in addition
to those sequences selected from comparative in silico
screening of both S. mansoni and S. japonicum genomes

and transcriptomes. The goal here was to identify target
antigens based on subcellular location with a particular
emphasis on those proteins expressed in the tegument.
Proteins were expressed in a cell-free in vitro transcription/
translation system and contact-printed onto nitrocellulose-
coated slides to form protein microarrays. The arrays are
currently being probed with IgG and IgE antibody sub-
classes from resistant and chronically infected human and
animal populations (S. Gaze and A. Loukas, unpublished).
This approach is revealing antigens that are targets of both
protective IgG responses and potentially harmful IgE
responses [66]. This innovative technology of immunomics
or, essentially, reverse vaccinology that relies on the out-
puts of comparative genomics, transcriptomics and prote-
omics analyses has the potential to transform vaccine
research for schistosomiasis and other parasitic diseases.

Functionally exploring comparative genomic outputs:
revisiting the tegument
Identifying the precise role(s) of short-listed chemothera-
peutic or immunoprophylactic targets is often problematic,
especially for those genes without orthology outside of the
genus or that encode proteins of unknown function [1,2].
For schistosomes, RNAi has emerged as a useful technique
to experimentally manipulate the expression of specific
schistosome genes and, possibly, gain insight into gene
function. Newer protocols employing shRNAs may further
extend its utility [31,32]. Comparative schistosome geno-
mics has revealed that genes encoding known RNAi path-
way effectors are shared between S. mansoni and
S. japonicum [67,68]. Furthermore, targeted gene suppres-
sion (mediated by RNAi) has been demonstrated in both
species [69,70]. Although RNAi can be both rapid and long-
lasting [71,72] as well as functional in several schistosome
lifecycle stages [71,73], it is not always definitive. For
reasons unknown, some genes appear recalcitrant to ro-
bust suppression [72,74], and striking phenotypes are
seldom seen [72,73]. In other cases, RNAi has helped
identify drug targets and gain insight into parasite bio-
chemistry, physiology and host–parasite interactions
[34,70,75,76].

Perhaps due to the voluminous genome data, schisto-
some functional genomics has most often focused on a
conserved biochemical pathway, tissue type or employed
a gene-by-gene approach. As an example, we review how
RNAi has contributed to the functional characterisation of
conserved (within the Schistosoma) proteins in one such
tissue, the aforementioned tegument. Part of its function-
ing at the host–parasite interface is to import nutrients
from the host bloodstream. Within the S. mansoni tegu-
ment, two facilitated diffusion, glucose-importing proteins
have been identified; schistosome glucose transporter
(SGTP) 1 and SGTP4 [77]. SGTP4 is present in the host
interactive, apical tegumental membranes, whereas
SGTP1 is found in the tegumental basal membrane and
other tissues. Using schistosomula and adult worms, RNAi
of SGTP1 or SGTP4 impaired the ability of the parasite to
import glucose, and this effect was compounded by sup-
pression of both transporter genes simultaneously [78].
Although RNAi-treated parasites cultured in rich medium
were not phenotypically different from controls as assessed
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microscopically, their survival in vivo was significantly
impaired [78]. Thus, RNAi has provided direct evidence
for the importance of SGTP1 and SGTP4 in glucose trans-
port and survival in the mammalian host.

Proteomic analysis of schistosome tegumental mem-
branes also revealed the presence of an aquaporin homolog
(SmAQP) [56]. Aquaporins (found within HSBs, Figure 1
and Supplementary Table S2) are membrane proteins that
form pores to selectively conduct water molecules into and
out of cells. RNAi-mediated SmAQP suppression impaired
the ability of schistosomula to osmoregulate and revealed
the previously unrecognised role of the tegument in con-
trolling water movement into, and out of, the parasites
[79]. Unexpectedly, SmAQP-suppressed adult parasites
in vitro failed to rapidly acidify their culture medium and
were found to excrete less lactate compared with controls
[80]. Heterologous expression of SmAQP in Xenopus oocytes
demonstrated that this protein, in addition to transporting
water, could also transport lactate [80]. These findings
provide a molecular understanding of how schistosomes
cope with the significant quantities of lactate created
from the largely anaerobic glucose catabolism that is a
hallmark of their intravascular lives [81]. Collectively, the
comparative and functional genomic data suggest that the
syntenic position of aquaporins is an important feature of
schistosome/host relationships driven by the need to extend
tegumental functions in metabolic waste excretion.

The contribution of the tegument to immune evasion
by the worms is less well understood, although many

investigations have provided functional explanations in
this regard [55]. The presence of nucleotide-metabolizing
enzymes associated with the parasite surface [56,57]
has led to the suggestion that these can catabolise host
proinflammatory metabolites such as ATP and generate
anti-inflammatory mediators such as adenosine [82].
Accordingly, schistosomes may prevent their hosts from
focusing immunological mediators in their vicinity [82]. In
support of this notion, RNAi of adult tegumental alkaline
phosphatase (SmAP) prevented production of the anti-
inflammatory adenosine from an exogenously added
precursor (AMP) [83].

These examples illustrate the power of RNAi to provide
insight into schistosome gene function. Combined with
schistosome transcriptomics and proteomics, RNAi use
can be extended to systematically identify the function
of many comparatively identified genome products in par-
asite biology, development and host interactions.

Concluding remarks and future perspectives
As outlined, comparative genomics offers an established set
of principles for understanding gene and genome biology as
well as exploiting that information to identify targets for
chemotherapy and immunotherapy. The intragenus and
intergenus comparative genomic analyses discussed here
are an encouraging first step, but will be improved (Box 1)
once other schistosome genomes are sequenced (e.g.
S. haematobium) and existing schistosome genomes are
refined, reassembled and mapped (e.g. S. japonicum). When

Box 1. Outstanding questions: the future of schistosome comparative genomics

How important is genome reassembly?

To maximise the power of comparative genomics, Schistosoma

genomes need to be continually reassembled into the smallest set

of overlapping scaffolds as possible. This allows for large stretches

of multiple genomes to be systematically compared. Although the

S. mansoni genome has undergone several rounds of reassembly

(genome version 5.0 has 885 scaffolds; http://www.sanger.ac.uk/

resources/downloads/helminths/schistosoma-mansoni.html), there

has been very little progress in reassembling the S. japonicum

genome since publication (SJR2 has 25 048 scaffolds; http://

www.chgc.sh.cn/japonicum/Resources.html). Therefore, our preli-

minary intragenus comparative genome analysis is limited by the

fragmented nature of the S. japonicum genome. Future analyses

will be improved upon refined and reassembled Schistosoma

genomes facilitated by application of next generation sequencing

technologies and sophisticated informatics. Assigning the reas-

sembled S. japonicum genome to chromosomes (similar to that

performed for S. mansoni [13]) would also aid future intragenus

analyses.

Is the S. haematobium genome important for future comparative

analyses?
The preliminary Schistosoma comparative genomic analysis pro-

vided in this review would significantly benefit from the elucidation

of the S. haematobium genome. A variety of evolutionary and

control questions could be more readily addressed upon the

inclusion of this most derived (amongst S. japonicum, S. mansoni

and S. haematobium) schistosome species. Efforts are currently

underway to sequence the genome of this species (e.g. http://

www.cebio.org/projetos/schistosoma-haematobium-genome). Also,

comprehensive genome information for S. haematobium would be

essential given the operational simplicity demanded for a single drug

or vaccine to control both S. mansoni and S. haematobium in

sub-Saharan Africa.

How important are additional platyhelminth genomes?

Comparative genomics of only two species in one class within the

phylum (illustrated in this review) is obviously providing a very limited

snapshot of platyhelminth biology. Therefore, the elucidation of new

flatworm genomes is necessary to understand the evolution of this

important group of animals. Genomes of Echinoccocus granulosus (http:

//www.sanger.ac.uk/resources/downloads/helminths/echinococcus-

granulosus.html), Echinoccocus multilocularis (http://www.sanger.ac.uk/

resources/downloads/helminths/echinococcus-multilocularis.html),

Hymenolepsis microstoma (http://www.sanger.ac.uk/resources/

downloads/helminths/hymenolepis-microstoma.html), Schmidtea medi-

terranea (http://smedgd.neuro.utah.edu/) and Taenia solium are all at

different states of assembly, but upon completion, will advance our ability

to perform comparative flatworm genomics. Information contained

within new platyhelminth transcriptomes [84–87] will also complement

certain aspects of comparative genome investigations (i.e. identification

of conserved drug or vaccine targets).

How can post-genomic technologies effectively complement platy-

helminth comparative genomics investigations?

A large variety of post-genomics technologies (e.g. [88,89]) have been

developed over the past decade to study platyhelminth biology.

However, the optimism that these technologies would quickly deliver

new platyhelminth drugs or vaccines has yet to be fully realised.

Perhaps, in light of the enormous energy put forth in sequencing new

platyhelminth genomes, equal emphasis should be dedicated towards

the meta-analysis of existing post-genomics datasets to identify those

conserved targets suitable for functional validation. Further refinement

of post-genomic technologies applied to conserved targets identified

by meta-analysis of available datasets and new targets identified by

platyhelminth comparative genomics investigations will transform the

state of anthelmintic discovery. Indeed, it is this type of approach that is

beginning to make an impact on Plasmodium biology and the

identification of novel antimalarials [90].
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additional platyhelminths are included, a robust framework
for comparative flatworm genomics will be realised. This
information will lead to (i) detection of genes affected by the
natural selection processes operating on each platyhelminth
species, (ii) identification of the species- and class-specific
gene network changes and (iii) characterisation of gene
birth/death rates due to lineage-specific genome rearrange-
ments, duplications and mobile genetic element activity.
This greater knowledge of genome biology (experimentally
verified by post-genomic technologies) will aid the discovery
of novel schistosomiasis control strategies and allow for a
better understanding of lifestyle diversity and evolution
within the Platyhelminthes.
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