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a  b  s  t  r  a  c  t

The  henipaviruses,  Hendra  virus  (HeV)  and  Nipah  virus  (NiV),  are  two deadly  zoonotic  viruses for  which
no vaccines  or  therapeutics  have  yet  been  approved  for  human  or livestock  use.  In  14  outbreaks  since  1994
HeV  has  been  responsible  for multiple  fatalities  in  horses  and  humans,  with  all  known  human  infections
resulting  from  close  contact  with  infected  horses.  A vaccine  that  prevents  virus  shedding  in infected
horses  could  interrupt  the chain  of  transmission  to  humans  and  therefore  prevent  HeV  disease  in  both.
Here we  characterise  HeV  infection  in  a  ferret  model  and  show  that  it closely  mirrors  the  disease  seen  in
humans and  horses  with  induction  of  systemic  vasculitis,  including  involvement  of  the  pulmonary  and
central  nervous  systems.  This  model  of  HeV  infection  in  the  ferret  was  used  to  assess  the  immunogenicity
and  protective  efficacy  of a  subunit  vaccine  based  on a recombinant  soluble  version  of  the HeV  attachment
glycoprotein  G  (HeVsG),  adjuvanted  with  CpG.  We  report  that  ferrets  vaccinated  with  a 100  �g, 20  �g or
4  �g dose  of  HeVsG  remained  free  of  clinical  signs  of  HeV  infection  following  a challenge  with 5000  TCID50

of  HeV.  In  addition,  and  of considerable  importance,  no  evidence  of  virus  or viral  genome  was  detected
in  any  tissues  or body  fluids  in any  ferret  in  the  100  and 20  �g groups,  while  genome  was  detected  in the
nasal  washes  only  of  one  animal  in the 4 �g group.  Together,  our  findings  indicate  that  100  �g or  20  �g
doses  of HeVsG  vaccine  can  completely  prevent  a  productive  HeV  infection  in the  ferret,  suggesting  that
vaccination  to prevent  the  infection  and  shedding  of  HeV  is  possible.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Hendra virus (HeV) is a zoonotic virus transmitted from bats to
humans via horses. While HeV related disease in bats has not been
documented, the virus can cause a severe systemic illness, with
severe pathology associated with the respiratory and neurological
systems in both horses and humans [1]. Four of the seven human
infections recorded so far have been fatal and the disease is usually
fatal in horses – in the first recorded outbreak of HeV in 1994 in
Brisbane, Queensland, Australia 14 horses died out of a total of 20
infected with HeV [2].  Including the initial outbreak there have been
14 known spillovers of HeV and all except one (in northern New
South Wales) occurred in Queensland [3].

HeV is one of only two members of the genus Henipavirus in the
family Paramyxoviridae [4,5]. The henipaviruses are characterised
by a large genome and their ability to infect a wide range of ani-

∗ Corresponding author. Tel.: +61 3 5227 5277; fax: +61 3 5227 5555.
E-mail address: jackie.pallister@csiro.au (J. Pallister).

mals, including humans. The other member of the genus, Nipah
virus (NiV), was  first isolated from a disease outbreak that occurred
in Malaysia in 1998 in humans and pigs [6].  Out  of 265 human
cases, 105 were fatal. Since 2001 there have been numerous NiV
outbreaks in Bangladesh and two  in India [7],  the most recent occur-
rence in early 2011, in Bangladesh [8].  At least two outbreaks have
been associated with virus transmission from human-to-human
[9–11] with both respiratory and neurological signs observed in
humans, and mortality rates ranging from 40% to 75%.

As a result of the potential for henipaviruses to cause significant
mortality and morbidity in humans they are classified as Biosafety
Level 4 (BSL-4) agents. Further, due to their carriage by wildlife and
their relative ease of propagation, the henipaviruses are considered
select agents of concern for biodefense by the Centers for Disease
Control and Prevention (CDC) and the National Institute of Allergy
and Infectious Diseases (NIAID). In spite of this no licensed prophy-
lactic or therapeutic treatments are currently available although
several therapeutic modalities are under active investigation.

Like most paramyxoviruses, henipavirus infection of host cells
involves two viral glycoproteins [12]. The G glycoprotein is the viral
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attachment protein and exists as a tetramer embedded in the lipid
membrane of the virus. Henipavirus G binds to the host cell recep-
tors; ephrin-B2 and ephrin-B3 [13–16],  important bi-directional
cell–cell signalling molecules that are highly conserved and widely
expressed particularly within the nervous and vascular systems
[17] across all mammalian species. The second viral glycoprotein is
the fusion (F) protein, which upon triggering facilitates the fusion
between the viral and cellular membranes.

An immune response to viral surface proteins/glycoproteins is
often necessary for resistance to viral infection [18] and is particu-
larly effective in controlling infections with a viraemic phase such
as the human paramyxoviruses that cause mumps  and measles
[19,20]. Similarly, passive protection against NiV infection has
recently been demonstrated in a ferret model by transferring a G
glycoprotein specific, HeV and NiV cross-reactive, human mono-
clonal antibody [21] and in a hamster model by transferring G or F
glycoprotein specific polyclonal or monoclonal antibody [22–24].  In
the hamster model, vaccination with recombinant vaccinia viruses
expressing G or F also induced protection against a lethal challenge
with NiV [22]. A similar outcome has been demonstrated in pigs
vaccinated with a canarypox vaccine carrying G or F [25]. In two
different experiments cats vaccinated with a soluble G glycoprotein
(sG) based subunit immunogen survived a lethal NiV challenge with
no clinical signs [26,27]. Although no clinical disease was observed,
in one experiment genome was detected in oral swabs, urine and
the brain of several animals, virus was isolated from the brain of
one animal [26] and in the other experiment genome was detected
in the tissues of two animals at levels that were so low as to be
questionable [27]. There is 83.3% identity between the amino acid
sequences of the HeV and NiV G glycoproteins [28] and it has been
shown that immunisation with sG of either HeV or NiV produces
cross neutralising antibodies, with a better cross neutralisation
response elicited by HeV soluble G (HeVsG) [27]. HeVsG therefore
has potential as a subunit vaccine immunogen for preventing both
HeV and NiV infection.

Previous studies have revealed that ferrets are a very successful
model for NiV infection, closely mirroring the characteristics of the
infection in humans [21,29]. NiV infected ferrets exhibit severe res-
piratory and neurological disease as well as generalised vasculitis.
Here, we have evaluated HeV infection of ferrets and extend the
use of this new animal model to assess the protective efficacy of
HeVsG as a vaccine immunogen against lethal HeV challenge. We
show that, like NiV, the manifestation of HeV infection and patho-
genesis in ferrets is similar to that seen in humans exhibiting both
respiratory and neurological disease. Further, in this model system,
the three HeVsG vaccine doses tested prevented clinical disease
after a lethal HeV challenge, and following the two higher doses of
immunogen there was no detectable evidence of HeV infection.

2. Materials and methods

2.1. Animals, accommodation, handling, and biosafety

Eight male ferrets aged 12–18 months were used for the HeV
model development study and eight were used for the HeVsG vac-
cination study. The animal husbandry methods and experimental
design were endorsed by the CSIRO Australian Animal Health Labo-
ratory’s Animal Ethics Committee. Animals were housed in a single
room at BSL-4 in pairs in cages that incorporated two  “squeeze”
compartments for administration of chemical restraint, given a
complete premium dry food and provided with water ad libitum.
Room temperature was maintained at 22 ◦C with 15 air changes per
hour; and humidity varied between 40% and 60%. Before any manip-
ulation, animals were immobilized with a mixture of ketamine HCl
(3 mg/kg; Ketamil; Ilium, Smithfield, Australia) and medetomidine

(30 �g/kg; Domitor; Novartis, Pendle Hill, Australia) by intramus-
cular injection. For reversal, atimepazole (Antisedan; Novartis) was
given intramuscularly at 50% of the dose used for medetomidine.
At least one week prior to virus challenge single stage transmit-
ters fitted with an internal loop antenna and coated with an inert
two-pot epoxy resin (Sirtrack, Havelock North, New Zealand) were
implanted subcutaneously in the flank of the ferrets for the purpose
of real-time continuous monitoring of body temperature. Staff wore
fully encapsulated suits with breathing apparatus while in the ani-
mal  room. Serology, virus isolations, and the initial stages of RNA
extraction were carried out at BSL-4.

2.2. Animal infections

Ferrets were exposed to a low passage isolate of HeV (Red-
lands 2008) by the oronasal route. For the HeV infection study, 2
ferrets per group were exposed to 50 TCID50 (ferrets 1-50, 2-50),
500 TCID50 (3-500, 4-500), 5000 TCID50 (5-5000, 6-5000) or 50,000
TCID50 (7-50,000, 8-50,000) and for the sG vaccination experiment
ferrets were exposed to 5000 TCID50 at day 41 of the experiment
i.e. 21 days post the booster vaccination.

General clinical observations were documented daily prior to as
well as after challenge. Animals were weighed while under seda-
tion at the time of vaccination and challenge and at days 6, 8, 10, and
21 post-challenge (pc). Rectal temperature was  also determined at
sedation by using digital thermometers to augment data derived
remotely from the implanted temperature transponders. Ferrets
were euthanized when reaching a previously determined endpoint
or 21 days pc. The humane endpoint was defined as rapidly pro-
gressive clinical illness of up to 2 days duration including fever
and depression, possibly accompanied by increased respiratory rate
or posterior paresis or ataxia. In susceptible animals, this typically
occurs within the first 10 days after viral challenge. In preliminary
studies, these signs were found to correlate with the requirement
to euthanize ferrets on subsequent days on humane grounds; thus,
they have been utilized as surrogates for lethality.

2.3. Vaccine immunogen preparation

A human codon optimized HeV soluble glycoprotein G (sG) con-
struct was  used to produce recombinant HeVsG. The construct
was generated by cloning the entire ectodomain coding regions
of HeV G linked to an IgK leader sequence and S-peptide tag into
pcDNA CMV+hygro. The expression plasmid pcDNA-CMV+hygro
was generated by insertion of the CMV  promoter element from
plasmid phCMV-1(Gelantis, San Diego, CA) into pCDNA3.1(hygro)
(Invitrogen, Carlsbad, CA). A stable HeVsG secreting cell line was
generated by transfecting plasmid pcDNA-CMV+hygro-HeVsG into
human 293F cells and selection using hygromycin B followed
by limiting dilution cloning, generating the cell line HeVsG#4-2
293F. HeVsG was prepared by growing HeVsG#4-2 293F cells in
shaker cultures using serum-free medium- 293 SFM II (Invitrogen)
and purified by S-protein agarose affinity chromatography fol-
lowed by preparative gel filtration chromatography with a Hiload
16/60, Superdex 200 column. CpG oligodeoxynucleotide (ODN)
2007 (TCGTCGTTGTCGTTTTGTCGTT) containing a fully phospho-
rothioate backbone was purchased from Invivogen (San Diego, CA,
USA) and AlhydrogelTM was  purchased from Accurate Chemical &
Scientific Corporation (Westbury, NY, USA). Although the CpG com-
ponent of the adjuvant is species specific, in the absence of any
information on ferret specific CpG sequences the same CpG com-
ponent was  used for the ferret vaccine as was  used for cats [26].
Vaccine doses containing fixed amount of CpG ODN 2007 and vary-
ing amounts of HeVsG and aluminium ion (at a weight ratio of 1:25)
were formulated as follows: 100 �g dose: 100 �g HeVsG, 2.5 mg
aluminium ion and 150 �g of CpG ODN 2007; 20 �g dose: 20 �g
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HeVsG, 500 �g aluminium ion and 150 �g of CpG ODN2007; and
4 �g dose: 4 �g HeVsG, 100 �g aluminium ion and 150 �g of CpG
ODN 2007. For all doses, AlhydrogelTM and HeVsG were mixed first
before CpG ODN 2007 was added. Each vaccine dose was  adjusted
to 1 ml  with PBS and mixtures were incubated on a rotating wheel
at room temperature for at least 2–3 h prior to injection.

2.4. Immunisation

Ferrets were divided into 4 groups of 2, with each group receiv-
ing either a 100 �g HeVsG (ferrets 1-100, 2-100), 20 �g HeVsG
(ferrets 3-20, 4-20) or 4 �g HeVsG (ferrets 5-4, 6-4) dose of vaccine
or adjuvant alone (ferrets 7-0, 8-0). The vaccine was administered
subcutaneously with a priming dose at day 0 and a booster dose 20
days later. Blood samples were collected for antibody analysis at
day 0, day 20 and day 30. Nasal washes, oral and rectal swabs, and
blood samples in EDTA were taken before the first vaccination.

2.5. Sample collection

Nasal washes, oral and rectal swabs, and blood samples both in
EDTA and for serum preparation, were taken before challenge and
at days 6, 8, 10 and 21 pc. For the vaccination experiment blood was
taken before challenge as detailed in Section 2.4. Urine was only
collected on day 21 pc due to the tendency of ferrets to urinate on
being woken. Rectal and oral swabs were collected in duplicate into
1 ml  of PBS for virus isolation or 800 �l of MagMAX Lysis/Binding
solution (Ambion, Victoria, Australia) for genome extraction. For
urine, nasal washes and EDTA blood, 100 �l of fluid was added to
260 �l Lysis/Binding solution.

At post-mortem (PM) examination, tissues were collected for
virus isolation, viral genome detection, histology and immunohis-
tology. These tissues included adrenal gland, bladder, occipital lobe
of the brain, olfactory pole, heart, kidney, liver, apical lung lobe,
diaphragmatic lung lobe, bronchial lymph node, retropharyngeal
lymph node, spleen and testes. Tissue samples were either collected
into 1 ml  of PBS containing 1 mm stainless steel beads (Biospec
Products Inc., Bartlesville, OK, USA) for virus isolation, 800 �l Mag-
MAX  Lysis/Binding solution containing 1 mm stainless steel beads
for genome extraction, or fixed in 10% neutral buffered formalin for
48 h prior to routine processing for histology. Immunohistochem-
ical evaluation was carried out using a rabbit polyclonal antibody
raised against the NiV N protein [30].

2.6. RNA detection and HeV TaqMan PCR assay

Tissue samples in MagMAX Lysis/Binding buffer were
homogenised for 30 s in a Mini-Beadbeater (BioSpec Products
Inc.) and centrifuged to pellet debris. 260 �l of homogenised
sample was then extracted using the MagMAX-96 viral RNA iso-
lation kit (Ambion). TaqMan real-time PCR was carried out using
the AgPath-ID one-step reverse transcription-PCR kit (Applied
Biosystems, Victoria, Australia), targeting the N gene of HeV
using primers FOR (5′-GATATITTTGAMGAGGCGGCTAGTT-3′),
REV (5′-CCCATCTCAGTTCTGGGCTATTAG-3′), and probe (6FAM-
CTACTTTGACTACTAAGATAAGA-MGB). Positive results were
defined by a cycle threshold (CT) value of <40 [31]. Relative
quantification of viral RNA levels in the tissues of each animal
relative to the occipital lobe of the brain was performed using the
comparative CT or ��CT method [32]. The occipital lobe of the
brain was chosen as the reference tissue because the relatively
low viral RNA load meant that most tissues carried relatively more
viral RNA, making a graph of the results easier to interpret.

2.7. Virus isolation

For virus isolation, supernatants from homogenized tissues pos-
itive for HeV genome were incubated on Vero cell monolayers and
scored positive if syncytia, as a measure of viral cytopathic effect,
were present after 6 days.

2.8. Serum neutralisation test

Serial doubling dilutions of sera were carried out (final volume
50 �l/well) to which 50 �l HeV (100 TCID50) was added and incu-
bated for 1 h at 37 ◦C. Following incubation 100 �l Vero cells at
2 × 105-cells/ml was added to each well and the assay was read
after 3 days incubation in a humidified 5% CO2 incubator.

2.9. Measurement of antibody to HeV F glycoprotein in ferret
serum

Recombinant expressed HeV sF (Chan and Broder, in prepara-
tion for publication) was  coupled to microspheres and multiplexed
microsphere assays were performed essentially as previously
described [33]. A LuminexH 100 ISTM machine and MiraiBio soft-
ware (MiraiBio Group, South San Francisco, CA) were utilized for all
assays: Bio-Plex Manager software (Bio-Rad Industries, Hercules,
CA) for acquisition and analysis. All samples were assayed simul-
taneously and concentrations were extrapolated from a standard
curve using non-linear regression analysis (GraphPadSoftware, San
Diego, CA).

3. Results

3.1. HeV infection in ferrets

Ferrets have been shown to be acutely sensitive to NiV infec-
tion and pathogenesis [21,29]. The purpose of developing the HeV
ferret model here was to determine the predicted susceptibility of
these animals to HeV challenge and HeV-mediated pathogenesis
and to derive a challenge dose of HeV that would reliably infect
susceptible animals, induce disease that would be expected to be
lethal without other intervention, and could be applied to subse-
quent vaccine and therapeutic studies. Ferrets in the different dose
groups 1-50, 2-50, 3-500, 4-500, 5-5,000, 6-5,000, 7-50,000 and 8-
50,000 were all infected and all ferrets reached a humane endpoint
and were euthanized from days 6 to 9 pc. There was  no association
of virus dose with incubation time, clinical signs, time to endpoint,
and either distribution or severity of gross or histopathological
lesions. Fever was  established in all animals by day 6 pc, and clin-
ical signs included depression, lack of grooming, and generalised
tremors. At post mortem examination, there was subcutaneous
edema of the head and neck, cutaneous petechiation, numer-
ous 1 mm  slightly hemorrhagic nodules scattered throughout the
parenchyma of the lung, together with marked hemorrhage of
submandibular, bronchial, duodenal and mesenteric lymph nodes.
On histologic examination ferrets showed systemic vasculitis,
necrotising lymphadenitis, glomerulitis, splenitis and bronchoalve-
olitis with syncytial cell formation. HeV antigen was  identified in
meningeal endothelial cells (Fig. 1A and B), lymphatic, glomeru-
lar, splenic, pulmonary, cardiac, testicular, pancreatic and intestinal
endothelial cells as well as bronchoalveolar epithelium (Fig. 1C).

3.2. HeV genome detection and virus isolation from infected
ferrets

Thirteen different tissues from each of the 8 ferrets were
screened for the presence of HeV RNA as were oral and rectal swabs,
urine and blood. RNA was  detected in all tissues tested from each
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Fig. 1. Immunohistology using rabbit polyclonal anti-Nipah N protein. (A and B) demonstrating antigen in endothelium of meningeal blood vessels of ferrets 7 and 9 days post
exposure  to 5000 TCID50 HeV (ferrets 5-5000 and 6-5000) and also (C) associated with acute necrotising alveolitis in ferret 6-5000 at 9 days post infection. (D) Post-challenge
acute  renal tubular necrosis not attributed to HeV in ferret 5-4 immunised with 4 �g HeVsG vaccine (Hematoxylin & eosin). Scale bar = 100 �m.

ferret. On average, for the 8 animals the lowest relative Ct level and
highest proportion of virus isolations was in the kidney, lung and
spleen. Positive virus isolations were made in these tissues from all
8 ferrets. The highest relative Ct level and the lowest level of virus
isolation were observed in the occipital lobe of the brain, olfactory
pole and the heart (Fig. 2). Virus was isolated from the occipital lobe
at PM (day 9 pc) in ferret 1-50; from the olfactory pole at day 6 pc
in ferret 4-500, at PM (day 9 pc) in ferret 1-50 and at PM (day 7 pc)
in ferret 8-50,000; from the heart at PM (day 9 pc) in ferret 1-50.

For each sampling day genome was detected in all oral and rectal
swabs, blood samples and in the 7 urine samples collected at post
mortem (there was no urine sample from 2-50 at PM). However,
the only virus isolations were from 3 urine samples at PM (day 7
pc) from ferrets 5-5000, 7-50,000 and 8-50,000, one blood sample
at day 6 pc from ferret 2-50 and one rectal swab at PM (day 8 pc)
from ferret 3-500.

3.3. Immunisation

No reactions such as swelling or erythema were identified at
vaccine sites. At the time of the booster vaccination at day 20, neu-
tralising titres in sera correlated to the dose of sG administered;
ranging from a titre of 8192 for the 100 �g vaccination group, to
1024/2048 for the 20 �g vaccination group, and 64/128 for the 4 �g
vaccination group (Table 1). A greater rise in SNT titre was  noted at
day 30 following the booster immunizations in the lower antigen
groups, and the lack of a measurable rise in SNT titre in the 100 �g
vaccination group was likely due to the larger amount of antigen
used in the first immunization and the timing of the booster immu-

nization. Prior to challenge, neutralising titres in all 6 vaccinated
animals were 8192 or greater.

3.4. Hendra virus challenge of immunized ferrets

Ferrets in the vaccination and challenge study were inoculated
with a low passage isolate of HeV (Redlands 2008) by oronasal
administration. Based on the outcome of the minimal infectious
dose experiment we chose a 5000 TCID50 dose (100 times the min-
imal lethal dose observed) administered at 21 days post booster
vaccination. Control ferrets vaccinated with adjuvant only and sub-
sequently challenged with HeV (ferrets 7-0 and 8-0) became febrile
(>40 ◦C) on day 5 pc, showed reduced play activity and hind limb
paresis, and were euthanized on day 7 pc. All HeVsG immunised
ferrets including the 100 �g dose group (ferrets 1-100, 2-100), the
20 �g dose group (ferrets 3-20, 4-20) and one of the 4 �g dose group

Table 1
HeV serum neutralisation titres from HeVsG vaccinated and control ferrets prior to
challenge.

Ferret # – dose HeVsG HeV SNT titre

Day 0 Day 20 Day 30

1-100 <1:2 1:8192 1:8192
2-100 <1:2 1:8192 1:8192
3-20 <1:2 1:1024 1:8192
4-20 <1:2 1:2048 1:16384
5-4  <1:2 1:64 1:8192
6-4 <1:2 1:128 1:8192
7-0  <1:2 <1:2 <1:2
8-0 <1:2 <1:2 <1:2
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Fig. 2. Relative abundance of HeV genome in different tissues for the HeV Redlands dose titration. The values obtained for the tissue from the occipital lobe of the brain are
used  as the calibrator, and quantification is relative to this tissue type in each animal. Boxed areas below the axis represent tissues where relatively less genome was detected
than  in the occipital lobe of the brain animal numbers and tissue are indicated along the x-axis. (A) Adrenal gland, bladder, brain-olfactory node, heart, kidney and liver. (B)
Lymph  nodes-bronchial, lymph nodes-retro pharyngeal, lung-apical node, lung-diagphragmatic node, spleen and testes. Numbering along the axis indicates the challenge
dose  groups. Two ferrets per group were exposed to 50 TCID50 (numbers 1 and 2), 500 TCID50 (numbers 3 and 4), 5000 TCID50 (numbers 5 and 6) or 50,000 TCID50 (numbers
7  and 8).

(ferret 6-4) remained afebrile and clinically well throughout the
study. The single low dose animal ferret 5-4 also remained afebrile
but showed reduced play activity on day 9 pc, developed weakness
and tremor and was euthanized on day 10 pc.

3.5. Virus isolation and genome detection

Virus isolation and genome detection are shown in Table 2. Viral
genome was detected in most tissues and fluids from control fer-
rets and virus was isolated from a number of, but not all, genome
positive samples. In contrast, HeV genome was not detected in any
of the tissues from the HeVsG immunised animals, including those
from ferret 5-4 which was euthanized at d10 pc. HeV genome was
not detected in the body fluids of HeVsG immunised ferrets except
in nasal washes taken at day 6, 8 and 10 pc from ferret 6-4, with Ct

values ranging from 35.2 to 37.2. Both of the unvaccinated control
ferrets, 7-0 and 8-0, were euthanased at day 7 pc and genome was
detected in the nasal washes of 8-0 at this time. Virus isolation from
ferret 6-4 nasal washes was unsuccessful.

3.6. Post-challenge serology

Control ferrets 7-0 and 8-0 were negative for serum neutralising
antibody at day 6 pc and at euthanasia (day 7 pc). No significant or
consistent rise in antibody titre was detected post-challenge in any
HeVsG immunised ferrets (Table 3).

3.7. Gross pathology, histopathology and immunohistochemistry

Similar gross and histopathological lesions were observed in
control ferrets 7-0 and 8-0 to those found in animals used for devel-
opment of the infection model described above (Fig. 1). All other
ferrets apart from ferret 5-4 were grossly and histologically nor-
mal. In ferret 5-4, both kidneys were pale and enlarged and the
stomach contained hemorrhagic fluid. Histologically, acute renal
tubular necrosis was  identified that was  not attributable to HeV
infection in this animal (Fig. 1). No HeV antigen was  detected in
any tissue of HeVsG immunised ferrets.
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Table 2
Genome detection and virus isolation from HeVsG vaccinated and control HeV challenged ferrets.

TaqMan real time PCR Virus isolation

Ferret # Eut (dpc) Swabs Nasal wash Blood Urine Tissues Swabs Nasal wash Blood Urine Tissues
Or  Re Or Re

1-100 21 − − − − − − − − − − −
2-100 21 − − − − − − − − − − −
3-20 21 −  − − − − − − − − − −
4-20 21 − − − − − − − − − − −
5-4  10 − − − − − − − − − − −
6-4  21 − − + d6,8,10 − − − − − − − −
7-0  7 + + − + + 13/13 +ve − − − − − 7/13 +ve

d6,7 d7 d6,7 d7
8-0 7 + + + + + 12/13 +ve + − − − + 5/13 +ve

d7 d7  d7 d6,7 d7 d7 d7

Ferret # also indicates dose of HeVsG in �g, Eut (dpc) indicates day post challenge that ferrets were euthanized. Swabs: Or = oral swabs, Re = rectal swabs. − indicates no viral
genome detected/no virus isolated; + indicates viral genome detected/virus isolated, with the days on which genome or virus was  detected. For tissues ‘+ve’ indicates the
number of positive tissues from the 13 tissues analysed.

Table 3
HeV serum neutralisation titres from HeVsG vaccinated and control ferrets post-challenge.

Ferret # and �g dose HeVsG HeV SNT titre

Day 30 pv Day 6 pc Day 8 pc Day 10 pc Day  21 pc

1-100 1:8192 1:2048 1:4096 1:1024 1:512
2-100 1:8192 1:1024 1:512 1:4096 1:1024
3-20  1:8192 1:512 1:512 1:128 1:2048
4-20 1:16384 1:4096 1:512 1:512 1:8192
5-4  1:8192 1:2048 1:512 ND 1:512
6-4  1:8192 1:1024 1:128 1:512 1:256
7-0  <1:2 <1:2 ND ND <1:2
8-0  <1:2 <1:2 ND ND <1:2

SNT = serum neutralisation titre, pv = post vaccination, pc = post challenge.

3.8. Measurement of antibody to HeV F glycoprotein in ferret
serum

As an indirect, alternative measure of virus replication in vacci-
nated animals, antibody to the HeV F glycoprotein was measured
in sera using a Luminex microsphere assay (Fig. 3). The only source
of the F glycoprotein in this experiment is the live viral challenge
at day 41 of the experiment. Prior to challenge ferrets are exposed
to HeVsG alone (except ferrets 7-0 and 8-0) therefore MFI  values
obtained up to day 41 represent those we find in sera from fer-
rets with no exposure to F glycoprotein. At the time of euthanasia,
three weeks after challenge, MFI  values in all 8 ferrets had not
risen above those obtained prior to challenge, indicating that we
were not detecting antibody to the F glycoprotein. From this we
inferred that the challenge virus had not replicated. Antibody to

Fig. 3. Luminex assay showing no increase in detection of antibody to HeV F
glycoprotein in serum after challenge with HeV at day 40. M.F.I. indicates mean
fluorescence intensity. Ferret number on the x-axis also indicates dose of HeVsG
in  �g. PM (day of post mortem) varies. Both control ferrets (7-0 and 8-0) were
euthanased at day 7 pc, ferret 5-4 was euthanased at day 10 pc. Remaining ferrets
were all euthanased at d 21 pc.

HeV F glycoprotein was not detected in the virus controls but these
animals were euthanized at d7 pc, before detectable antibody could
develop.

4. Discussion

All known human cases of infection with HeV to date have
resulted from close contact with infected horses, with no recorded
instances of bat to human or human-to-human transmission [28].
These observations make the horse an attractive target for a
HeV vaccination strategy to prevent virus shedding from infected
horses, with the resulting interruption of the principal chain of
transmission of HeV to humans preventing HeV disease in both.
There are currently no licensed vaccines available for prevention
of henipavirus disease. However, trials of various henipavirus vac-
cine candidates in three different animal models – cats, hamsters
and pigs [22,25–27] indicate that a successful vaccination strategy
against disease caused by HeV and NiV should be possible.

Here we assessed the suitability of the ferret as a model for (i)
infection with HeV and the resultant virus-induced disease and
(ii) vaccination against the disease caused by HeV. Ferrets fulfil
some important requirements for working with a BSL-4 pathogen.
Compared to hamsters they are large enough to allow more sophis-
ticated sampling interventions to be carried out on individual
animals over the time course of an infection, they are easier to
handle than pigs and cats, and develop disease much more reli-
ably than pigs. Ferrets have been successfully used to model other
human respiratory infections such as influenza [34] and SARS [35]
as well as NiV [21,29].  Similarly to NiV, exposure of ferrets to a rela-
tively low challenge dose of HeV consistently results in all animals
developing an acute, fulminating systemic infection characterised
by wide-spread vasculitis and affecting multiple major organ sys-
tems particularly the lung and central nervous system.



J. Pallister et al. / Vaccine 29 (2011) 5623– 5630 5629

Using this ferret model of HeV infection and pathogenesis we
evaluated an immunization strategy with a subunit vaccine based
on recombinant HeVsG. As observed in a feline model of NiV chal-
lenge [27], a 100 �g dose of HeVsG successfully prevented clinical
disease with no evidence of viral replication or shedding as detected
by TaqMan real-time PCR, virus isolation, histology or immunohis-
tology. In addition, virus infection, replication and shedding was
also prevented in ferrets in the 20 �g and 4 �g dosing groups of the
HeVsG immunogen, with the exception of one animal in the low
dose group. Here, genome was detected in the nasal washes of this
animal (ferret 6-4) at three consecutive sampling times up to day
10 pc. Importantly, as viral genome was not detected in the nasal
washes of any other ferret this is consistent with viral replication
rather than detection of the original inoculum. No HeV genome
was detected in any other tissue or body fluid of this ferret, nor did
the ferret exhibit any signs of illness, indicating that the immune
response generated by the 4 �g vaccine dose was sufficient to limit
infection to the primary site of exposure. Prevention of virus repli-
cation was also supported by the lack of an anamnestic antibody
response to the virus challenge as well as the absence of an antibody
response to HeV F glycoprotein in any of the vaccinated ferrets 21
days after challenge.

In a similar experiment, cats immunised with 5, 25 and 50 �g
HeVsG vaccine and challenged with NiV showed evidence of viral
replication with increasing antibody titres post challenge and
genome detection in oral swabs, urine and the brains of 4 animals
receiving two higher doses of vaccine [26]. The detection of viral
genome in the brain of cats with significant antibody levels prior to
challenge indicated that a persistent infection might occur despite
pre-existing immunity. A farmer infected during the first recorded
outbreak of HeV that occurred in Mackay in August 1994 recovered
from meningitis only to develop neurologic signs 14 months later
and die with HeV present in the brain [36].

Variation in vaccination regimes, adjuvants used, the challenge
virus stock and dose do not allow for an absolute direct comparison
between any of the recombinant HeVsG vaccination trials carried
out to date. However, these various trials clearly indicate that vac-
cination with HeVsG can prevent clinical HeV disease, and in some
cases HeV infection, depending on the trial parameters as seen in
at least two animal models. Prevention of infection is vital for pre-
venting the establishment of a persistent infection from which virus
could recrudesce some time after recovery. Also of similar impor-
tance, especially in the case of a vaccination scenario for horses,
the prevention of infectious virus shedding could be considered a
critical goal, and our findings here indicate that the higher doses
of at least 20 �g was able to meet this standard. Future studies are
planned to assess the recombinant HeVsG vaccination strategy in
ferrets further, as well as assess the performance of the vaccine in
non-human primates and in horses.
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