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Endovascular balloon occlusion
of the aorta is superior to resuscitative
thoracotomy with aortic clamping in
a porcine model of hemorrhagic shock
Joseph M. White, MD,a Jeremy W. Cannon, MD,a,c Adam Stannard, MRCS,a,b

Nickolay P. Markov, MD,a Jerry R. Spencer, RVT,a and Todd E. Rasmussen, MD,a,c San Antonio, TX,
Birmingham, UK, and Bethesda, MD

Background. Noncompressible torso hemorrhage is the leading cause of potentially preventable death on
the modern battlefield. The objective of this study is to characterize resuscitative aortic balloon occlusion
(BO) compared to thoracotomy with aortic clamping in a model of hemorrhagic shock.
Methods. A total of 18 swine (3 groups; 6 animals/group) were used in this study. Swine in class IV
shock underwent no aortic occlusion (NO), thoracotomy and clamp occlusion (CO), or endovascular
BO. Animals in the NO group underwent direct placement of a temporary vascular shunt (TVS) at the
injury site, whereas animals in the CO and BO groups underwent aortic occlusion before TVS place-
ment. Hemodynamic and physiologic measures were collected.
Results. The central aortic pressure, carotid blood flow and brain oxygenation as measured by oximetry
increased in the CO and BO groups compared to the NO group (P < .05). During resuscitation, the BO
group was less acidotic than the CO group (pH,7.35 vs 7.24; P < .05) with a lower serum lactate level
(4.27 vs 6.55; P < .05) and pCO2 level (43.5 vs 49.9; P < .05). During resuscitation, the BO group
required less fluid (667 mL vs 2,166 mL; P < .05) and norepinephrine (0 mcg vs 52.1 mcg; P < .05)
than the CO group.
Conclusion. Resuscitative aortic BO increases central perfusion pressures with less physiologic
disturbance than thoracotomy with aortic clamping in a model of hemorrhagic shock. Endovascular BO
of the aorta should be explored further as an option in the management of noncompressible torso
hemorrhage. (Surgery 2011;150:400-9.)

From Wilford Hall United States Air Force Medical Center,a Lackland Air Force Base, San Antonio, TX; The
Academic Department of Military Surgery and Trauma,b Royal Centre for Defence Medicine, Birmingham,
UK; and the Norman M. Rich Department of Surgery,c The Uniformed Services University of the Health
Sciences, Bethesda, MD

NONCOMPRESSIBLE TORSO HEMORRHAGE is the leading
cause of potentially preventable death on the battle-
field.1-3 If not treatedpromptly, hemorrhage leads to

cardiovascular collapse and death. While tourni-
quets have proven utility in controlling extremity
hemorrhage, useful measures to manage shock in
the setting of torso injury remain elusive.4,5

In 1976, Ledgerwood reported experience with
resuscitative thoracotomy with aortic clamping; a
maneuver to sustain central pressure and control
hemorrhage in the setting of hemoperitoneum
and shock.6 This technique is maximally invasive
and survival following its performance is rare.
However, with no alternative, resuscitative thora-
cotomy has been incorporated into civilian and
military clinical guidelines.7-10

The emergence of endovascular aortic aneu-
rysm repair has resulted in the development of
balloons to occlude the aorta and expand endog-
raft components.11 Aortic balloons have also been
shown to be effective in the setting of ruptured
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aneurysms; a scenario which is comparable to non-
compressible torso hemorrhage. In this context
balloons are positioned and inflated in the aorta
proximal to the rupture to support central pres-
sure and reduce bleeding while resuscitation and
anesthesia are initiated.12-14 Endovascular aortic
balloon occlusion is now preferred as the initial
maneuver in this setting and has been credited
with a significant improvement in survival.12-14

Despite success in the management of aneu-
rysms, the effectiveness of resuscitative aortic bal-
loon occlusion in the setting of noncompressible
hemorrhage from trauma is not known. Addition-
ally this endovascular technique has not been
compared to thoracotomy and clamping in a large
animal model. The objective of this study is to
characterize the physiologic impact of aortic bal-
loon occlusion in a model of torso hemorrhage
and shock. An additional objective is to compare
the effectiveness of this technique to thoracotomy
with aortic clamping.

MATERIALS AND METHODS

Study approval and overview. Institutional Ani-
mal Care and Use Committee (IACUC) approval
was obtained from our institution before the study
was undertaken. Procedures were performed at an
accredited facility (Lackland Air Force Base, San
Antonio, TX) in compliance with IACUC policies
and under the supervision of a licensed veterinary
staff. Female Yorkshire–Landrace crossbred swine
(John Albert, Cibolo, TX) (age range, 5–6 months;
weight range, 70–95 kg) were housed at the facility
7 days before the protocol to allow for quarantine
and acclimation. Animals were exposed to 4 study
phases as follows: baseline (BL), injury, operative,
resuscitation (Fig 1).

The BL phase included induction of anesthesia
and placement of vascular access with initial
collection of blood for laboratory analysis. The
injury phase included simulated prehospital hem-
orrhage (tminus20 to t0 minutes) and transport
(t0 to t10 minutes). For purposes of the study,
transport was defined as a ‘‘best case scenario’’
time needed to convey a patient to a trauma cen-
ter. Time zero (t0) was designated as the time
after completion of prehospital hemorrhage and
the start of a simulated transport. The operative
phase comprised maneuvers to manage the vascu-
lar injury and initiate resuscitation (t10 to t60 min-
utes). Finally, the resuscitation phase (t60 to t360
minutes) included administration of crystalloid
and norepinephrine and collection of blood for
analyses.

Phases of protocol (Fig 1). During the injury
phase, the animals were hemorrhaged through an
iliac artery sheath. The operative phase differed in
the sequence of maneuvers used in the approach
to the iliac artery sheath. The animals were placed
in 3 groups (N = 6/group) to correspond with the
3 types of maneuvers used. The clamp occlusion
(CO) group underwent left thoracotomy with
aortic clamping followed by laparotomy and iliac
artery control. The balloon occlusion (BO) group
underwent BO of the thoracic aorta followed by
laparotomy and vascular control. The no occlusion
(NO) group underwent laparotomy with direct
control of the iliac artery without aortic occlusion.
Arterial control in the CO and BO groups was
performed after aortic occlusion and consisted of
exploration of the iliac artery.

After sheath removal, limb reperfusion was es-
tablished with a temporary vascular shunt (TVS)
(Sundt; Integra LifeSciences, Plainsboro, NJ). Af-
ter TVS placement in the CO and BO groups, aor-
tic occlusion was released. During resuscitation,
animals underwent monitoring and laboratory
analyses. Crystalloid and norepinephrine were ad-
ministered to sustain a goal aortic pressure $ 60
mm Hg.

Operative technique. Anesthesia was induced
with ketamine and maintained with a range of 2%
to 4% isoflurane. Animals underwent similar op-
erative procedures that included exposure of the
right carotid artery and jugular vein, as well as
exposure of the right brachial artery for monitor-
ing. A carotid flow probe (Transonic Systems, Inc.,
Ithaca, NY) was placed on the right common ca-
rotid artery and central venous access established
with a catheter placed in the right jugular vein. Us-
ing fluoroscopic guidance, a right brachial arterial
line was directed into the aortic arch to enable
measurement of central aortic pressure.

Throughout the protocol, the following mea-
surements were monitored: heart rate, tempera-
ture, end-tidal carbon dioxide, and pulse oximetry;
partial pressure brain tissue oximetry (Licox;
Integra NeuroSciences, Plainsboro, NJ) and trans-
cutaneous infrared brain oximetry (Pediatric So-
maSensor;Somanetics Corporation, Troy, MI).

During the operative phase, the aorta was
clamped through a left thoracotomy in the CO
group with elimination of flow confirmed by
duplex ultrasonography (z.one ultra� System,
ZONARE Medical Systems, Inc., Mountainview,
CA). In the BO group, aortic occlusion was accom-
plished with an endovascular balloon (Coda Bal-
loon; Cook Medical Inc, Bloomington, IN) in the
thoracic aorta that was inflated distal to the left
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subclavian artery. Using fluoroscopic guidance, the
balloon was positioned into the thoracic aorta
through a 14-French (Fr) sheath located in the
right iliac artery. Once the balloon was inflated,
complete aortic occlusion was confirmed by loss
of the transduced arterial wave form from a cathe-
ter distal to the balloon placed through a left fem-
oral artery sheath.

In the CO and BO groups, laparotomy with
control of the iliac sheath site followed aortic
occlusion and occurred prior to placement of the
TVS (Table I: Operative phase pre-TVS). After

placement of the TVS, extremity reperfusion was
established in all groups. In the CO and BO
groups, this reperfusion entailed release of the aor-
tic clamp and deflation of the balloon, respectively
(Table I).

Details of hemorrhage. A standardized method
for blood volume estimation and rate of hemor-
rhage was used.15 In brief, to gauge hemorrhage
rate and volume, the animal’s weight was multi-
plied by an average estimate of total blood volume
in adult swine (66 mL/kg), which provided the to-
tal blood volume of the animal in milliliters (mL).

Fig 1. Diagram of 4 study phases: baseline, injury, operative and resuscitation. After the injury phase with hemorrhage
to induce class IV shock, animals were randomized into 1 of 3 groups: thoracotomy with open aortic clamp occlusion
(CO group), endovascular aortic balloon occlusion (BO group) or direct vascular control with no aortic occlusion (NO
group). The operative phase also included initiation of whole blood resuscitation and placement of temporary vascular
shunt (TVS) in the iliac artery injury site. After the operative phase, the animals experienced a 6-hour resuscitation
phase during which measures of physiologic parameters and fluid and vasopressor requirements were measured.
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The target hemorrhage volume was weight-based
at 35% of the total blood volume to yield a shock
state. A simulated prehospital bleeding time was
set at 20 minutes, with half of the target hemor-
rhage volume removed during the first 7 minutes
and the remainder removed during the next 13
minutes.15

The blood was withdrawn from the iliac artery
sheath during the prehospital injury phase and
stored for re-transfusion. If the mean arterial
pressure decreased below 30 mm Hg, hemorrhage
was stopped until the arterial pressure returned to
normal and then resumed until completion of the
20-minute simulated prehospital phase. During
the operative phase, 20% of the calculated blood
volume was returned to the animal as whole blood.
To ensure class IV shock, animals were subjected to
ongoing hemorrhage (0.15 mL/kg/min) until
vascular control was achieved.

Resuscitation. Groups were resuscitated and
monitored for 6 hours, with measurements of
central perfusion, cerebral perfusion, and end-
organ function taken at standardized intervals.
Initially, resuscitation included a 20% (calculated
total blood volume) aliquot of whole blood. The
blood pressure was titrated to a goal mean pressure
of 60 mm Hg using 1 liter intravenous fluid bolus.
When animals failed a fluid challenge and

required additional pharmacologic support to
maintain the target blood pressure, norepineph-
rine (double concentrated at 8 mg/250 mL nor-
mal saline) was administered. Norepinephrine
doses were titrated to maintain the goal central
pressure.

Laboratory and histologic analysis. Laboratory
collection occurred at BL and at t10, t60, t120, t180,
t240, t300, and t360 minutes (t0 starts after prehospital
hemorrhage). Monitoring occurred during all
phases with additional measures at t45 pre-TVS (45
minutes posthemorrhage, before TVS placement
and reperfusion) and t45 post-TVS (45minutes post-
hemorrhage, after TVS reperfusion). Postmortem
studies of tissue and histopathology were used to
gauge end-organ damage.

Using the enzyme-linked immunosorbent assay
and immunohistochemistry, cardiac ischemia was
assessed postmortem by measuring nitrotyrosine
content in the ischemic/reperfused cardiac tissue
and myeloperoxidase activity. Neurologic injury
was measured using Fluoro–Jade B staining and
the TUNEL (terminal deoxyribonucleotide
transferase-mediated dUTP nick end labeling)
assay.

Statistical analysis. Group means of single mea-
sures were compared by analysis of variance
(ANOVA). Geometric means were compared for

Table I. Comparison of perfusion measurements

Clamp occlusion Balloon occlusion No aortic occlusion

Central aortic pressure (mmHg)
Baseline 57 ± 4 59 ± 4 62 ± 4
End of injury phase (t10) 33 ± 3 37 ± 3 30 ± 2
Operative phase: pre-TVS 138 ± 12* 146 ± 13* 45 ± 4y,z
Operative phase: post-TVS 50 ± 4 66 ± 5 48 ± 4
Resuscitation phase (t60) 48 ± 3 62 ± 3 53 ± 3
Resuscitation phase (t360) 57 ± 2 59 ± 3 59 ± 3

Carotid flow (mL/min)
Baseline 320 ± 29 259 ± 24 258 ± 27
End of injury phase (t10) 187 ± 22 174 ± 20 149 ± 17
Operative phase: pre-TVS 1,085 ± 110* 862 ± 87* 262 ± 27y,z
Operative phase: post-TVS 285 ± 34 353 ± 42 274 ± 33
Resuscitation baseline (t60) 321 ± 30 302 ± 28 300 ± 27
Resuscitation phase (t360) 351 ± 26 313 ± 24 332 ± 27

PbtO2 (mmHg)
Baseline 34 ± 25 31 ± 23 30 ± 22
End of injury phase (t10) 27 ± 42* 26 ± 39* 12 ± 18*,y,z
Operative phase: pre-TVS 57 ± 64* 40 ± 45* 21 ± 23*,y,z
Operative phase: post-TVS 37 ± 26 32 ± 23 21 ± 15y,z
Resuscitation baseline (t60) 35 ± 20 32 ± 18 24 ± 13y,z
Resuscitation phase (t360) 30 ± 10 23 ± 7 25 ± 8

*P < .05 vs. BL.
yP < .05 vs. CO.
zP < .05 vs. BO. All others NS.
All values are mean ± SD.
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measures that were more normally distributed
after log-transformation. The overall test of equal-
ity of means across groups was tested and consid-
ered significant at P < .05 before exploring
differences between group pairs. Group compari-
sons were conducted using a mixed model with a
first-order autoregressive covariance structure for
repeated measures that treated time as a categorical
factor.

A sample size of 6 per group provides 80%
power to detect a standardized effect size of 0.69
(or approximately 1.4 standard deviation [SD]
difference) among means for the physiologic mea-
sures, an effect size of 0.75 (1.5 SD difference) for
the main effect of time, and an effect size of 1.00
(or approximately 2 SD) for the interaction term
when testing with a repeated measures ANOVA at
the alpha level of 0.05. Differences in physiologic
measures detected at this power level were consid-
ered clinically significant for this study. Commer-
cially available software (SAS 9.2; SAS Institute,
Inc., Cary, NC) was used for statistical calculations.

RESULTS

Outcomes and perfusion measurements. There
was no difference in mortality among the CO, BO,
or NO groups (0%, 0%, and 17%, respectively; P =
not significant [NS]). The single fatality in the NO
group occurred during the resuscitation phase
with no obvious cause of death at necropsy. Total
shed blood volume was greatest in the NO group
by protocol design, given the increased time of on-
going hemorrhage in this group (CO: 1,998 ± 307
mL; BO: 2,087 ± 105; NO: 2,353 ± 194 mL; P = .03).

All vascular shunts remained patent after place-
ment and throughout the resuscitation phase. A
summary of perfusion measures obtained through-
out the protocol is demonstrated in Table I. Com-
pared to baseline, central aortic pressure during
the operative phase, pre-TVS demonstrated an in-
crease in the CO and BO groups after occlusion
of the aorta (CO: 57 ± 4 mm Hg vs 138 ± 12 mm
Hg; P < .05; and BO: 59 ± 4 mm Hg vs 146 ± 13
mm Hg; P < .05, respectively), but not in the NO
group (NO: 62 ± 4 mm Hg vs 45 ± 4 mm Hg;
P = NS) (Fig 2, A).

Similarly, carotid flow increased during the
operative phase, pre-TVS relative to baseline in
the CO and BO groups after aortic occlusion,
respectively (CO: 1,085 ± 110 mL/min vs 320 ± 29
mL/min; P < .05; and BO: 862 ± 87 mL/min vs
259 ± 24 mL/min; P < .05, respectively), while
flow remained unchanged in the NO group
(Fig 2, B). Comparison among groups demon-
strated greater central aortic pressures and rates

of carotid flow in the CO and BO groups com-
pared to the NO group during the operative phase
pre-TVS (P < .05).

All groups demonstrated a decrease in the partial
pressure of brain oxygenation (PbtO2) at the end of
the injury phase (t10) compared to baseline (CO:
27 ± 42 mm Hg vs 34 ± 25 mm Hg; P < .05; BO:
26 ± 39 vs mm Hg 31 ± 23 mm Hg; P < .05; and
NO: 12 ± 18 mm Hg vs 30 ± 22 mm Hg; P < .05).

CO and BO demonstrated an increase in PbtO2
after aortic clamping and aortic BO at the opera-
tive phase pre-TVS compared to baseline, respec-
tively (CO: 57 ± 64 mm Hg vs 34 ± 25 mm Hg;
P < .05; BO: 40 ± 45 mm Hg vs 31 ± 23 mm Hg;

Fig 2. Measures of central aortic pressure (A), carotid
blood flow (B), and partial pressure of brain oxygenation
(PbtO2) (C) throughout the protocol phases. *Statisti-
cally significant (P < .05) increases in each of these mea-
sures compared to baseline (BL) in the clamp occlusion
(CO) and balloon occlusion (BO) groups during the op-
erative phase before placement of a temporary vascular
shunt (TVS). There was no increase in these measures
in the no occlusion (NO) group.
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P < .05) (Fig 2, C). In contrast, PbtO2 in the NO
group during the operative phase pre-TVS re-
mained lower than baseline (NO: 21 ± 23 mm
Hg vs 30 ± 22 mm Hg; P < .05) (Fig 2, C).

Measures of physiologic derangement. Circulat-
ing measures of physiologic derangement are
shown in Table II. At the beginning of the resuscita-
tion phase (t60), serum lactate levels were greatest
in the CO group (CO: 6.6 ± 1.1 mmol/L vs BO:
4.3 ± 0.7 mmol/L; P < .05; and NO: 2.0 ± 0.3
mmol/L; P < .05) (Fig 3, A). At this same time
point, serum pH was lower and base deficit greater
in the CO group compared to the BO and NO
groups (serum pH = CO: 7.24 ± 0.03 vs BO: 7.35 ±
0.03; P < .05; and NO: 7.39 ± 0.03; P < .05; base
excess = CO: �3.0 ± 1.1 vs BO: 0.7 ± 1.1; P < .05;
and NO: 3.9 ± 1.1; P < .05) (Fig 3, B and C).

Cumulative intravenous fluid and vasopressors
requirements during resuscitation are shown in
Table III. Of note, there was no difference in hemat-
ocrit at the start of the resuscitation (t60) in any of
the study groups: CO (30.9% [+3.57% above base-
line]); BO (35.5% [+3.97% above mean baseline]);
NO (29.6% [�0.18% below mean baseline]). The
CO and NO groups required greater cumulative
intravenous fluids and cumulative doses of norepi-
nephrine than the BO group to maintain a target
central aortic pressure of 60 mm Hg during the
resuscitation phase (Fig 4, A and B).

During the resuscitation phase (t240), the intra-
venous fluid bolus requirements were greater in
the CO and NO groups than the BO group (CO:
3,833 ± 1,835 mL and NO: 2,229 ± 1,643 mL vs

BO: 1,667 ± 516 mL, respectively; P < .05). This
trend continued throughout the resuscitation
phase (t360) (CO: 4,000 ± 1,789 mL and NO:
3,422 ± 1,761 mL vs BO: 2,167 ± 1,643 mL, respec-
tively; P < .05) (Fig 4, A).

At the end of the resuscitation phase (t360), the
CO and NO groups required more norepinephrine
than the BO group (CO: 52 ± 28 mcg and NO: 12 ±
14 mcg vs BO 0 ± 0; P < .05) (Fig 4, B). In addition,
of the 6 animals in the CO group, 2 required bolus
doses of norepinephrine while on a continuous in-
fusion to avoid cardiopulmonary collapse, whereas
no animals in the BO group required vasopressor
bolus.

Tissue histology. Brain and myocardial tissue
stain demonstrated no differences among the
groups, reflecting the limited duration of the
protocol (6 hours). No difference in histologic
appearance of the thoracic aorta at the occlusion
sites between BO and CO groups was observed.

DISCUSSION

This study demonstrates the feasibility of resus-
citative aortic BO in a large animal model of
end-stage hemorrhagic shock. Endovascular BO
resulted in increases in central aortic pressure,
carotid flow, and partial oxygenation pressure of
the brain that were equal to those increases asso-
ciated with open clamping of the aorta. In contrast
to resuscitative thoracotomy with aortic clamping,
findings from this study demonstrate that endo-
vascular BO results in less acidosis and lower
resuscitative fluid and pressor requirements.

Table II. Laboratory assessment of global ischemia

Clamp occlusion Balloon occlusion No aortic occlusion

Serum lactate (mmol/L)
Baseline 1.1 ± 0.3 0.9 ± 0.2 1.0 ± 0.2
End of injury phase (t10) 1.7 ± 0.5 1.2 ± 0.4 1.6 ± 0.5
Resuscitation baseline (t60) 6.6 ± 1.1*,z 4.3 ± 0.7*,y 2.0 ± 0.3y,z
Resuscitation baseline (t360) 1.4 ± 0.3 1.4 ± 0.3 1.2 ± 0.3

Arterial pH
Baseline 7.46 ± 0.01 7.49 ± 0.01 7.46 ± 0.01
End of injury phase (t10) 7.38 ± 0.02 7.43 ± 0.02 7.40 ± 0.02
Resuscitation baseline (t60) 7.24 ± 0.03*,z 7.35 ± 0.03*,y 7.39 ± 0.03y
Resuscitation baseline (t360) 7.36 ± 0.01* 7.45 ± 0.01 7.37 ± 0.02*

Base excess
Baseline 4.9 ± 1.2 8.0 ± 1.2 6.0 ± 1.2
End of injury phase (t10) 5.5 ± 1.0 5.5 ± 1.0 4.1 ± 1.0
Resuscitation baseline (t60) �3 ± 1.1*,z 0.7 ± 1.1*,y 3.9 ± 1.1*,y,z
Resuscitation baseline (t360) 2.6 ± 1.2*,z 5.5 ± 1.2y 1.5 ± 1.3*,y,z

*P < .05 vs. BL.
yP < .05 vs. CO.
zP < .05 vs. BO. All others NS.
All values are mean ± SD.
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Histologic examination of the aorta revealed no
adverse effects associated with BO.

Control of bleeding and preservation of central
perfusion in the setting of noncompressible hem-
orrhage remains a dilemma in civilian and military
settings. Holcomb et al1 reviewed information on
U.S. Special Operations Forces killed in action dur-
ing the wars in Iraq and Afghanistan and deter-
mined that 50% of potentially survivable deaths
were related to uncontrolled hemorrhage. In their

conclusion, the authors called for improved
methods of intravascular or intracavitary hemostasis
that could be rapidly deployed as a resuscitative
maneuver.

In a separate study by Kelly et al,2 uncontrolled
hemorrhage again was found to be the leading
cause of potentially preventable deaths of U.S.
troops killed on the battlefield. Civilian experience
with this injury pattern also has been reported
in series focused on resuscitative thoracotomy,

Fig 3. Measures of serum lactate (A), pH (B), and base excess (C) at the beginning of the resuscitation phase (t60) in
the clamp occlusion (CO), balloon occlusion (BO), and no occlusion (NO) groups. (A) *Lactate in the CO group was
significantly greater than both BO and NO groups (P < .05), and lactate in the BO group was statistically greater than
the NO group with no aortic occlusion (P < .05). (B) *The pH was significantly less in the CO group than the BO and
NO groups (P < .05), and the pH in the BO group was significantly less than the NO group (P < .05). (C) *The base
excess was significantly less in the CO compared to the BO and NO groups (P < .05), and the base excess level in the BO
group was significantly less than the NO group (P < .05).
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including a recent study by Seamon et al.16 Of 50
patients in this study, 8 survived resuscitative
thoracotomy.16

Findings in the model used in this study cor-
roborate other researchers’ experiences in the
management of ruptured aortic aneurysms. In
studies by Mehta et al,12 Krokos et al,13 and Mayer
et al14 reporting the use of endovascular tech-
niques to manage ruptured aneurysms, an aortic
occlusion balloon is described as an initial, stabiliz-
ing maneuver. Notably, BO has been shown as a
stabilizing tactic in cases when open endoaneurys-
morrhaphy is used as the method of repair.17,18 In
these instances we advocate hemostatic resuscita-
tion, including permissive hypotension in combi-
nation with initiation of central venous access
and balanced blood product transfusion.

In most cases, ultrasonographic guidance is
used to identify the femoral artery, which is
accessed using a modified Seldinger technique
with placement of a 5-Fr sheath into the femoral
and external iliac artery. Under fluoroscopic guid-
ance, a 0.035-inch guidewire is advanced into the
descending thoracic aorta. A larger sheath is then
exchanged over this wire after an incision at the
skin insertion site. It is through this larger sheath
that the compliant aortic occlusion balloon is
inserted over the wire to its position in the
descending thoracic aorta. After positioning, the
balloon is inflated using a mix of saline and
contrast to allow visualization of the balloon as
the maneuver is accomplished.

Alternatively, a similar sequence of steps can be
used to insert the wire and balloon through the
brachial artery into the thoracic aorta. Balloon
inflation decreases blood loss and supports perfu-
sion while resuscitation is initiated, anesthesia
induced, and surgical hemostasis is established.17,18

Use of this adjunct in the setting of ruptured aneu-
rysms has contributed to the first decrease inmortal-
ity after this lethal disease in approximately 4
decades. In that ruptured aneurysms represent a
model of noncompressible torso hemorrhage, it is
plausible that this benefitmay translate to traumatic
forms of hemorrhagic shock as well.12-14

Current findings support the results from pre-
vious studies performed in models of cardiac arrest
and cardiopulmonary resuscitation. Spence et al19

showed in a canine model that aortic BO during
open cardiac massage resulted in a 130% increase
in central aortic pressure and 100% improvement
in cerebral flow. Sesma and colleagues20 per-
formed a similar study examining BO during exter-
nal chest compressions in a porcine model of
cardiac arrest. In this latter study, the authors dem-
onstrated increases in coronary (150%) and cere-
bral (200%) perfusion after inflation of the
aortic balloon. Finally, Gedeborg et al21 reported
similar effectiveness of BO in a porcine model of
ventricular fibrillation.

In one of the few studies examining aortic BO
in the setting of hemorrhagic shock, Poli de
Figueiredo et al22 showed its effectiveness with con-
comitant administration of hypertonic saline in a
canine model. This group concluded that the 2
therapies should be considered as complementary
measures for the management of end-stage hemor-
rhagic shock.

Kralovich et al23 reported a potentially negative
impact of aortic occlusion in a porcinemodel as cen-
tral hypertension with ventricular strain and im-
paired function. The conclusions from that
publication are relevant to the current study inwhich
central aortic pressures increased to levels well above
baseline after inflation of the aortic balloon (Fig 2).
Although this study does not demonstrate any

Table III. Comparison of cumulative resuscitation requirements

Clamp occlusion Balloon occlusion No aortic occlusion

Cumulative IV fluid volume (mL)
Resuscitation phase (t60) 0 0 167 ± 408
Resuscitation phase (t120) 2,167 ± 1,329 667 ± 816 667 ± 516
Resuscitation phase (t240) 3,833 ± 1,835* 1,667 ± 1,870 2,229 ± 1,643*
Resuscitation phase (t360) 4,000 ± 1,789*,z 2,167 ± 1,643* 3,422 ± 1,761*,z

Cumulative norepinephrine (mcg)
Resuscitation phase (t60) 0 0 0
Resuscitation phase (t120) 5 ± 7 0 0 ± 1
Resuscitation phase (t240) 27 ± 20*,z 0 4 ± 7z,z
Resuscitation phase (t360) 52 ± 28*,z 0 12 ± 14*,y,z

*P < .05 vs. BL.
yP < .05 vs. CO.
zP < .05 vs. BO. All others NS.
All values are mean ± SD.
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apparent adverse effects on the left ventricles from
the clamp or the BO, the potential for negative ef-
fects of severe transient central hypertension would
be better assessed in a survival model.

In that regard, we recently demonstrated in a
model of abdominal hemorrhage that direct trans-
abdominal control of bleeding results in less phys-
iologic derangement than hemorrhage control
following transthoracic or transabdominal aortic
clamping.24 In contrast to open aortic clamping,
one advantage of resuscitative aortic balloon occlu-
sion is that it can be applied incrementally while
ongoing hemostatic resuscitation restores the pa-
tient’s blood volume. Based on the findings of
these two studies, we surmise that, to a point, the
body’s autoregulatory mechanisms are superior to
a mechanical clamp at appropriately distributing
the remaining blood volume to vital tissue beds

without inducing hemicorporal ischemia. However
after some threshold, if central perfusion pressure
to the heart and brain are not supported cardiovas-
cular collapse and death will occur.

Despite evidence supporting the use of aortic
BO, the technique has not been implemented
widely in clinical practice. This lack of use may be
related to limitations in current technology, which
is designed primarily for the management of
aneurysm disease. Most compliant aortic occlusion
balloons today expand to a diameter of 42 mm and
require sheaths ranging from 12 to 14 Fr. Such
dimensions are necessary for treating dilated
aortas and the large sheaths necessary for today’s
devices are easily placed by surgeons with the aid
of fluoroscopy in the operating room. Current
technology however is not amenable to trauma
scenarios which would require rapid, lower profile
arterial access in a younger patient population with
normal caliber aortas.

Once technology is improved and further expe-
rience with this approach is gained, simulation and
laboratory training in endovascular balloon aortic
occlusion for resuscitation in shock should be in-
corporated into hands-on courses such as the Ad-
vanced Trauma Operative Management (ATOM;
http://atomcourse.com/) and the Advanced Surgi-
cal Skills for Exposure in Trauma (ASSET; http://
www.facs.org/xtrauma/education/asset.html),which
are offered by the American College of Surgeons
(Chicago, IL).

Limitations of this technology and approach
notwithstanding, the burden of injury from the
wars in Iraq and Afghanistan has necessitated a
reappraisal of management techniques for hemor-
rhagic shock. And, like other operative methods
that have been transformed as a result of battlefield
requirements (eg, tourniquets, topical hemostatic
agents, and resuscitation strategies), the technique
of resuscitative aortic occlusion also stands to be
advanced as a result of recent wartime experience.

The model used in this study has limitations.
Foremost, it provides a short reperfusion period
without survival that may have shown resolution of
the adverse physiologic profile in the CO group
and no benefit from BO. The small sample size
used in this study also precluded detection of any
mortality difference between groups, whereas the
survival rates that were greater than expected
raises the possibility that the degree of hemor-
rhage was insufficient. This factor is relevant
because resuscitative aortic occlusion is used as a
final measure just before or after cardiovascular
collapse. Use of a model that has too little hemor-
rhage and an artificial vascular injury site may not

Fig 4. Cumulative fluid (A) and norepinephrine (B) re-
quirements throughout the resuscitative phase of the
protocol in the clamp occlusion (CO), balloon occlusion
(BO), and no occlusion (NO) groups. (A) *Denotes sig-
nificantly less cumulative fluid requirements in the BO
group compared to the CO and NO groups (P < .05).
There was no difference in the cumulative fluid require-
ments between the CO and NO groups. (B) *Denotes
the BO group required significantly less total doses of
norepinephrine compared to the CO and NO groups
(P < .05). #Denotes the NO group required significantly
less total doses of norepinephrine than the CO group
(P < .05).
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accurately quantify the effect of these maneuvers
in an actual clinical scenario.

The artificial injury site (ie, large-caliber sheath)
was chosen to control the variable of hemorrhage
and allow the study’s focus to be on the method of
aortic occlusion. Less controlled methods of intra-
abdominal hemorrhage might have been more re-
alistic but would also be prone to variability, thus
limiting the model’s ability to describe aortic oc-
clusion methods. Despite limitations this model
provides a basis from which to refine the technique
of resuscitative aortic BO, including characteriza-
tion of varied occlusion times and the develop-
ment of smaller profile, trauma-specific devices.

In conclusion, this study reports results from a
novel model of resuscitative BO of the aorta in
end-stage hemorrhagic shock. Endovascular BO is
feasible and increases central aortic pressure and
perfusion to the brain with less physiologic distur-
bance than resuscitative thoracotomy with aortic
clamping. Improvements in technology including
development of lower profile, trauma-specific aor-
tic occlusion systems may allow wider application
of this adjunct in cases of noncompressible hem-
orrhage and even cardiac arrest.
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