
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Uniformed Services University of the Health 
Sciences U.S. Department of Defense 

2011 

Regulation of C-type natriuretic peptide expression Regulation of C-type natriuretic peptide expression 

Donald F. Sellitti 
Uniformed Services University of the Health Sciences, dsellitti@usuhs.mil 

Nancy Koles 
Uniformed Services University of the Health Sciences 

Maria C. Mendonça 
Uniformed Services University of the Health Sciences 

Follow this and additional works at: https://digitalcommons.unl.edu/usuhs 

 Part of the Medicine and Health Sciences Commons 

Sellitti, Donald F.; Koles, Nancy; and Mendonça, Maria C., "Regulation of C-type natriuretic peptide 
expression" (2011). Uniformed Services University of the Health Sciences. 80. 
https://digitalcommons.unl.edu/usuhs/80 

This Article is brought to you for free and open access by the U.S. Department of Defense at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Uniformed Services 
University of the Health Sciences by an authorized administrator of DigitalCommons@University of Nebraska - 
Lincoln. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17248043?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/usuhs
https://digitalcommons.unl.edu/usuhs
https://digitalcommons.unl.edu/usdeptdefense
https://digitalcommons.unl.edu/usuhs?utm_source=digitalcommons.unl.edu%2Fusuhs%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=digitalcommons.unl.edu%2Fusuhs%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/usuhs/80?utm_source=digitalcommons.unl.edu%2Fusuhs%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages


Peptides 32 (2011) 1964–1971

Contents lists available at ScienceDirect

Peptides

journa l homepage: www.e lsev ier .com/ locate /pept ides

Review

Regulation of C-type natriuretic peptide expression

Donald F. Sellitti ∗, Nancy Koles, Maria C. Mendonça
Department of Medicine, Division of Endocrinology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, United States

a r t i c l e i n f o

Article history:
Received 10 June 2011
Received in revised form 15 July 2011
Accepted 15 July 2011
Available online 23 July 2011

Keywords:
C-type natriuretic peptide
Gene expression
Regulation

a b s t r a c t

C-type natriuretic peptide (CNP) is a member of the small family of natriuretic peptides that also includes
atrial natriuretic peptide (ANP) and brain, or B-type natriuretic peptide (BNP). Unlike them, it performs
its major functions in an autocrine or paracrine manner. Those functions, mediated through binding
to the membrane guanylyl cyclase natriuretic peptide receptor B (NPR-B), or by signaling through the
non-enzyme natriuretic peptide receptor C (NPR-C), include the regulation of endochondral ossification,
reproduction, nervous system development, and the maintenance of cardiovascular health. To date, the
regulation of CNP gene expression has not received the attention that has been paid to regulation of
the ANP and BNP genes. CNP expression in vitro is regulated by TGF-� and receptor tyrosine kinase
growth factors in a cell/tissue-specific and sometimes species-specific manner. Expression of CNP in vivo
is altered in diseased organs and tissues, including atherosclerotic vessels, and the myocardium of failing
hearts. Analysis of the human CNP gene has led to the identification of a number of regulatory sites in the
proximal promoter, including a GC-rich region approximately 50 base pairs downstream of the Tata box,
and shown to be a binding site for several putative regulatory proteins, including transforming growth
factor clone 22 domain 1 (TSC22D1) and a serine threonine kinase (STK16). The purpose of this review
is to summarize the current literature on the regulation of CNP expression, emphasizing in particular
the putative regulatory elements in the CNP gene and the potential DNA-binding proteins that associate
with them.

Published by Elsevier Inc.
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1. Introduction – natriuretic peptides

The natriuretic peptides, atrial natriuretic peptide (ANP), brain
natriuretic peptide (BNP) and C-type natriuretic peptide (CNP)
constitute a family of small (22–53 amino acid) polypeptides, each

∗ Corresponding author at: USUHS, Department of Medicine, 4301 Jones Bridge
Road, A3060, Bethesda, MD 20814-4799, United States. Tel.: +1 301 295 3616;
fax: +1 301 295 3557.

E-mail address: dsellitti@usuhs.mil (D.F. Sellitti).

of which contains a highly conserved 17-member ring structure
[47,59,69]. The founding member of the family, ANP, discovered in
the rat atrium and found to possess profound natriuretic properties
by de Bold in 1981 [19], is now known to play an important role in
maintaining cardiovascular and fluid homeostasis [48]. BNP, syn-
thesized primarily in the heart, not the brain, has similar actions.
However, circulating levels of this peptide are quite low in the
normal state and are only elevated (as much as 200–300-fold [69])
in chronic disease states, especially in diseases of the ventricular
myocardium in which transcription of the BNP gene is reactivated
[18].

0196-9781/$ – see front matter. Published by Elsevier Inc.
doi:10.1016/j.peptides.2011.07.013
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ANP is released into the circulation from atrial granules in
response to both mechanical and hormonal signals generated by
increased blood volume, and targets organs involved in fluid regu-
lation to lower blood volume and blood pressure [50,59]. Much of
the action of ANP is a result of its binding to one of a unique group of
membrane-bound guanylyl cyclases that catalyze the formation of
intracellular cGMP in target cells [30]. The two membrane-bound
guanylyl cyclases that act as natriuretic peptide receptors are des-
ignated as NPR-A and NPR-B (natriuretic peptide receptors A and
B, respectively). NPR-A is highly specific for both ANP and BNP;
NPR-B is selective for binding to CNP. Downstream effects of ANP-
induced intracellular cGMP are mediated by activation of several
of the same protein kinases, phosphodiesterases, and channel pro-
teins that transduce the actions of nitric oxide (NO) in target tissues
[69]. Therefore, the natriuretic peptides have been shown to per-
form many of the same functions as NO in tissues where both
signal molecules are expressed (e.g., in the vasculature). However,
all three natriuretic peptides also bind with high affinity to a third
receptor, NPR-C, which is not a membrane guanylyl cyclase, but
a dimer without apparent enzymatic activity. Nonetheless, NPR-C
is capable of coupling natriuretic peptide binding to downstream
signaling pathways by interacting with G-proteins [4].

2. C-type natriuretic peptide

Two years after the discovery of its specific receptor, NPR-B
[42,74,75], the third natriuretic peptide was identified as a prod-
uct of porcine brain in 1990 [79] and following the alphabetical
sequence established by the first two natriuretic peptides was des-
ignated simply as ‘C-type’ natriuretic peptide. Unlike ANP and BNP,
both of which circulate at concentrations that are increased many-
fold in response to hemodynamic alterations and cardiac diseases
such as congestive heart failure, plasma levels of CNP are low, and
show much smaller changes, or no change, with variations in blood
pressure and in diseases of the cardiovascular system [20,69,83,96].
These findings have helped establish the major functions of CNP as
being either paracrine or autocrine in nature, rather than endocrine.
In keeping with its limited range of action, CNP expression is nor-
mally confined to those tissues and organs in which it exerts a
regulatory role, principally the brain and pituitary [82], cardiovas-
cular system [11,23,38,69,98], endochondral bone [102], and the
male [100] and female [95,103] reproductive systems. CNP tran-
script and/or protein have also been identified in a number of
tissues and organs where its functional role has yet to be defined
[9,76,77,94]. In contrast with ANP and BNP, whose specific actions
in the brain, kidney, cardiovascular system, and endocrine system
are collectively responsible for maintaining fluid homeostasis, the
specific functions of CNP do not appear to be linked to any over-
arching physiologic role. Instead, CNP exerts several important but
unrelated actions in the body, including regulation of endochondral
ossification, reproduction, nervous system function and develop-
ment, and maintenance of cardiovascular health through regulation
of smooth muscle and endothelial function.

Over the past decade, one of the most clinically evident functions
of CNP has been recognized as its participation in the regulation
of long bone growth [6,29,66,102]. First discovered as a critical
factor in endochondral ossification in CNP- or NPR-B knockout
mice exhibiting a phenotype of short stature and other skeletal
abnormalities [17,101], the CNP signaling system has since been
recognized as making an important contribution to the variation in
human height [5,27]. On the one hand, the cause of acromesomelic
dysplasia, type Maroteaux, a heritable condition associated with
short stature has been definitively shown to involve a mutation in
the NPR-B, the specific guanylate cyclase receptor for CNP [5]. Con-
versely, balanced translocations in chromosome 2 near the locus of

the CNP gene (Nppc) resulting in excessive CNP production, may
be one of the factors contributing to the markedly tall phenotype
of certain Northern European populations [27].

Following the early finding of a role in regulating pituitary secre-
tion [49,79], the CNP signaling system has since been identified as
having an elemental role in nervous system proper, including the
regulation of neuronal development and morphology in both the
central [55], and peripheral nervous systems [41,73,105]. CNP also
appears to intervene at several stages of the reproductive process,
ranging from the maintenance of oocytes in meiotic arrest in the
ovary [103], to the maintenance of normal erectile function in the
male through its vasodilatory action on cavernosal blood vessels
[92].

The mechanisms exploited by CNP to maintain erection [92],
specifically the NO-like activation of a cGMP signaling cascade, are
also used throughout the cardiovascular system to inhibit smooth
muscle contractility [75,98]. In addition, CNP has been proposed to
reduce vascular contractility using a novel mechanism of smooth
muscle hyperpolarization mediated via NPR-C, rather than NPR-B
[72,91].

Since CNP action is predominantly paracrine rather than
endocrine, however, it has not been shown to have the same sys-
temic effect as ANP in lowering blood pressure [48], and is likely to
play a role in local (e.g. coronary circulation, or microcirculation)
rather than systemic control of blood flow [3]. Another important
protective action of CNP in the cardiovascular system is its inhibi-
tion of the processes leading to cardiac and vascular remodeling and
fibrosis after injury [80]. This action of CNP has been widely sup-
ported by both in vivo [36,45] and in vitro [7] studies and involves
the ability of CNP to inhibit myocyte hypertrophy (heart) or pro-
liferation (smooth muscle), and to limit the ability of either tissue
type to synthesize matrix proteins after tissue damage.

3. Hormonal and pathophysiological determinants of CNP
gene expression

3.1. CNP regulation in the cardiovascular system

Unlike ANP, C-type natriuretic peptide is not stored in large
secretory granules that respond to appropriate signals with a
massive release of peptide [69]. Therefore, compared with other
members of the natriuretic family, the regulation of CNP function
is likely to be especially dependent on factors that regulate its tran-
scription rather than its exocytosis. Furthermore, although CNP was
first discovered in the mammalian brain, the early identification
of CNP as product of endothelial cells coupled with the charac-
terization of one of its receptors as a guanylyl cyclase [74] led to
the concept that endothelial CNP performs some of the same func-
tions as NO in the vasculature. Like NO, endothelial CNP leads to
increased cGMP production in the underlying smooth muscle, and
consequently to the activation of vasoprotective cGMP-dependent
(e.g., protein kinase G) pathways downstream of that point [47]. In
view of its potential importance as an NO-like factor, many of the
initial studies of the hormonal and pathophysiologic alteration of
CNP production and secretion were focused on the endothelium.

One of the first of these factors to be studied was TGF-�, an
enhancer of CNP expression and secretion in endothelial cells
[63,83,84] that has since been shown to have a positive effect on
CNP transcript levels in rat [92] and human [52] vascular smooth
muscle cells. The stimulatory effect of TGF-� on vascular CNP pro-
duction would suggest that this key agent in vascular remodeling
after injury could constitute part of a feedback loop limiting TGF-
�-induced fibrosis through the actions of CNP [83].

Tumor necrosis factor-� (TNF-�) was found to be even more
effective than TGF-� at increasing immunoreactive CNP in endothe-
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lial cells [83], and interleukin-1 (IL-1) also had a smaller, though
still significant effect on production of the peptide, suggesting that
macrophage association with endothelial cells as occurs in an area
of atheroma formation could result in increased production of the
vaso-protective CNP. A positive effect of direct macrophage interac-
tion with endothelial cells on CNP transcription and secretion was
further supported in co-culture studies of these two cell types [85].

Several mechanisms regulating endothelial CNP expression may
be specific to this tissue type due to its constant exposure to blood
flow and plasma content. These include an up-regulation of CNP
transcription by shear stress [16,104], and an increase in mRNA lev-
els in human cells by the bioactive lipid, lysophosphatidylcholine,
in a process independent of intracellular calcium flux [53]. Sim-
ilarly, the observed suppression of endothelial CNP by vascular
endothelial growth factor (VEGF) might be specific to those cells,
such as endothelial cells, that express VEGF receptors in high con-
centration [26].

Another factor in plasma that has a positive effect on CNP tran-
script and protein levels in endothelial cells is ANP [58]. Acting
through activation of NPR-A and subsequent cGMP signaling, ANP
and BNP (whose effect was even greater than that of ANP) were
observed to increase CNP secretion as much as 20-fold, and steady-
state levels of CNP mRNA by 2–3-fold [58]. This observation invites
speculation that the local effects of CNP in the vasculature are linked
to blood pressure and plasma volume through the other two mem-
bers of the natriuretic peptide family.

In addition to its regulation by TGF-�, CNP production in vascu-
lar smooth muscle cells has been shown to respond to treatment
with several growth factors in the tyrosine-kinase receptor growth
factor family. Some of these factors have exhibited remarkable vari-
ability in their effects on cardiovascular CNP expression in different
species and tissue types. For example, in cultured human aortic
smooth muscle cells (AoSMC), CNP mRNA levels were increased
as much as 50-fold by platelet-derived growth factor BB (PDGF-
BB) [51]. In rat-derived AoSMC however, CNP mRNA levels were
reduced to only 7% of their control value in the presence of PDGF-
BB [51]. Similarly, basic fibroblast growth factor (bFGF) was shown
to suppress CNP transcript levels in cultured AoSMC derived from
the rat [97], but it elevated CNP transcript levels in cultured smooth
muscle cells derived from the human aorta [51]. On the other hand,
CNP transcript levels responded positively to basic fibroblast bFGF
in smooth muscle cells derived from human aorta, but showed no
response to bFGF in human coronary-artery derived smooth mus-
cle cells [52]. Studies such as these underscore the importance
of cell phenotype and even species differences in delineating the
intracellular transduction pathways controlling CNP production.

3.2. CNP regulation in cardiovascular disease

A number of reports have noted changes in CNP expression
occurring in cardiovascular disease, some of which could reflect
alterations in autocrine/paracrine regulatory factors accompanying
disease progression. Naruko et al. [57] used immunohistochemistry
to compare CNP expression in normal coronary artery (i.e., having
only diffuse intimal thickening) with expression in coronary arter-
ies possessing atherosclerotic lesions of increasing severity. Results
showed CNP immunoreactivity confined mostly to endothelial
cells in arteries possessing only diffuse intimal thickening, but in
endothelium overlying more advanced (hypercellular) lesions and
in the most advanced lesions (fibrous, fibro-lipid, and lipid-rich
plaques), endothelial CNP positivity was greatly reduced. In con-
trast, immunoreactive CNP in smooth muscle cells increased with
atherosclerotic progression through the hypercellular stage, but
decreased in the most advanced lesions. This observation would
suggest the existence of cell type-specific differences in the reg-
ulation of vascular CNP expression. Subsequently, in a rat model

of neointima formation following balloon angioplasty, Brown et al.
[8] noted that CNP is expressed in SMC that have invaded and pro-
liferated in the neointima, but not in SMC in the adjacent media
or in uninjured arteries. A study of CNP expression in human
neointimal SMC following angioplasty [56] pointed to a similar,
time-dependent up-regulation of CNP in the human SMC that was
maintained for at least six months after surgical intervention. Casco
et al. [11], using immunohistochemistry, identified CNP in both
medial and intimal SMC of early through advanced atheroscle-
rotic lesions, but the relationship of CNP to lesion stage was not
described. CNP expression has also been studied in human aor-
tic valves with increasing severity of stenosis, a condition that
has many of the hallmarks of atherosclerosis, including early
inflammation and later fibrosis and calcification [68]. The authors
showed a significant (92%) decrease in CNP mRNA in stenotic aortic
valves compared with valves from patients with aortic regurgita-
tion, a milder form of the disease. Histologically, CNP expression
was localized in valvular endothelial cells, myofibroblasts and
stromal cells. Taken together, these studies indicate a shifting pat-
tern of CNP expression during the progression of atherosclerotic,
restenotic and valvular lesions, characterized by an overall reduc-
tion in endothelial CNP and an increase in CNP in other cell types,
such as neointimal SMC. Such observations are consistent with a
role for smooth muscle CNP in controlling fibrosis and SMC pro-
liferation after vascular damage, possibly induced by the same
cytokines (TGF-�, PDGF, FGF) that trigger neointimal growth fol-
lowing endothelial denudation.

In diseases of the myocardium such as heart failure, it has been
clearly established that both ANP and BNP expression in the heart
are markedly increased, and in the case of BNP, up-regulation of
plasma BNP is of such magnitude that assays for this peptide are
now routinely used to establish the presence and severity of con-
gestive heart failure (CHF) [50,71]. In contrast, plasma levels of CNP
or its amino terminal marker have not shown consistent elevations
in human CHF, with some studies showing no difference between
control and CHF [10,89,96], and others showing small, but sig-
nificant increases in heart failure ranging from an ∼50% increase
[21] to a ∼4-fold increase in heart failure of the highest clinical
severity [24]. Plasma CNP levels have also been reported as sig-
nificantly elevated (3.2-fold) in patients with cor pulmonale (right
ventricular hypertrophy) [10], and in patients with left ventricu-
lar dysfunction irrespective of overt heart failure [22]. Moreover, a
study that assessed specifically the myocardial production of CNP
in heart failure patients by comparing arterial levels with levels in
the coronary sinus, showed significant correlation of patient CNP
level with pulmonary capillary wedge pressure [37]. Studies of CNP
expression in experimentally induced heart failure in sheep [12]
using trans-organ arteriovenous sampling (comparison of carotid
artery CNP with CNP in various venous beds) found small, but sig-
nificant increases in plasma CNP in animals with heart failure. In a
study of heart failure in pigs [20], plasma CNP was increased about
2-fold by one week of pacing-induced heart failure, and left ven-
tricular CNP mRNA was increased by ∼3-fold over control but did
not attain significance [20]. Changes in cardiac CNP expression have
also been examined in diabetic cardiomyopathy in a genetic mouse
model of the disease (ob/ob genotype). No difference was found
in expression levels of cardiac CNP mRNA between the diabetic
ob/ob mice and heterozygous controls, despite a greater than 10-
fold difference in plasma insulin levels between the diabetic and
non-diabetic groups [15]. However, NPR-B expression levels were
significantly elevated in the diabetic model, suggesting that dia-
betes might enhance cardiac sensitivity to CNP despite causing no
change in CNP expression.

The results of most of the aforementioned studies suggest that
despite the recognized importance of CNP in reducing cardiac fibro-
sis in diseased hearts [80], myocardial CNP expression itself, unlike
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ANP and BNP, is not greatly altered in response to cardiac dis-
ease. A possible explanation of these results is that cardiac CNP
is not expressed primarily in myocytes, but in the smaller popu-
lation of cardiac fibroblasts, whose overgrowth and extracellular
matrix production are responsible for cardiac fibrosis in patholog-
ical states [34]. In support of this hypothesis, Horio et al. [34] in
an in vitro study of the secretory response of these cardiac fibrob-
lasts to several hormones and cytokines, found that fibroblasts, but
not myocytes, expressed CNP mRNA and that they secreted signif-
icantly more CNP in the presence of TGF-� or bFGF than they did
with control medium. It is also possible that heart-failure induced
changes in CNP expression could reflect changes occurring pri-
marily in endothelial or smooth muscle expression of the peptide,
rather than in the cardiac myocyte.

3.3. CNP regulation in other tissues and organs

Regulation of CNP expression has also been studied in several
other CNP target systems, where the observed responses could
either reflect a general pathway for CNP gene regulation, or could be
restricted to a specific tissue or cell type. In chondrocytes, a major
cellular target of CNP involved in long bone growth, glucocorti-
coid (dexamethasone) was found to increase the expression of CNP
mRNA almost 4-fold [2], suggesting the possibility of a CNP role in
modulating the effects of glucocorticoid on endochondral ossifica-
tion. Using plasma levels of amino-terminal pro CNP (NT-proCNP)
as a biomarker for hormonal regulation of CNP in the cartilage
growth plate, Olney et al. [65] showed evidence that the positive
effects of growth hormone and testosterone on bone growth at
puberty could be due in part to their up-regulation of CNP pro-
duction in the growth plate at this time. Also using NT-proCNP as
a plasma biomarker of CNP synthesis, Prickett et al. [70] showed
that exogenous estradiol administered to female lambs and adult
sheep significantly increased CNP expression compared with con-
trol animals. The source of the elevated CNP, while not definitively
identified, was thought likely to be derived from osteoblasts in bone
tissue [70]. In marked contrast to the finding of a positive rela-
tionship between testosterone and CNP in pre-pubertal boys [65],
Prickett et al. observed no effect of testosterone administration on
CNP in male lambs, a species difference in CNP regulation that the
authors speculated could be related to the timing of testosterone
intervention and the stage of pubertal maturation [70]. These stud-
ies point to the possibility that the influence of steroids on bone
growth could be mediated, at least in part, through their regulation
of CNP synthesis.

Gonadal steroids have also been proposed in the regulation of
CNP expression in the female reproductive system, where it was
shown that uterine CNP expression in mice varies during the estrus
cycle [35], and that pregnancy increases uterine CNP mRNA up to
7-fold [81]. Furthermore, uterine CNP and CNP transcription were
observed to increase with the administration of exogenous estra-
diol to ovariectomized mice [1]. A steroid hormone-responsive
consensus sequence has not yet been identified in the CNP pro-
moter [70,89], suggesting that the observed effects of steroids on
CNP expression could be secondary to their effects on the transcrip-
tion of other proteins.

Another potentially important regulator of CNP expression as
judged by the magnitude of its effect is bacterial lipopolysaccharide
(LPS), which increased CNP mRNA up to 300-fold, and immunore-
active CNP secretion 10-fold in mouse macrophages [93]. Phorbol
ester and dexamethasone, in contrast, had no effect. Kubo et al.
[43], studying human macrophages in culture, however, found only
a modest increase of CNP (25%) in one macrophage cell line, and
no change in another cell line after LPS treatment. Similarly, LPS
had no effect on CNP secretion from human granulocytes, lym-
phocytes, monocytes or monocyte-derived macrophages in culture.

Also in stark contrast to the mouse macrophages [93], phorbol-
ester treatment increased CNP secretion as high as 20-fold in a
human macrophage-like leukemia cell line. Whether the contrast-
ing responses of mouse and human leukocyte-derived cells to LPS
and to phorbol esters owes more to differences in phenotype or to
species differences is a matter for further investigation. However if
the manner of CNP regulation in a given cell type is shown to vary
between species, it is conceivable that the difference may reside in
the structure of the CNP gene itself, especially in the sequence of
its 5′ promoter. This region has been examined in several studies,
described below.

4. CNP gene

The gene encoding human C-type natriuretic peptide (Nppc)
was sequenced shortly after the discovery of the peptide [61,87].
Like the genes for ANP and BNP, Nppc has been shown to be com-
posed of three exons, the first two encoding a 126 amino acid
pre–pro peptide that contains the two active forms of CNP; a
22-amino acid, and a 53-residue form designated as CNP-22 and
CNP-53, respectively. Unlike ANP and BNP, neither form of CNP
possesses a carboxy-terminal extension [69]. A third peptide, NT-
pro-CNP, derived from the N-terminal of the pre–pro peptide has
no known function, but circulating at higher levels than either CNP-
22 or CNP-53, it serves as a convenient serum marker of changes
in active CNP in response to endocrine alterations and disease
[12,25,65]. The proximal 5′-flanking region of the gene was found
to contain two GC-boxes (Sp-1 binding sites) in tandem in addi-
tion to several other cis elements including an inverted CCAAT box
(Y box), and a CRE-like (cAMP response-like) element within 50 bp
upstream of a Tata box (TATAAA) [62,63,90]. These sequences have
been hypothesized to constitute potential targets in the regulation
of CNP expression, and are not present in the promoter regions of
either the ANP or BNP genes [87].

A detailed functional analysis of the proximal promoter region
in the human CNP gene [62] extending to approximately 1400 bp
upstream of the transcription start site, demonstrated the exis-
tence of a positive regulatory region between positions −54 and
−19, a sequence encompassing the tandem GC-boxes. In addition,
at least two negative regulatory regions were identified much fur-
ther upstream. Mutation analysis showed furthermore that 90% of
the positive regulatory activity for CNP expression resides in the
GC-rich region containing the two GC-boxes. Ogawa et al. [60] then
compared the human CNP gene with its mouse equivalent, and
found both some interesting similarities and differences between
the two. The 5′-flanking regions through about 130 bp upstream
of the transcription start site of both CNP genes were shown to
have several putative cis-acting regulatory elements in common,
including a Y-box, a putative CRE-like sequence, and a GC box
[60]. However, the human promoter lacks several of the regula-
tory elements found in the mouse promoter, including a long CA
repeat region further upstream and a nuclear transcription factor
�� (NF-��) recognition site present in the mouse. This last obser-
vation is particularly interesting in light of the reported mouse vs.
human differences in CNP response to LPS since the bacterial pro-
tein is known to signal through the NF-�� pathway [95]. In addition,
although both species possess at least one GC box in the promoter,
the human CNP promoter possesses two GC boxes in tandem to con-
stitute the ‘GC-rich’ DNA-binding site as described above [62]. This
could represent a crucial difference in CNP transcriptional regula-
tion between rodent and human. As an example, it has been shown
[40] that a Kruppel-like zinc finger transcription factor (Zf9) binds
to two tandem GC-boxes in the TGF-�1 promoter with high affin-
ity to up-regulate TGF-� transcription, but to a single GC box with
much lower affinity. In addition, Kf9 selectively activates genes
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with tandem GC-boxes, but represses genes with a single GC box. It
therefore appears possible that either Kf9, or another DNA-binding
protein specific for tandem GC could selectively activate the human
CNP gene, and repress the rodent gene. These human-rodent differ-
ences together with the presence or absence of putative regulatory
elements in both the single intron and the 3′-untranslated region
identified in one species or the other, could account for some
of the species-specific regulation of the CNP gene that has been
observed.

5. Putative transcription factors

Based on the similarity of specific sequences in the CNP proximal
promoter to consensus sequences for the ubiquitous transcription
factor Sp-1 and CRE binding protein (CREB), these two transcription
factors were among the first to be examined as potential regu-
lators of CNP transcription. Ohta et al. [62] found, however, that
neither the Sp-1 nor the CREB consensus binding sequence was
able to compete effectively with the GC-rich region of human Nppc
for binding of nuclear protein. The consensus sequence for Ap-2
was similarly without effect. Furthermore, a 70 kD putative regula-
tory protein, identified by its binding to the GC-rich region, did not
match the MWs for either Sp-1, CREB or Ap-2 [62]. On the contrary,
Thompson et al. [88] have very recently shown evidence using elec-
trophoretic mobility shift assays (EMSA) that both Sp-1 and Sp-3
bind as a complex to the putative GC-rich regulatory site in the
proximal Nppc promoter. It might be worth noting that although
both studies employed nuclear extract from pituitary cell lines or
the pituitary proper, the CNP gene examined in the Ohta et al. study
was human, but the gene in the Thompson et al. study was from
the mouse [88].

Ohta et al. [63] continued the search for CNP transcription fac-
tors using Southwestern screening of a rat pituitary cell-derived
library for the ability to bind the GC-rich sequence in the human
CNP promoter. Their results identified TSC22D1 (transforming
growth factor � clone, domain 1), the founding member of a small
family of evolutionarily conserved leucine zipper proteins that per-
form a diverse array of functions in mammalian cells [28,31] as a
protein that binds to the human CNP promoter. Although initially
cloned using binding to a GC-rich element in the CNP promoter
as a selection criterion [63] and despite its leucine zipper-like
motif, TSC22D1 lacks the conventional DNA-binding domain of the
leucine zipper transcription factors [78]. Therefore its proposed
role as a direct enhancer of CNP transcription has remained in
question. Recent studies in our laboratory using siRNA gene silenc-
ing techniques have shown that TSC22D1-silencing significantly
reduces both PDGF-up-regulated CNP transcript in human aortic
SMC and TGF-�-up-regulated transcript in coronary artery-derived
SMC [52]. These results suggest that in human vascular smooth
muscle cells, TSC22D1 expression and activity could represent a
critical element in a final common pathway leading to increased
CNP expression induced by different stimuli.

Whether TSC22D1 binds directly to promoter DNA, or is instead
part of an active regulatory complex remains to be resolved. Several
studies support the latter possibility. In a study of the induction of
erythroid differentiation, evidence was presented suggesting that
TSC22D1 can bind to and modulate the transcriptional activity of
two proteins, Smad 3 and Smad 4 that are important in TGF-� signal
transduction [14]. Another possible mechanism by which TSC22D1
could regulate gene transcription is its formation of homo- and
heterodimers with other members of the TSC22 domain family to
form complexes with different transcriptional activity compared
with TSC22D1 acting alone [39]. Determination of a specific mech-
anism of action of TSC22D1 in regulating CNP transcription is
further complicated by the existence of TSC22D1 splice variants

that result in the formation of proteins of very different MW (18 kD
vs. >100 kD) [28]. Recent studies [31,99] suggest that these protein
variants could perform unrelated, or even antagonistic functions in
the mammalian cell; e.g., although the short form of TSC22D1 has
been described many times as a tumor suppressor, the long form
in contrast promotes proliferation, growth and cell survival [99].
Interestingly, in our recent studies of the effects of TSC22D1 silenc-
ing on CNP expression in vascular smooth muscle cells, [52], we
could only identify a long form of the protein (∼120 kD) in West-
ern blots, yet the downregulation of this protein with TSC22D1
siRNA resulted in reduced production of CNP transcript in these
cells.

Additional cellular functions of TSC22D1 that have been recently
posited include the initiation of apoptosis [46] and the induction
of contact inhibition [44], both of which functions may contribute
to its postulated role as a tumor suppressor [33]. TSC22D1 also
remains a potentially significant factor in cardiovascular fibrosis,
since it has been identified as one of only four transcription-related
genes that were up-regulated in a pacing-induced model of atrial
fibrillation, a condition that can result in cardiac fibrosis [13].

Using the same methodology that they had used earlier to clone
transcription factors capable of binding the GC-rich element of the
CNP promoter, Ohta et al. [64] identified a second putative CNP
activator as a novel protein with both DNA-binding ability and
serine-threonine kinase (STK) activity. This protein, designated as
TSF-1 by its discoverers and later as STK16, appears to be localized
to the Golgi apparatus, but can translocate to the nucleus and mod-
ulate the activation of the VEGF gene [32]. It is noteworthy that the
VEGF gene possesses a GC-rich putative regulatory sequence in its
proximal promoter that is very similar to the GC-rich sequence in
the CNP promoter that has been proposed as a binding site for both
STK16 [64] and TSC22D1. Aside from this initial report [64], there
have been no further studies of STK16 as a transcriptional regulator
of CNP. However, a recent report of CNP overexpression and long
bone overgrowth in patients with chromosomal translocations in
a region (2q37) in the vicinity of the STK16 gene raises the possi-
bility that this CNP-induced overgrowth could be associated with
a dysregulation of STK16 expression [54].

More recently, the Wnt4/�-catenin system has been proposed
as a transcriptional regulator of CNP in rodent kidney, an organ in
which induction of Wnt-4 expression is critical in genitourinary
development, and is re-induced following unilateral uretal ligation
[86]. The authors of this report noted that cells expressing Wnt-
4 in the obstructed kidney also expressed CNP, and hypothesized
that increased Wnt-4 protein acting through �-catenin and DNA-
binding proteins of the T cell factor/lymphoid enhancer binding
factor (TCF/LEF) family activated CNP transcription. Their argument
was supported by studies showing that six hypothetical TCF/LEF
binding sites are present in the mouse CNP proximal promoter,
and that two of these sites are crucial for the activation of a CNP
transgene by the Wnt-4 signaling pathway. This study is interest-
ing in showing that sites other than the GC-rich region of the CNP
promoter can play an important role in regulating CNP expression.
Whether this hypothetical Wnt/B-catenin/CNP pathway is specific
for renal tissue, and whether it functions in the human as well as
the rodent kidney remains to be determined.

Another possible CNP transcription factor, one specifically
involved in the flow-dependent regulation of gene expression in
human endothelial cells, has been identified as Kruppel-like factor
2 (KLF-2) [67]. Blockade of flow up-regulated KLF-2 expression sig-
nificantly reduced the expression of several flow-regulated genes,
including CNP, suggesting that KLF-2 could potentially mediate the
flow-mediated increases in CNP production in vivo that have been
described [16,104]. Whether KLF-2 bears any affinity to KLF-9 in
binding to a tandem GC-box in preference to a single GC-box has
yet to be determined.
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6. Conclusion

Twenty years after the discovery of CNP and its subsequent iden-
tification as a paracrine/autocrine-acting member of the natriuretic
peptide family in the cardiovascular and other organ systems, the
regulation of CNP transcription remains far from being completely
understood. It therefore constitutes a fruitful area for investiga-
tion of new therapies targeting CNP production in the treatment
of disease. For example, up-regulated CNP acting through cGMP
could fulfill vasodilatory and antifibrotic functions in the vasculture
very similar to NO, but without incurring the deleterious effects
of NO oxidation products. Similarly, diseases of bone growth can
potentially be treated by novel means of CNP up-regulation that cir-
cumvent the risks of more commonly used hormone replacement
therapies.

Studies to date have identified a number of potential regulator
sequences in the CNP gene and a handful of transcriptional reg-
ulators such as TSC22D1 that may be involved in CNP regulation
at the level of its 5′ promoter, but crucial details of the regulatory
pathways that lead to suppression of or up-regulation of CNP tran-
scription remain unknown. Understanding how those transduction
pathways lead to increased CNP transcription in tissues and organs
of clinical relevance is a subject worthy of further investigation.
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