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Abstract

Sphingolipids are a class of structural membrane lipids involved in membrane trafficking and cell polarity. Functional analysis of the ceramide syn-
thase family in Arabidopsis thaliana demonstrates the existence of two activities selective for the length of the acyl chains. Very-long-acyl-chain
(C > 18 carbons) but not long-chain sphingolipids are essential for plant development. Reduction of very-long-chain fatty acid sphingolipid levels
leads in particular to auxin-dependent inhibition of lateral root emergence that is associated with selective aggregation of the plasma membrane
auxin carriers AUX1 and PIN1 in the cytosol. Defective targeting of polar auxin carriers is characterized by specific aggregation of Rab-A22— and
Rab-A1¢-labeled early endosomes along the secretory pathway. These aggregates correlate with the accumulation of membrane structures and
vesicle fragmentation in the cytosol. In conclusion, sphingolipids with very long acyl chains define a trafficking pathway with specific endomem-
brane compartments and polar auxin transport protein cargoes.

Introduction of sphingolipids often consists of a saturated or monounsatu-
rated very-long-chain fatty acid (VLCFA) of >18 carbons and

Sphingolipids are essential for eukaryotic life (Holthuis up to 26 carbons in length (C26). The presence of VLCFA in

et al., 2001). Current theory suggests this is due, at least in sphingolipids increases their hydrophobicity, membrane leaflet
part, to their role in protein sorting and secretion. Evidence in- interdigitation, and the transition from a fluid to a gel phase,
dicates that, within the diverse membrane composition of the which is a requirement for microdomain formation. This impor-
Golgi body, sphingolipids coalesce into microdomains or lipid tant property of VLCFA in membrane organization is supported

rafts where, together with cholesterol and saturated phospho- by the observation that S. cerevisiae mutants unable to syn-
lipids, they attract a unique subset of proteins and together thesize sphingolipids can be rescued by the SLC7-1 mutation,
are transported to the plasma membrane (PM; Klemm et al., which allows for the transfer of C26 fatty acids to the sn-2 po-

2009). In animal epithelial cells, this property of sphingolip- sition of glycerolipids. C22 fatty acids are unable to support the
ids is exploited to maintain cell polarity through the regulation functions performed by C26 fatty acids, indicating the sensitiv-
of vesicle trafficking and endocytosis at the apical membrane ity of the system to fatty acid chain length (Gaigg et al., 2005,
(Maier and Hoekstra, 2003; Nyasae et al., 2003). Sphingolipid 2006). As a result, yeast mutants in which fatty acid elongation
sterol-rich microdomains are similarly recruited in the budding beyond C16 is abolished are not viable (Oh et al., 1997).
yeast Saccharomyces cerevisiae to establish cell polarity dur- The incorporation of fatty acids into sphingolipids is cat-
ing mating and budding (Bagnat and Simons, 2002). alyzed by the enzyme ceramide synthase (sphinganine N-
The ability of sphingolipids to form microdomains may be acyltransferase). Ceramide synthases are encoded by the
attributed to their unique physical properties compared with LAG1 gene family (named after longevity assurance gene

the glycerolipids. Sphingolipids consist of three primary com- 1); members of which have been found in all eukaryotes so
ponents: an acyl amino alcohol or long-chain base (LCB), a far examined from fungi to animals and plants (Winter and
fatty acid attached via the amino group, and a head group at- Ponting, 2002). In animals, several ceramide synthases have

tached to carbon-1 (C1) of the LCB. Additional hydroxyl groups been characterized (CERS1-6) and shown to have different
at C2 on the fatty acid and C4 on the LCB promote hydrogen substrate specificities with respect to the length of the acyl
bonding between sphingolipids that is not available to glycero- chain of the fatty acid (Riebeling et al., 2003; Mizutani et al.,
lipids (Pascher, 1976). Furthermore, the fatty acid component 2005, 2006). S. cerevisae contains two LAG1 family mem-
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bers, LAG1 and LAC1, and deletion of both of these genes
causes strongly reduced cell growth, cell wall defects, and
delayed endoplasmic reticulum (ER)-to-Golgi transport of gly-
cosylphosphatidylinositol-anchored proteins (Barz and Wal-
ter, 1999; Guillas et al., 2001; Schorling et al., 2001). These
phenotypes can be complemented by homologous genes
from Homo sapiens, Caenorhabditis elegans, and Solanum
lycopersicum (Jiang et al., 1998; Spassieva et al., 2002), in-
dicating that LAG1 homologs serve as ceramide synthases.
Recent studies on the role of the mammalian ceramide syn-
thase CERS2 indicate that it is responsible for the incorpo-
ration of the majority of VLCFAs into the sphingolipids of the
liver and brain (Imgrund et al., 2009; Pewzner-Jung et al.,
2010). Interestingly, the alteration in sphingolipid profile re-
sulting from CERS2 disruption bears some resemblance to
that obtained when challenged by the ceramide synthase in-
hibitor fumonisin B1 (FB1), suggesting that FB1 may specif-
ically inhibit the incorporation of VLCFA into sphingolipids,
thereby mimicking the disruption of CERS2 activity (Pew-
zner-Jung et al., 2010).

Recent studies have identified several mutants of acyl-CoA
elongation in plants that show phenotypes that have been at-
tributed to depletion of VLCFA in sphingolipids. These mutants
include cer10 (Zheng et al., 2005), gurke/pasticcino3 (pas3;
Baud et al., 2004), pas2 (Bach et al., 2008), and pas? (Roud-
ier et al., 2010). In all these mutants, the level of VLCFA in
sphingolipids is reduced, and this reduction is coupled with im-
portant morphological changes in the plant. In the cer10 mu-
tant, which is deficient in elongation-specific enoyl reductase,
endosomal compartments were shown to accumulate, indi-
cating abnormal vesicle trafficking (Zheng et al., 2005). In the
case of the pas? mutant, abnormal trafficking of the auxin po-
lar efflux carrier PIN1 was associated with decreased VLCFA
in sphingolipids (Roudier et al., 2010). PIN1 is one of several
proteins with a polar localization within the root tissues of Ara-
bidopsis thaliana responsible for forming auxin gradients that
in turn control root elongation and lateral root formation. While
VLCFAs are involved in other metabolic processes in plants,
such as wax biosynthesis or seed storage lipid biosynthe-
sis, defects in neither of these lead to the extreme defects in
plant and seed morphology in these elongase mutants leaving
sphingolipids as the prime candidate.

Several lines of evidence suggest that sphingolipid ste-
rol-rich microdomains exist in plant membranes and that they
may be involved in the polar targeting of proteins to the PM
(Fischer et al., 2004). However, the precise role of sphingolip-
ids in such processes has only been tangentially addressed in
plants. As in animals, plant sphingolipids are a complex fam-
ily of lipids with various acyl chain lengths, LCBs, and head
groups moieties, although the specific role of each moiety
is still uncertain. Complete structural analysis of sphingolip-
ids has been carried out in several plant species, identifying
four main classes: ceramide, hydroxyceramides, glucosylce-
ramides, and glucosylinositolphosphorylceramides (Markham
et al., 2006). Although several steps of plant sphingolipid bio-
synthesis have been identified and modified genetically, their
effects on protein trafficking have not been adequately as-
sessed. Recently, however, inhibition of glucosylceramide
synthase activity was shown to correlate with protein traffick-
ing in tobacco (Nicotiana tabacum), suggesting that alteration
in plant sphingolipid synthesis can result in abnormal protein
sorting (Melser et al., 2010).

The goal of this study was to identify the genes responsible
for ceramide synthase activity in Arabidopsis and to examine
the influence of sphingolipid content on the biology of a mul-
ticellular organism. We discovered that the three Arabidopsis
LAG1 homologs have different acyl chain substrate specific-
ities and that VLCFA sphingolipids are essential for plant de-
velopment. By combining genetic and pharmacological ap-
proaches, we show that VLCFA-containing sphingolipids are
required for organogenesis and, more specifically, for auxin-
dependent lateral root outgrowth. Finally, we demonstrate that
the depletion of ceramides led to defective secretory targeting
of AUX1 and PIN1 to the PM by altering the Rab-A22 early en-
dosomal pathway, suggesting that VLCFA sphingolipids define
specific endomembrane compartments for targeting specific
polar cargo proteins.

Results

Identification of Genes for Ceramide Synthase in
Arabidopsis

The first ceramide synthase identified from plants is the
tomato gene Asc-1 (for Alternaria stem canker resistance-1)
that gives resistance to the ceramide synthase inhibitor FB1
(Brandwagt et al., 2000; Spassieva et al., 2002). A tBLASTn
search of the completed Arabidopsis genome identified three
Asc-1/LAG1 homologs in Arabidopsis, At3g25540, At3g19260,
and At1g13580, subsequently referred to as LOH1, LOHZ2, and
LOHS3, respectively (LAG One Homologue). A potential fourth
homolog (At1g26200) was also identified; however, it con-
tains some highly variable sequences not found in any other
LAG1 homologs that may suggest a different function yet to
be discerned (see Supplemental Figure 1A). The protein se-
quences of the identified LAG1 homologs were aligned with
the known full-length proteins from tomato and the LAG1 and
LAC1 proteins from yeast to identify conserved structural fea-
tures (Figure 1A). The alignments show strong conservation in
the LAG1p motif and predicted transmembrane helices, sug-
gesting that the LOH genes encode ceramide synthases. A
phylogenetic tree derived from an alignment of all known full-
length protein sequences of the eudicot plant LAG7 homo-
logs along with the LAG1/LAC1 proteins from yeast and the
CerS proteins from human was constructed (see Supplemen-
tal Figures 1A and 1B and Supplemental Data Set 1). The tree
showed that LOH1 and LOH3 are closely related and cluster
into a group along with the majority of other plant LAG1 homo-
logs (see Supplemental Figure 1B). On the other hand, LOH2
appears to be evolutionarily distinct from LOH1 and LOH3. In
order to investigate the function of the LOH genes, genetic dis-
ruptions were characterized for each gene.

Arabidopsis LAG1 Homologs LOH1 and LOH3 Are Essen-
tial for Plant Growth

T-DNA insertion mutants were identified from the Wiscon-
sin (Krysan et al., 1999) (loh1-1, loh2-1, and loh3-1) and Salk
(Alonso et al., 2003) (loh1-2, loh2-2, and loh3-2) collections for
each of the three Arabidopsis LOH genes (Figure 1B). Both al-
leles loh1-1 and loh3-1 are insertions in the 5-untranslated re-
gion of their respective genes (at -3 and -10 bp from the ATG
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Figure 1. LOH1 and LOH3 Are Essential for Plant Development.

(A) Alignment of ceramide synthase protein sequences from Arabidopsis (LOH), tomato (Le ASC), and S.s cerevisae (Lag1p and Lac1p). Boxes
indicate predicted transmembrane domains; an extratransmembrane domain, TMO, is predicted in S. cerevisae. Black shading shows the res-
idues completely conserved among the ceramide synthase family, and gray shading indicates partial conservation (dark and light gray for
seven and four to six residues, respectively, conserved out of eight).

(B) Structure of the Arabidopsis LOH genes and alleles. Boxes represent introns, with dark blue representing the coding region. The positions of
identified T-DNA insertions in the different alleles are marked by triangles.

(C) Seeds and embryos from the wild type (left) and loh7-2 loh3-2 double mutants (right) showing shrunken seeds and abnormal embryo develop-
ment. Bars = 100 ym

(D) Germinating loh1-2 loh3-2 seedlings showing very slow growth at 2 weeks (left) and no root development and abnormal leaf shape at 4 weeks
(right). Bars =2 mm.

(E) Phenotype of loh1-1 loh3-1 mutants compared with the wild type (top left). Mutants show developmental defects ranging from modification of
cotyledon number (top right) or shape (top middle and bottom left) to complete arrest of growth (bottom middle) and even severely impaired

embryo morphology (bottom right). Bars = 300 um.

(F) Adult loh1-1 loh3-1 mutants showed reduced size with smaller rosette and shorter stems. Bar = 3 cm.

start, respectively) leading to knockdown of wild-type mRNA
levels (see Supplemental Figure 2A). All other mutants are
caused by insertions in an exon of their respective genes and
result in undetectable wild-type mRNAs and are therefore true
knockouts (see Supplemental Figures 1A and 1B).

Despite this, each single mutant showed a normal phe-
notype under standard growth conditions (see Supplemen-
tal Figure 2C). Similarly, combinations of double mutants be-

tween loh2 and loh1 or loh3 null alleles did not show any
significant differences of growth or development (see Sup-
plemental Figure 2C). By contrast, the cross between the
knockout alleles loh7-2 and loh3-2 resulted in ~1:16 seeds
that were darker and smaller with a poor germination rate in
the F2 progeny (n = 300). This phenotype was confirmed in
the F3 progeny of the sesqui-mutant combinations loh1-27/~
loh3-2*~ (n = 96) or loh1-2*~ loh3-27"~ (n = 79), which pro-
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duced 18 and 12% abnormal seeds, respectively (Figure 1C).
The embryo morphology in these seeds was often strongly
altered with thicker hypocotyls and a single cotyledon (Fig-
ure 1C). No double loh1-2 loh3-2 mutant was recovered from
seeds sown on soil, suggesting that the combination of muta-
tions is lethal. However, when sown on solid media contain-
ing Suc, seedlings of the loh1-27/~ loh3-27/~ genotype could
sometimes be recovered, albeit after a prolong incubation of
several weeks. The resulting seedlings showed severely de-
formed plants with no roots and a deformed leaf shape that
did not further develop, indicating that LOH1 and LOH3 are
essential for root growth (Figure 1D). Despite transfer to
fresh media, none of the seedlings were able to survive lon-
ger than 4 weeks.

As the loh1-2 loh3-2 double mutant is lethal, the cross be-
tween the knockdown alleles loh1-1 and loh3-1 was also ex-
amined. Like the loh1-2 loh3-2 seeds, loh1-1 loh3-1 seeds
showed reduced viability, and those that did germinate gave
rise to seedlings with highly variable phenotype ranging from
triple cotyledon, single deformed cotyledon, or undeveloped
cotyledon (Figure 1E). Plants with relatively normal develop-
ment showed smaller, wrinkled leaves, early senescence, de-
layed flowering, and reduced primary bolt length (Figure 1F;
see Supplemental Figures 2G and 3D). Embryos dissected
from seeds that did not germinate showed very strong alter-
ation of cotyledon morphology with often single cotyledon em-
bryos (Figure 1E) similar to the phenotypes observed in the
progeny of sesqui-mutant combinations. To confirm that these
phenotypes were indeed caused by the loss of LOH7 and
LOH3 function, native LOH71 and LOH3 genes were trans-
formed into the loh1-1 loh3-1 or sesqui loh1-2 3-2*/~ mutants
under the control of the native promoter (see Supplemental
Figures 3A and 3E). Plants with a wild-type phenotype were
recovered upon transformation with either LOH7 or LOH3 (see
Supplemental Figures 3B to 3D), indicating that the mutations
in the LOH1 and LOH3 genes are responsible for the pheno-
types observed in each of the double mutants. Overall, these
data demonstrate that, out of the three different LOH genes,
LOH1 and LOH3 are redundant and essential for plant growth,
while LOH2 has no obvious effect on plant development, in-
dicative of a different role for LOH2 versus LOH1 and LOH3 in
sphingolipid metabolism.

LOH Genes Encode Ceramide Synthases with Different
Specific Activities

To investigate the role of the different LOH genes in sphin-
golipid metabolism and the biochemical basis for the pheno-
types of the loh mutants, a complete sphingolipid analysis was
performed for each line (Markham and Jaworski, 2007). For
the lethal loh1-2 loh3-2 double mutant, sphingolipid analysis
performed on 2-week-old germinated seeds grown on solid
media showed that all the classes of sphingolipids from these
mutants were almost completely devoid of VLCFA (Figure 2A;
see Supplemental Figure 4) and instead contained mostly
16:0 fatty acids. To confirm these results, sphingolipid analy-
sis was performed on seedlings from the knockdown loh7-1
loh3-1 double mutant. As expected, this mutant combination
showed a less drastic reduction in VLCFA containing sphingo-
lipids, ~30 mol % in total (Figure 2B; see Supplemental Fig-
ure 4A). Single loh1-2 or loh3-2 mutants had sphingolipid pro-

files almost identical to the wild type, indicating that LOH1
and LOH3 have redundant activities specifically targeted to-
ward VLCFA sphingolipids (see Supplemental Figure 4A). The
combined loss of LOH1 and LOH3 was also associated with
a very strong accumulation of saturated free LCBs consistent
with reduced ceramide synthase activity in these mutants (Fig-
ure 2C). Free LCBs also accumulated in the loh71-1 loh3-1 mu-
tants, albeit less pronounced than for loh1-2 loh3-2 (see Sup-
plemental Figure 4B).

Because disruption of LOH7 and LOH3 leads to an almost
complete absence of VLCFA in sphingolipids, this suggests
that the remaining ceramide synthase in these plants, LOH2,
must be specific for 16:0. In support of this, sphingolipid pro-
filing of loh2-1 and loh2-2 seedlings showed a strong reduc-
tion of 16:0 fatty acid in ceramide and other sphingolipids and
a significant increase in VLCFA containing sphingolipids (Fig-
ure 2A; see Supplemental Figure 4A). Altogether, these results
demonstrate the existence of at least two different ceramide
synthase activities in Arabidopsis: LOH1 and LOH3 are spe-
cific for VLCFA, while LOH2 is specific for 16:0 fatty acids. In-
terestingly, disruption of LOH7 and LOH3 leads to high accu-
mulation of free LCBs, similar to what was seen when CERS2
is disrupted in mice (Pewzner-Jung et al., 2010) and reminis-
cent of the effect of ceramide synthase inhibitors such as FB1
and AAL toxin (Abbas et al., 1994).

FB1 Mimics the Disruption of VLCFA-Specific Ceramide
Synthases

FB1 and AAL toxins are sphingoid-base analog mycotoxins
that have a strong and specific inhibitory effect on ceramide
synthases (Merrill et al., 1993; Spassieva et al., 2002). Previ-
ous studies in animal systems have suggested that FB1 may
be selective in its inhibition of ceramide synthase activity be-
cause treatment with FB1 changes the profile of fatty acids in-
corporated into sphingolipids (Venkataraman et al., 2002). The
effect of 0.5 uM FB1 on the sphingolipid profile of Arabidopsis
seedlings was examined (Figure 2D). Counterintuitively, after
9 d of growth on FB1, Arabidopsis seedlings contained higher
amount of total sphingolipids than control plants, but the ma-
jority of the extra sphingolipids consisted of 16:0 species with
a decrease in VLCFA containing species (Figure 2D). Expo-
sure to FB1 for 24 h or less did not cause excessive 16:0-ce-
ramide to be synthesized; however, a small, but significant, re-
duction in VLCFA-containing ceramide was noticeable by 16
to 24 h (see Supplemental Figure 5A). Inhibition of ceramide
synthase by FB1 was detectable even after short exposure to
FB1, judging by the rapid accumulation of the free trihydroxy
(t) LCBs t18:0 after 4 h of treatment (see Supplemental Fig-
ures 5B and 5C). Accumulation of t18:0 and the dihydroxy (d)
d18:0 was directly correlated with the time of exposure to FB1
with a maximum at 8 and 16 h for t18:0 and d18:0, respec-
tively. Application of FB1 for 16 h and longer was saturating as
shown by free LCB levels (see Supplemental Figure 5B). The
effect of FB1 was also dose dependent, as shown by the anal-
ysis of total LCB hydrolyzed from sphingolipids after 9 d ex-
posure to 0.4 and 0.8 yM FB1 (see Supplemental Figure 5D).
Together, these data indicate that FB1 exposure rapidly inhib-
its ceramide synthase, elevating free LCB levels and depleting
VLCFA-containing ceramides. Eventually, free LCBs are re-
routed into 16:0-ceramides similar to the disruption of sphingo-
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Figure 2. Disruption of LOH Activity by Knockout or FB1 Treatment Alters Sphingolipid Content.
(A) Total sphingolipid content of loh2-2 and loh1-2 loh3-2 compared with their related control (Col-0). Sphingolipid content is shown according to
the four different classes (ceramides, hydroxyceramides, glucosylceramides, and glucosylinositolphosphorylceramides) and the length and

saturation of the fatty acid chain.

(B) Total sphingolipid content of loh7-1 loh3-1 compared with their related control (WS). Sphingolipid content is shown as in (A).
(C) Free LCB levels of Ioh2-2, loh1-2 loh3-2, and wild-type seedlings grown in the presence of 0.5 yM FB1 for 9 d compared with the Col-0 wild

type.

(D) Total sphingolipid content of wild-type (Col-0) seedlings grown in presence or absence of 0.5 uM FB1 for 9 d was compared with the loh7-1
loh3-1 mutant and its corresponding wild-type seedlings (Ws). Sphingolipid levels are shown as in (A).
LCB(P)s are referred to using standard sphingolipid annotation as explained by Markham and Jaworski (2007). Measurements are the average of

three to five replicates.

lipid metabolism seen in the loh1 loh3 double mutants. As ex-
pected, knockdown loh1-1 loh3-1 double mutants treated with
FB1 showed stronger depletion of VLCFA sphingolipids and
enhanced accumulation of 16:0 sphingolipids, confirming the
specific targeting of LOH71 and LOH3 ceramide synthases by
FB1 (see Supplemental Figure 5E).

Wild-type seedlings germinated for 9 d on FB1 concentra-
tions of 1 uM or higher showed global inhibition of growth (Fig-
ure 3A). At 0.5 uM FB1, primary root length was only mod-
erately reduced (30% reduction compared with untreated
control), but a strong reduction of lateral root emergence could
be observed on 1 yM FB1 with 80% reduction compared with
untreated control (Figure 3B). Likewise, knockdown loh1-1
loh3-1 mutants, displaying abnormal cotyledon symmetry, also
showed a 60% reduction in lateral root numbers compared
with wild-type controls, as did the two different combinations
of sesqui-mutants involving the loh1-2 loh3-2 alleles (loh1-27/
loh3-2"* or loh1-2 ** loh3-27") (Figure 3C; see Supplemental
Figure 2D). The weakest mutant phenotype could be mimicked
by decreasing FB1 concentration to 0.25 uM, leading to 50%
inhibition of lateral root growth (Figure 3B). FB1 application

reduced lateral root primordia outgrowth but not the initiation
stages as detected by the auxin reporter DR5:3-glucuronidase
(GUS) (see Supplemental Figure 2E). Lateral root formation
and growth is known to be very dependent on auxin, suggest-
ing that the strong morphological changes observed in the
loh1/loh3 mutants could be related to an altered auxin physi-
ology. Interestingly, the pas1 mutant has reduced VLCFAs in
sphingolipids and showed auxin-related inhibition of lateral
root formation (Roudier et al., 2010). Primary root growth of
pas1 was found to be more sensitive to FB1 compared with
the wild type, supporting the involvement of VLCFA sphingolip-
ids in auxin-dependent lateral root formation (see Supplemen-
tal Figure 6A).

Very-Long-Chain Ceramides Are Required for Polar Auxin
Distribution

In order to analyze the effect of sphingolipid composition on
auxin distribution, we analyzed DR5:GUS expression in roots
grown in presence of FB1 (Swarup et al., 2008). DR5:GUS ex-
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Figure 3. Inhibition of Ceramide Synthase Leads to Altered Root Development and Auxin Transport.

(A) and (B) Primary (A) or lateral (B) root length of Arabidopsis seedlings grown in the presence of various concentrations (0, 0.5, 1, and 3.5uM) of
FB1. Shown is the average of 17 to 35 measurements plus standard error. Bars = 3 mm in (A) and 1 mm in (B).

(C) Measurement of primary root growth and lateral root development in wild-type (Ws) and loh7-1 loh3-1 mutant plants of 9 d. Number of lateral
roots is the average of 16 to 35 plants normalized against wild-type plus standard error. Bar = 3 mm.

(D) DR5:GUS staining in 7-d-old wild-type primary root meristems treated (+) or not treated (=) with 2.5 yM FB1 for 16 h. Bar = 100 ym.

(E) and (F) Wild-type (Ws), FB1-treated, or loh1-1 loh3-1 mutant plants grown in the absence (=) or presence (+) of the auxin analog NAA. The ef-
fect of exogenous NAA treatment on lateral root development in the presence of FB1 was quantified by counting the lateral roots in 18 to 23
plants and normalizing against the wild type (F). Shown are the mean plus standard error. Bars in (E) = 3 mm.

(G) Transport of exogenous auxin through stem segments of wild-type plants (Ws, gray bars) and loh7-1 loh3-1 mutant plants (white bars). Trans-
port was measured in segments taken from different portions of the inflorescence stem (bottom, middle, and top) and in a basipetal or acrope-
tal direction and in the presence (+NPA) or absence of NPA. Significant (P < 0.05; Student’s t test) differences from control plants are indicated

by an asterisk.

pression was reduced in root tips of seedlings grown for 9 d
in the presence of 1 uyM FB1 (see Supplemental Figure 2F) or
simply treated with 2.5 yM FB1 for 16 h (Figure 3D). To check
if auxin was directly involved in the root response to inhibition
of ceramide synthase, we tested the effect of the permeable
auxin analog naphthalene acetic acid (NAA) on lateral root de-
velopment of FB1-treated seedlings and loh7-1 loh3-1 double
mutants. In both cases, NAA was able to restore lateral root
outgrowth, suggesting that auxin transport and not auxin re-
sponse was most likely impaired in FB1-treated roots (Figures
3E and 3F).

To investigate the role of VLCFA-containing sphingolipids in
auxin transport, the transport of radiolabeled auxin along stem

segments of wild-type and loh7-1 loh3-1 mutants was mea-
sured. Stem segments of 2.5 cm in length were incubated for
16 h in the dark with the top/flower end (basipetal) or bottom/
rosette end (acropetal) in a 20-uL solution of 4C-labeled in-
dole-3-acetic acid, the native auxin. The basipetal or acropetal
auxin movements were subsequently quantified by measuring
the amount of labeled auxin in the distal 5 mm along the stem.
Controls for ruling out possible diffusion or metabolism of in-
dole-3-acetic acid were performed by including 10 yM naph-
thylphalamic acid (NPA), an inhibitor of polar auxin transport.
As expected, labeled auxin showed significant, NPA-sensi-
tive, basipetal transport along the different sections of the wild-
type stem (Figure 3G). In the loh1-1 loh3-1 mutant, the auxin
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flux was strongly affected compared with the wild type with the
amount of auxin transported reduced by 50 to 75% along the
stem (Figure 3G). Together, these data show that polar auxin
transport is impaired by the reduction in VLCFA in the loh1-1
loh3-1 mutant or by the inhibition of ceramide synthase in the
FB1-treated plants.

Sphingolipid Synthesis Is Required for the Targeting of
Specific Auxin Carriers to the PM

Polar auxin transport is mediated through a family of PM
polar auxin transporters involved in cellular influx (AUX1 fam-
ily members) or efflux of auxin (PIN family members). Polar
localization of auxin transporters was thus investigated in the
context of sphingolipid depletion either in the loh1 loh3 mu-
tant or in FB1-treated seedlings. To minimize possible arti-
factual response at the cellular level induced by long FB1
treatment, we designed a shorter FB1 treatment leading to
ceramide synthase inhibition. We found that the application
of 2.5 yM FB1 for 16 h (subsequently referred as FB1-16h)
led to an accumulation of t18:0 and d18:0 that was identical
to that induced by 9 d of treatment with 0.5 uM (see Supple-
mental Figure 5B). Since FB1 was described to induce cell
death at high concentration, we verified that our short FB1
treatment was not impairing cell viability. We monitored cell
viability in both primary and lateral roots using the fluorodi-
acetate (FDA) test, which labels viable cells by monitoring flu-
orescein release from ester bond hydrolysis of apolar FDA. In
our conditions, FB1-treated roots were still showing fluores-
cein labeling, demonstrating their viability (see Supplemen-
tal Figure 6B). This experimental setting allowed the study of
cellular responses in lateral root tip, which was found to be
more sensitive to ceramide synthase inhibition than the pri-
mary root (Figures 3A and 3B).

We first analyzed AUX1-yellow fluorescent protein (YFP)
distribution since aux7 mutants showed reduced lateral root
development similar to FB1-treated plants (Marchant et
al., 2002). FB1 treatment for 16 h led to an accumulation of
PAUX1:AUX1-YFP fluorescence inside meristematic, proto-
phloem, and epidermal cells of lateral roots (Figures 4A and
4B). Similar aggregation of AUX1-YFP was observed in the
primary root of sesqui loh1-2*~ loh3-27"- mutants but not in the
weak loh1-1 loh1-3 (Figure 4C). PM targeting of AUX1-YFP
was also impaired in lateral root primordia of loh7-2*"~ loh3-27~
(see Supplemental Figure 7A). Interestingly, FB1 treatment led
to partial relocalization of AUX1-YFP into lateral membrane
of epidermal and protophloem cells (Figures 4A and 4C, in-
set, arrows). We also investigated whether inhibition of ce-
ramide synthase would have a similar effect on the subcellu-
lar distribution of LAX3-green fluorescent protein (GFP), since
this AUX1-like influx carrier was described to be also essential
for lateral root outgrowth (Swarup et al., 2008). But contrary to
AUX1-YFP, FB1 did not modify LAX3-GFP targeting to the PM
(see Supplemental Figures 7B and 7C).

We then checked the effect of FB1-16h treatment on the
subcellular distribution of auxin efflux carriers in protophloem
and epidermal cells. Like AUX1-YFP, PIN1-GFP was found
to aggregate both in vascular and root meristem cells of lat-
eral roots in presence of FB1 or in the most affected primary
root of the weak loh1-1 loh3-1 mutant (Figure 4D; see Supple-
mental Figures 8A and 8B). In the most severe cases, PIN1-

GFP or PIN1 immunolocalization labeling showed PIN1 al-
most exclusively in cytosolic aggregates and no or only a weak
signal could be detected at the PM (Figure 4D; see Supple-
mental Figure 8C). However, subcellular distributions of other
efflux carriers, such as the ABC1-GFP and ABC19-GFP auxin
pumps, were not affected by FB1-16h treatment (Figures 4E
and 4F). The auxin efflux carrier PIN2-GFP was also insensi-
tive to FB1 (see Supplemental Figure 7D); however, this was
unrelated to its epidermal localization because PIN1-GFP ex-
pression in the epidermis led to aggregates as in the stele (see
Supplemental Figure 7E). We also checked PM proteins not
involved in auxin transport, such as the nonpolar LTi6b-GFP
and PIP2-GFP fusion proteins. As for ABCs, PIN2, or LAX3
proteins, the localization of these markers was insensitive to
FB1 treatment (see Supplemental Figures 7F and 7G). Alto-
gether, these results indicate that ceramide synthase inhibi-
tion modified membrane targeting of specific protein cargoes.
Interestingly, even if AUX1 and PIN1 are targeted to different
sites within the PM, both proteins gathered partially into the
same or closely associate aggregates upon FB1 application
(Figure 4G; see Supplemental Figure 8C).

Inactivation of LOH activity led not only to decreased VL-
CFA-containing ceramide and sphingolipid contents but also
to the accumulation of free LCBs. To exclude a possible role
of free LCBs in the aggregation of AUX1 and PIN1 proteins,
we treated Arabidopsis AUX1-YFP and PIN1-GFP seedlings
with myriocin, an inhibitor of serine palmitoyltransferase,
the first step of sphingolipid synthesis, leading to the deple-
tion of both free LCBs and ceramides (Miyake et al., 1995).
Like FB1, myriocin treatment led to similar accumulation of
AUX1-YFP in cytosolic aggregates, demonstrating that inhi-
bition of de novo sphingolipid synthesis and not LCB accu-
mulation was responsible for the specific mistargeting of pro-
tein cargoes (see Supplemental Figure 8D). In conclusion,
our results showed that inhibition of sphingolipid synthesis
impaired normal trafficking of AUX1-YFP and PIN1-GFP pro-
teins in the protophloem, meristem, and epidermal root cells,
explaining the reduction of polar auxin transport and auxin-
dependent lateral root outgrowth.

Inhibition of Sphingolipid Synthesis Disrupts Early
Endosomes

Inhibition of ceramide synthase induced the aggregation of
membrane and proteins in a structure that could be referred
to as FB1 compartment by analogy with compartments in-
duced by the anterograde transport inhibitor brefeldin A (BFA).
We therefore investigated the different endomembrane mark-
ers recruited in the formation of these compartments. GFP
marker lines for different endomembrane compartments were
tested for their sensitivity to FB1. First, we investigated the ef-
fect of FB1 on the ER, since it is the site of de novo LCB, ce-
ramide, and probably glucosylceramide biosynthesis (Marion
et al., 2008). We examined the distribution of the ER mark-
ers YFP-NIP1 and AXR4-GFP. AXR4-GFP was of special in-
terest since axr4 mutant aggregated AUX1 into cytosolic com-
partments, blocking its targeting to the PM (Dharmasiri et al.,
2006). No obvious ER containing aggregates could be ob-
served upon FB1-16h treatment for both markers, although
enhanced AXR4-GFP signal was often observed in the peri-
nuclear region (Figure 5A). We then evaluated the localization
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of several markers labeling the ER/cis-Golgi and Golgi appa-
ratus, but none of them showed any significant aggregation in
presence of FB1 (Figure 5). By contrast, the early endosomal
markers YFP-Rab-A22 and YFP-RabA1¢ were clearly aggre-
gated by FB1-16h treatment (Figure 5). The RabA22 com-
partment extensively overlapped with the trans-Golgi network
(TGN)-resident VHAa1 (Chow et al., 2008). As expected, par-
tial colocalization of YFP-RabA22 and VHAa1-RFP could also
be observed in FB1-induced aggregates (Figure 5B). Endo-
somal subpopulations labeled by YFP-ARA7/RabF2° or SNX1-
GFP, defined as late endosomes, were insensitive to FB1 ap-
plication. Similarly, late endosome vacuolar YFP-RabG3° or
YFP-RabG3F or specific vacuolar marker YFP-VAMP711 were
also insensitive to FB1 (Figure 5A; see Supplemental Figure
8E). Altogether, these results indicated that inhibition of ce-
ramide synthase modified subcellular distribution only of the
early endosomal/TGN resident markers, suggesting the in-
volvement of sphingolipid synthesis in the maintenance of spe-
cific endomembrane compartments.

The modifications of endomembrane structures observed
with GFP markers were confirmed by transmission elec-
tron microscopy. The organization of the Golgi apparatus
as well as the mitochondria and plastids were not modified
by FB1-16h treatment and by loh7-1 loh3-1 mutations (Fig-
ure 6; see Supplemental Figures 9A and 9B). The ER net-
work was clearly visible, and it seemed to be larger and more
branched, an observation that could correlate with higher flu-
orescence of ER markers after FB1 treatment. The most dra-
PIN1-GFP Anti-PIN1 matic changes were the presence of small vesicular struc-
tures looking like dismantled vacuole or fused vesicles
(Figure 6D). Since fluorescent vacuolar markers did not show
major macroscopic changes in vacuolar structure while early
endosomal markers formed large aggregates, these accumu-
lations of membrane materials could result from fusion of en-
dosomal compartments.
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Sphingolipid Synthesis Is Not Required for Endocytosis

AUX1-YFP and PIN1-GFP aggregates in the cytosol most
ABC1-GFP |F ABC19-GFP probably result from altered TGN and/or early endosomal
trafficking. However, PIN1 and AUX1, apart from being local-
ized in the opposite side of the cell, are characterized by dif-
ferent dynamics with PIN1 undergoing active recycling, while
AUX1 showed a slower turnover at the PM (Kleine-Vehn et
al., 2006). We thus reasoned that the aggregation of both
proteins upon ceramide synthesis inhibition would preferen-
tially result from secretory pathway impairment rather than

Figure 4. Inhibition of Ceramide Synthesis Alters the AUX1-YFP and PIN1-GFP Targeting in Lateral Roots.

(A) and (B) AUX1-YFP aggregates (arrowheads) in the cytosol in presence of 2.5 uM FB1 for 16 h (A). Detail of untreated (left, —) and treated lat-
eral root cells (right, +). Details of epidermal cells are given in insets. Details of protophloem region of untreated and treated lateral roots are
shown in (B).

(C) AUX1-YFP aggregates (arrowheads) in the cytosol of meristematic and protophloem cells in the primary root of sesqui-mutants loh7-27~ loh3-
2*= (right) compared with the wild type (wt; left).

(D) PIN1-GFP aggregates (arrowheads) in the cytosol of FB1-treated cells (bottom, +) compared with control (top, —). PIN1 aggregates were also
confirmed by immunolocalization (anti-PIN1). Note that FB1 treatment depleted PIN1 from PM.

(E) ABC1-GFP expression in untreated (left, —) and FB1-treated cells (right, +).

(F) ABC19-GFP expression in untreated (left, =) and FB1-treated cells (right, +).

(G) AUX1-YFP (red) and PIN1-GFP (green) distribution in absence (left, -FB1) and in presence of FB1 (right, +FB1). Merged images are also
shown. AUX1-YFP and PIN1-GFP aggregates colocalize partially (arrowheads).

Bars = 20 ymin (A), (F), and (G) and 10 ym in inset of (A) to (E) and (H).
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Figure 5. Inhibition of Ceramide Synthase Affects Specific Endomembrane Compartments.

(A) Fluorescence micrographs showing the subcellular localization of different endomembrane marker-XFP fusions in the lateral roots of untreated
transgenic lines (-FB1) or after treatment with FB1 (+FB1). The subcellular compartment to which the marker has previously been localized is
annotated far right or left, and the marker-XFP fusion being examined is shown in the top left of each set of micrographs. Note the aggrega-
tions under FB1 treatment for the early endosome markers (arrowheads). Bars = 5 ym.

(B) TGN marker VHAa1-RFP partially colocalizes with YFP-RabA22 in the presence of FB1. Bars = 5 ym.

PM recycling. To first evaluate the involvement of recycling
membrane material in ceramide-depleted endomembrane
pools, we checked whether endocytosed membrane material
was associated with FB1 compartments. Early endosomes
like Rab-A22 rapidly colocalized with endocytosed FM4-64
(Chow et al., 2008). However, when treated with FB1, the ag-
gregated YFP-Rab-A22-labeled endosomes showed close
proximity with FM4-64 but did not seem to colocalize, indi-
cating that endocytosis provides only a minor contribution to
the formation of FB1 compartments (see Supplemental Fig-
ure 10A). This was confirmed by comparing BOR1-GFP in-
ternalization upon boron application in presence or not of
FB1-16h treatment (Takano et al., 2005). BOR1-GFP-la-

beled endosomes appeared with similar kinetics in the pres-
ence or absence of FB1, indicating that endocytosis was not
severely impaired by FB1-16h treatment (see Supplemental
Figure 10B). The origin of the FB1 compartment was directly
probed using point mutations in Rab-A22 that modify its sub-
cellular distribution (Chow et al., 2008). To rule out possible
interaction of GTPase activity with FB1 treatment, we mon-
itored the subcellular distribution in a YFP-Rab-A23[N125I]
mutant that is a nucleotide-free dominant-negative mutant
that has the same subcellular distribution as wild-type YFP-
Rab-A22 but lower expression levels. YFP-Rab-A22[N125I]
was as sensitive to FB1 as wild-type YFP-Rab-A22, demon-
strating that FB1 sensitivity was independent of GTPase ac-
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Figure 6. Inhibition of Ceramide Synthase Alters Endomembrane Ultrastructure.
(A) and (B) Control cells exhibiting characteristic tubular ER and a Golgi stack (GA) surrounded by secretory vesicles (A). Detail of control cells
exhibiting a narrow cell wall domain and a straight cell surface between two cells (B). NM, nuclear membrane.

(C) to (G) Cells from roots of seedlings grown on 0.5 uM FB1 for 9 d.
(C) Golgi ultrastructure is not affected by FB1 treatment.

(D) Cytoplasm is often filled with small, deconvoluted vacuole-like structures.

(E) and (F) The ER exhibits a larger and more branched network compared with control cells.

(G) The PM is detached from the cell wall, and a large and irregular periplasmic space between the cell wall and PM is observed.
Bars = 200 nm in (A), (C), (D), and (F), 500 nm in (B) and (G), and 1 pm in (C) and (E).

tivity (see Supplemental Figure 10C). Then, we analyzed the
S26N or Q71L mutations that stabilize YFP-Rab-A22 into the
inactive GDP-bound state or the constitutively active GTP-
bound state. These mutations relocate YFP-Rab-A22 mainly
to the Golgi for YFP-Rab-A22[S26N] and the PM for YFP-
Rab-A22[Q71L]. The Golgi YFP-RabA23[S26N] was still sen-
sitive to FB1 by forming aggregates, while the PM-localized
YFP-Rab-A22[Q71L] was insensitive, demonstrating that FB1
aggregates recruited YFP-Rab-A22 from the Golgi but not the
PM (see Supplemental Figure 10C). Altogether, these results
indicate that FB1-16h compartments are not formed from re-
cycled PM materials.

Sphingolipid Synthesis Is Required for the AUX1 and PIN1
Secretory Pathway

The alternative pathway for FB1 compartments would be
the secretory route. BFA inhibits anterograde transport, re-
sulting also in the aggregation of early endosomes with the
TGN to form BFA compartments (Ritzenthaler et al., 2002;
Geldner et al., 2003). BFA was thus applied to FB1-treated
PIN-GFP and AUX1-YFP roots stained with FM4-64. In vas-
cular cells, AUX1-YFP and PIN1-GFP FB1-induced aggre-
gates appeared to be distinct from BFA compartments, sug-
gesting that FB1 impaired a distinct post-Golgi compartment
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than did BFA (Figures 7A to 7D; see Supplemental Figures
11A to 11D). To address the involvement of de novo synthe-
sis in FB1 aggregates, we directly monitored aggregate for-
mation through whole-cell fluorescence recovery after photo-
bleaching (FRAP) analysis. We performed FRAP analysis of
FB1-16h—treated PIN1-GFP and AUX1-YFP secondary root
cells. FB1-16h- treated cells with PIN1-GFP localized in ag-
gregates and at the PM were completely bleached (Figure
7E). Recovery of PIN1-GFP in aggregates was clearly visi-
ble after 30 min, and PM labeling was observed after aggre-
gate recovery usually 30 to 45 min after bleaching. A similar
finding was observed with AUX1-YFP, albeit with a reduced
recovery (see Supplemental Figure 11E). FRAP analysis
showed that FB1 delayed but also reduced PIN1-GFP recov-
ery at the PM (Figure 7E, left). However, PIN1-GFP recovery
in aggregates showed similar kinetics than the recovery of
PIN1-GFP at PM in untreated samples (Figure 7E, right), in-
dicating that the primary effect of FB1 is to block secretion by
aggregating PIN1-GFP prior to its PM localization. Altogether,
these results show that PIN1-GFP, like AUX1-YFP, aggrega-
tion occurs along the secretory pathway.

Finally, we investigated the involvement of VLCFA sphin-
golipids in protein secretion in the apoplast by analyzing
the localization of tomato arabinogalactan fusion protein
LeAGP1-GFP (see Supplemental Figure 11F). It was previ-
ously demonstrated that this fusion protein provided a robust
marker for secretion in Arabidopsis (Estévez et al., 2006).
FB1-16h treatment did not modify LeAGP1 accumulation in
the apoplast, confirming that VLCFA sphingolipids are in-
volved in the traffic of specific cargoes along the secretory
pathway.

Discussion

Functional analysis of Arabidopsis LAG1 homologs 1
through 3 demonstrated that the three LOH genes encode
ceramide synthases. The three LOH proteins showed high
sequence identity with the yeast LAG7p and LAC1p but also
with tomato Le Asc1, which was demonstrated to comple-
ment yeast /lag mutants (Spassieva et al., 2002). Sphingo-
lipid analysis of the different Joh mutants demonstrated how
the different LOH proteins contribute to ceramide biosynthe-
sis and more specifically, the sphingolipid fatty acid chain
length. Complete loss of LOH2 function led to specific reduc-
tion in C16-ceramide, whereas the absence of both LOH1
and LOHS3 activity caused complete depletion of ceramides
with an acyl chain longer than C18. Altogether, these results
show that Arabidopsis possesses two different ceramide syn-
thase activities. LOH2 encodes long-acyl-chain ceramide
synthase, whereas LOH7 and LOH3 encode ceramide syn-
thases with very-long-acyl-chain specificity. The role of the
distinct LAG1 homolog At2g26200 in plant biology remains
somewhat of an enigma as LOH1, 2, and 3 would appear to
account for VLCFA and c16-specific ceramide synthase ac-
tivity in leaf tisues. This functional distinction is supported by
the phylogenetic analysis of plant LOH proteins, with LOH2
representative of a distinct clade. It will be interesting to see
if other members of the LOH2 clade are also specific for C16-
fatty acids and to dissect the amino acid differences between
LOH2 and VLCFA-specific ceramide synthases. Similar

OVERLAY

A AUX1-YFP

<C
LL
m
m
(TR
+
<
L
m
prebleach bleach
60 « PM + 1 I 60 «PM - |
~ 50 A . B TREY !
% 40 I 1E W e | '
30 1 | > 30 L=
s 20 L —t 12 20 ;
3 10 . Lg 10
/4 o 0

0 10 20 30 40 50 60
Time (min)

0«
0 10 20 30 40 50 60
Time (min)

Figure 7. Inhibition of Ceramide Synthase Modifies Vesicle Trafficking.

(A) Partial localization of pAUX1:AUX1-YFP and FM4-64 staining in
the presence of 50 uM BFA.

(B) Detail of BFA compartments with presence (open arrowhead) or
absence (closed arrowhead) of colocalization between FM4-64
and AUX1-YFP.

(C) FM4-64 staining of aggregates in FB1-16h—treated pAUX1:AUX1-
YFP cells in the presence of BFA. Partial colocalization is ob-
served (arrowheads).

(D) Detail of FM4-64 staining of aggregates in FB1-treated
pAUX1:AUX1-YFP cells showing partial colocalization of AUX1-
YFP with FM4-64 in FB1/BFA compartments.

(E) FRAP analysis of FB1-16h cells expressing PIN1-GFP. Lateral root
cells expressing PIN1-GFP (prebleach) were bleached, and recov-
ery of PIN1-GFP was monitored for 60 min. Aggregates are shown
(arrows). Fluorescence recovery was quantified on transverse
membranes in the absence (PM-) or the presence of FB1 (PM +)
as well on aggregates (AG+) (n = 10, average + sd). Inset shows
the two types of ROI used for FRAP quantification.

Bars = 10 ymin (A), (C), and (E) and 5 pym in (B) and (D).
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differences of acyl chain specificity were also described for
mammalian ceramide synthase CERS (Teufel et al., 2009).
CERSS5 and 6, like LOHZ2, display a preference for long-chain
acyl-CoA, while CERS2 or 4 is specifically involved in the
synthesis of C22- and C22-C24-ceramides, respectively.

In yeast, both ceramide synthases are specific to very-long-
chain ceramides with mainly C26 acyl chains (Guillas et al.,
2001). However, this specificity can be modified by disrupting
the enzymes responsible for VLCFA synthesis, namely, ELO2
and ELOS3. Similarly, in the Arabidopsis pas3 mutant, elonga-
tion is affected by the reduced cytoplasmic acetyl-CoA carbox-
ylase activity, and increased levels of C20 and C18 fatty acids
are found in sphingolipids (Roudier et al., 2010). These obser-
vations indicate that there is a close relationship between the
specificity of the ceramide synthase reaction and the acyl-CoA
pool feeding that reaction; however, the nature of that relation-
ship remains to be understood.

Disruption of LOH1 and LOH3 also has a marked affect
on the total amount of sphingolipids. Free LCBs accumulate
to high levels and drive the synthesis of excessive amounts
of 16:0-containing sphingolipids. Similar findings were ob-
served in the CERS2 knockout mouse, which is depleted
in VLCFA sphingolipids but has overall normal sphingolipid
content due to the accumulation of C16-sphingolipids (Pew-
zner-Jung et al., 2010). Likewise, the reduction of the VL-
CFA-CoA pool in the elongation mutants pas? and pas3 led
to an increase of C16-ceramides (Roudier et al., 2010). In-
terestingly, sphingoid base hydroxylases mutants that lacked
t18:0 showed also enhanced C16-sphingolipids (Chen et al.,
2008). In that article, a model was proposed whereby dis-
ruption of t18:0 biosynthesis caused d18:0 to accumulate,
which drove the synthesis of C16:0-containing sphingolipids
through a C16:0-dependent ceramide synthase. It was also
suggested that t18:0-VLCFA—containing sphingolipids neg-
atively regulate serine palmitoyltransferase activity, regulat-
ing the amount of sphingolipid that the cell synthesizes. This
work further refines that idea by identifying the C16:0-depen-
dent ceramide synthase as LOHZ2 and indicating that VLCFA-
containing sphingolipids are capable of affecting total sphin-
golipid content.

Our work demonstrated that the length of the ceramide
acyl chain has an important effect on the biological function
of the sphingolipid molecules. While loss of LOH2 function did
not lead to any obvious developmental phenotype, the loh1-2
loh3-2 double mutant was impaired in embryo development
and germination, indicating that very-long-chain but not long-
chain ceramides are critical for plant growth. Fine-tuning of ce-
ramide synthase activity could be efficiently achieved with the
sphingoid base analog FB1. FB1 is a mycotoxin from Fusar-
ium moniliforme that inhibits ceramide synthase and is respon-
sible for several naturally and experimentally induced animal
and human diseases (Desai et al.,, 2002; Stockmann-Juv-
ala and Savolainen, 2008). FB1 was found to inhibit ceramide
synthase and to lead to free LCB accumulation (Abbas et al.,
1994; Spassieva et al., 2002). Sensitivity to FB1 was also de-
scribed to directly correlate with the activity of tomato LAG1
homolog Asc-1 (Brandwagt et al., 2000, 2002; Spassieva et
al., 2002).

Here, we demonstrated that FB1 selectively inhibits very-
long-acyl-chain ceramide synthesis in Arabidopsis. Moreover,
our results demonstrate that, at the concentrations used, the
most of the effects of FB1 can be attributed to the inhibition of

de novo ceramide synthesis since many FB1 phenotypes were
observed in the loh1 loh3 mutant. Interestingly, lateral roots
were more sensitive to FB1 than primary roots. Contrary to pri-
mary roots that are of embryogenic origin, lateral roots are de-
veloped from nondividing pericycle cells and exhibit extensive
plasticity associated with differential response to environmen-
tal cues, like phosphate or nitrate (Linkohr et al., 2002; Jain et
al., 2007). Lateral roots could thus be more sensitive to protein
secretion at the PM to respond to these different environmen-
tal stimuli.

The use of FB1 to inhibit ceramide synthesis in a short win-
dow of time demonstrates the role of these lipids in the secre-
tory pathway in particular for two specific cargoes, PIN1-GFP
and AUX1-YFP. The normal expression and subcellular distri-
bution of AXR4-GFP in the presence of FB1 indicates that the
effect of sphingolipid depletion on AUX1-YFP targeting is in-
dependent of the AXR4 pathway. Interestingly, PIN1, but not
AUX1, targeting was also impaired in VLCFA-defective mu-
tants pas? and 3 (Roudier et al., 2010). The fact that PIN1-
GFP was more sensitive to BFA in pas? mutant suggests that
PIN1 recycling was selectively altered. The differences ob-
served between pas? and FB1 or loh1 loh3 plants could be ex-
plained by the nature of the VLCFA lipids involved since pas1
mutation impacts potentially all the VLCFA-containing lipids
and even among sphingolipids pas? was found to reduce more
the levels of glucosylceramides than glucosylinositolphosphor-
ylceramides (Roudier et al., 2010). PIN1 membrane localiza-
tion was found to be dependent on sterol levels, as illustrated
by polarity defects in sterol methyltransferase mutant smt7°©
(Willemsen et al., 2003). The role of sterols in AUX1 polarity
is debated since conflicting results were obtained with smt1°®
(Willemsen et al., 2003; Kleine-Vehn et al., 2006). Nonethe-
less, the application of filipin, a specific sterol binding drug,
was able to specifically reduce sterol levels at the PM and re-
sulted in changes in AUX1 polar distribution and caused its cy-
tosolic aggregation similarly to what was found with FB1 (Kle-
ine-Vehn et al., 2006).

Interestingly, PIN2 polarity was also dependent on sterol
levels since PIN2 localized to apical, basal, and lateral mem-
branes in the sterol biosynthetic mutant cpi-7 (Men et al.,
2008). In contrast with defects in sterol biosynthesis, inhibition
of ceramide synthase did not seem to alter PIN2-GFP target-
ing, indicating a potentially differential sensitivity of the mem-
brane proteins to the nature of their lipid environment. Simi-
larly, we showed that FB1 treatment specifically altered the
Rab-A22— and Rab-A1¢-labeled early endosome populations.
The fact that both markers are targeted to the cell plate (Chow
et al., 2008) indicates that VLCFA sphingolipids might directly
impact cytokinesis, as recently suggested in BY2 cells (Aubert
et al., 2011). The existence of lipid sorting at the TGN was re-
cently demonstrated in yeast with specific enrichment of sphin-
golipids and sterols in post-Golgi vesicles transporting raft pro-
teins (Klemm et al., 2009). Not surprisingly, PIN1 was found
to be associated with detergent-resistant membrane fractions
that are usually rich in sterols and sphingolipids (Mongrand et
al., 2004; Borner et al., 2005; Titapiwatanakun et al., 2009).
Detergent-resistant membrane, enriched in sterol and sphin-
golipids, cofrationate with PM and Golgi but not with ER pro-
teins (Laloi et al., 2007). Inhibition of ceramide synthase did
not seem to alter the ER and Golgi structure even though Ara-
bidopsis ceramide synthases were found to localize in the ER
(Marion et al., 2008). However, the reduction of ceramide syn-



2374

MARKHAM ET AL. IN THE PLANT CELL 23 (2011)

thesis could impair the assembly of lipid domains in the ER or
Golgi, leading to subsequent disorganization of specific endo-
somal populations.

Recently, FB1 was reported to induce ER-derived aggre-
gates and to block ER to Golgi cargo delivery in BY2 cells
(Aubert et al., 2011). The nature of the sphingolipids involved
remain to be found, but the acyl chain length was found to
be critical for polar targeting and trafficking and could not
be compensated for by shorter chain ceramides. Impor-
tantly, very-long-chain ceramides were a determinant of pro-
tein cargoes and endosomal specificity. Very-long-chain fatty
acyl chains were also described to be involved in polar auxin
transport in Arabidopsis (Roudier et al., 2010). Reduction of
the acyl chain length in particular in sphingolipids resulted in
PIN1-GFP but not AUX1-YFP cytosolic aggregation. The rel-
ative insensitivity of AUX1-YFP to VLCFA depletion in that re-
port might be explained by a lesser reduction of very-long-
acyl-chain sphingolipids compared with that achieved in this
work by FB1 treatment or the effect of the loh1-1 loh3-1 dou-
ble mutant. However, enhanced sensitivity of PIN1 compared
with AUX1 was also observed in this work, as PIN1 was ag-
gregated in both weak and strong loh71 loh3 double mu-
tants, while AUX1 distribution was only impaired in the strong
loh1-2 loh3-2 mutant. These data suggest that AUX1 sen-
sitivity to lipid environment might be more complex than for
PIN1.

The VLCFA content of lipids has been shown to affect
membrane bending during yeast nuclear pore formation and
membrane plasticity during furrow ingression in Drosophila
melanogaster (Schneiter et al., 1996; Szafer-Glusman et al.,
2008). Simulation of lipid bilayers comprising common sphin-
gomyelins showed that increasing acyl chain length enhances
bilayer thickness and lipid packing but reduces lateral diffusion
because of acyl chain interdigitations (Niemela et al., 2006).
Impairment of yeast fatty acid elongation leading to reduced
C26-sphingolipid levels decreased lipid packing and mem-
brane order in yeast cell but also prevented liquid ordered
phase separation in model membranes from total lipid extracts
(Klose et al.,, 2010). Such structural properties of the acyl
chains of sphingolipids could infer specific membrane features
like vesicular mobility or fusions that could define some endo-
somal populations and PM subdomains. However, the molecu-
lar mechanisms underlying these specificities remain to be ex-
plored to fully understand the structural role of sphingolipids in
membrane dynamics.

Methods
Bioinformatics and Phylogenetic Analysis

GenBank and the tomato genome database (http://mips.helmholtz-
muenchen.de/plant/tomato/index.jsp) were searched using the
tBLASTn algorithm and the Asc-1 protein sequence AJ312131 using
default parameters, except the filter for low complexity was turned
off. The GenBank sequence for Arabidopsis lyrata XM_002890624
was manually extended using the A. lyrata sequence available at
http://genome.jgi-psf.org/Araly1/Araly1.home.html. Full-length eu-
dicot sequences were identified and the protein sequences aligned
using ClustalW. Gaps were condensed and edited using the BioEdit
sequence software. Phylogenetic relationships between sequences
were established using the MEGA4 software program with parame-
ters set to the default values (Tamura et al., 2007). Transmembrane
domains were predicted with TMPred (Hofmann and Stoffel, 1993).

Plant Growth Condition and Drug Treatments

Seedlings were grown on Arabidopsis thaliana agar medium (Es-
telle and Somerville, 1987) for phenotyping, genotyping, and drug
treatment. FB1 (Sigma-Aldrich) short treatment was performed by
incubating 9-d-old seedlings in liquid Arabidopsis media for 16 to
20 h in the presence of 2.5 yM FB1. Due to batch variability, each
FB1 stock solution was calibrated with a root growth response curve
and variation of drug concentration never exceeded 2.5 + 1 ym for
a short incubation. For long FB1 treatment, seedling were directly
germinated on Arabidopsis solid media supplemented with 0.25 to
3.5 uM FB1. BFA (Sigma-Aldrich), which inhibits anterograde vesic-
ular transport, was used in liquid Arabidopsis media at 50 uM for 1
h on 9-d-old seedlings. After each drug treatment, seedlings where
washed before mounting for imaging.

Complementation of the lateral root defect of the loh1-1 loh3-1
mutant or FB1-treated seedlings was obtained with 0.1 uM NAA
(Sigma-Aldrich) supplemented in solid Arabidopsis media with or
without 0.5 uM FB1.

The different transgenic lines used in this study were as fol-
lows: pPIN1:PIN1-GFP (Benkova et al., 2003), pPIN2:PIN2-GFP
(Abas et al., 2006), pPIN2:PIN1-GFP (Wisniewska et al., 2006),
PAUXT:AUX1-YFP (Swarup et al., 2004), pLAX3:LAX3-GFP (Swa-
rup et al., 2008), 35S:PIP2:GFP and 35S:LTi6b:GFP (Cutler et
al., 2000), pABC19:ABC19-GFP and pABC1:ABC1-GFP (Titapi-
watanakun et al., 2009), pSNX1:SNX1-GFP (Jaillais et al., 2006),
and pAXR4:AXR4-GFP (Dharmasiri et al., 2006). The lines from the
Wave Marker collection lines containing the UBQ10 promoter were
as follows: wave6 (YFP-NIP1), wave29Y (YFP-ARA5/RabD2?),
wave33Y (YFP-RAbD2b), wave18Y (YFP-GOT1), wave127Y (YFP-
MEMB), wave22Y (YFP-SYP32), wave34Y (YFP-RABA1¢), wave2Y
(YFP-ARAT), wave5Y (YFP-RABG3F), wavedY (YFP-VAMP711),
and wave11Y (YFP-RabG3C) (Geldner et al., 2009). The Rab-A22
mutant constructs were the following: pRab-A22:YFP-pRab-A23,
pRab-A22:YFP-Rab-A22[N125l], pRab-A22:YFP-Rab-A23[S26N],
pRab-A22:YFP-Rab-A22[Q71L] (Chow et al., 2008), pPBOR1-BOR1-
GFP (Takano et al., 2005), and p35S:LeAGP1-GFP (Estévez et al.,
2006).

Insertion Mutants

Two Arabidopsis ecotypes Columbia-0 (Col-0) and Wassilews-
kija (Ws) were used. loh1-1, loh2-1, and loh3-1 are in the Ws back-
ground and were isolated by screening the original collection of
60,480 T-DNA insertions described by Krysan et al. (1999) using the
following primers: loh1-1 (5'-TCTTTTATCTCATTCTCCTTTGCTCT-
GCT-3; 5-GAACCAAAAAAAACCCCAAGAAAATTCAT-3'), loh2-1
(5-AGTCAGTAAGGTAATGAAGCTGAAAACAA-3'; 5-AAAAA-
GAAAGAAGGTCTGTGAGATCCCAA-3'), and Iloh3-1 (5-ATTC-
GATTTCTCCTCGATAGATTCGTCTT-3;  5-ACAACGTGCTTTTA-
CATTTCTATCTACCT-3') in combination with the left border primer
JL202 (5-CATTTTATAATAACGCTGCGGACATCTAC-3'). Ioh1-2
(N580371), loh2-2 (N524192), and loh3-2 (N650849) were obtained
from the Salk collection. The genotyping of SALK loh was per-
formed with the following primers: loh1 (5'-TTCCTTCTTATGTGATT-
GTAAAGAGAA-3 5-AAAAACCCCAAGAAAATTCATTTAG-3'),
loh2 (5-TTTCGGATTCTTCTTCTTGA-3, 5-AAAGACATCACTTG-
CATCATG-3'), and loh3 (5-TGGTTTAAAGAGAGGATTTTACGG-3/,
5-CAAAATTTGTTCAGACTACAATTCAA-3').

Lipid Analysis

Free and total LCB analysis was performed by HPLC after flu-
orescent derivatization (Bach et al., 2008). Complete sphingo-
lipid analysis was performed by mass spectrometry as described
(Markham and Jaworski, 2007).
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Auxin Transport Measurements

Auxin transport was measured through sections cut from 12- to
15-cm-long inflorescence bolts as previously described (Brown et
al., 2001). Ws and loh1-1 loh3-1 plants were grown for 5 to 6 weeks
until the bolts were 12 to 15 cm high. Sections 25 mm in length were
cut using a sharp razor blade from the bottom, the middle, and 10
mm below the top of the bolt. The stem section was immediately
placed in a tube containing 20 pL of 5 mM MES, pH 5.5, 1% Suc,
0.05% Tween 20, 19 nCi 1-1#C-indole acetic acid (9 mCi/mmol) with
or without the addition of 10 uM NPA such that one end of the stem
segment was immersed in the solution. To measure basipetal trans-
port, the stem segment was placed in the inverted orientation, that
is, with the top of the stem segment in the solution. Stem segments
were incubated for 16 h in the dark after which the upper 5 mm of
the stem was excised, immersed in scintillation fluid, and the dpm
measured in a scintillation counter.

Live-Cell Imaging

Excitation/emission of YFP (514 nm, 520 to 560 nm) GFP (488
nm, 490 to 550 nm), and FM4-64 (488 or 514 nm, 600 to700 nm)
was performed on LSM 710 (Zeiss) and SP2 (Leica) confocal micro-
scopes. Root tip imaging was performed with seedlings mounted in
water, and high magnification images were taken with a x63 objec-
tive lens (water immersion) with a line averaging of 8. Roots were
stained with 2 yM FM4-64 and directly mounted on the microscope
slide. Spectral separation of PIN1:GFP and AUX1:YFP was con-
ducted according the GFP and YFP emission profile and the LSM
software spectral mode. GUS and propidium iodide staining was
performed as described previously (Harrar et al., 2003; Truernit et
al., 2008). FRAP analysis of PIN1-GFP and AUX1-YFP was per-
formed on 10- to 12-d-old secondary root tips of pPIN1:PIN1-GFP
and pAUX1:AUX1-YFP seedlings treated with 2.5 yM FB1. The
FRAP experiment was performed using a Zeiss LSM710 with a x40
oil objective. A prebleach scan was done with either a 488-nm laser
excitation (5%) for PIN1-GFP or a 514-nm laser excitation (3.5%)
for AUX1-YFP with a pinhole of 82.2 and a 512 x 512 (8-bit) ac-
quisition mode with a pixel dwell of 1.27 us, 8 line average, and a
2x zoom. Fluorescence bleaching was performed after three pre-
bleach scans with a double scan at 100% laser 488 and 514 nm and
a pixel dwell of 177.32 ps. Confocal pictures were processed us-
ing ImagedJ V1.44m. The pictures corresponding to prebleach, post-
bleach, and each recovery time point (15, 30, 45, and 60 min) were
assembled into a time-lapse picture stack. Occasional drifting of
the sample was corrected using the StackReg plugin. About two to
four cells were quantified per root. Fluorescence intensity was mea-
sured on cell apical/basal membranes either as rectangular region
of interest (ROI) in the case of PMs or as circular ROl in the case of
FB1 aggregates. A nonbleached PM ROl was measured and used
to correct fluorescence decrease due to photobleaching during ac-
quisition. Fluorescence recovery was expressed as percentage of
fluorescence increase of the bleached region corrected by the ac-
quisition bleaching factor of the whole sample.

High-Pressure Freezing, Freeze Substitution, and Embedding
Processes

For electron microscopy, root tips (3 mm) were cut in 1-hexadec-
ene, transferred to 200-um size cupules (Leica) containing 1-hexa-
decen, and frozen with a high-pressure freezer apparatus (EM-
PACT2; Leica). Freeze substitution was performed (Leica freeze
substitution unit AFS2) in acetone supplemented with 2% osmium
tetroxide warming up progressively from -90 to -30°C (specimens
are left at —90°C for 27 h, then warmed up to —60°C over 15 h).
Specimens stayed in a -60°C bath for 8 h, before the next warm-up
step to =30°C over 15 h, where they remain for additional 8 h. Root
tips were finally infiltrated and embedded in epoxy resin (low viscos-

ity Premix Kit medium, agar) at room temperature according to the
manufacturer’s instructions. For polymerization, they were placed in
flat plastic molds and polymerized for 17 h at 60°C.

Electron Microscopy Observations

The 70-nm ultrathin sections (Ultracut UC6; Leica) were col-
lected on formvar-coated copper grids and poststained with aque-
ous 2% uranyl acetate/lead citrate as described by Hawes and Sa-
tiat-dJeunemaitre (2001). They were examined with a JEOL 1400
transmission electron microscope operating at 120 kV. Images were
acquired using a postcolumn high-resolution (11 megapixels) high-
speed camera (SC1000 Orius; Gatan).

Experimental Procedures for Supplemental Data

The mRNA levels of LOH1, 2, and 3 were checked via RT-PCR
for loh1-2, loh2-2, and loh3-2 and via RNA gel blot on total RNA for
loh1-1, loh2-1, and loh3-1 using an RNA probe constructed from the
cloned cDNA for each gene (see Supplemental Figures 2A and 2B).

Myriocin treatment was performed for 16 to 20 h on 9-d-old seed-
lings at 7 uM directly dissolved in liquid Arabidopsis media.

The FDA test was performed on 9-d-old Col-0 or AUX1:YFP
seedlings treated with FB1 (16-h treatment at 2.5 yM). Seedlings
were treated with 2 yM FDA for 15 min and then washed and di-
rectly mounted in 2 uM FM 4-64 for visualization (see Supplemen-
tal Figure 6B). Esterase activity of cells was monitored in the green
and FM4-64 in red channel. Both were activated with a 488-nm ar-
gon laser.

To test the effect of FB1 treatment on endocytosis, BOR11-GFP
seedlings grown for 5 d on agar medium were treated or not with 2.5
mM FB1 (16 h) in water and mounted (t = 0) in 100 uyM boric acid
(x2.5 pM FB1) (see Supplemental Figure 10B). To test the effect
of FB1 treatment on secretion, 12-d-old seedlings (35S:LeAGP1-
GFP) treated or not with 2.5 mM FB1 (16 h) were plasmolysed using
0.4 mM mannitol with 3 uM propidium lodide during 5 min and then
mounted (see Supplemental Figure 11F).

Accession Numbers

Sequence data from this article can be found in the GenBank/
EMBL database or the Arabidopsis Genome Initiative database
under the following accession numbers: Arabidopsis (At) LOH1
(At3g25540), LOH2 (At3g19260), LOH3 (At1g13580), and LOH4
(At1g26200). Accession numbers of tomato (Le) Asc1, Asc2, and
Asc3 and yeast Lag1p and Lac1p used in Figure 1A are AJ312131,
SL1.00sc02793_15.1.1, SL1.00sc02749_302.1.1, SCU08133, and
NM_001179574, respectively. The accession numbers of the Arabi-
dopsis mutants used in this study are as follows: loh71-2 (N580371),
loh2-2 (N524192), loh3-2 (N650849), loh1-1 (CS66113), loh2-1
(CS66114), and loh3-1 (CS66115).
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Supplemental Figure 3. Complementation of the loh1 loh3
Double Mutant.

Supplemental Figure 4. Fatty Acid Content of Total Sphingolip-
ids and Free LCBs from loh Mutants.

Supplemental Figure 5. Sphingolipid Analysis of FB1-Treated
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Supp. Fig. 1A. Protein sequence alignment of 29 LAG1 homologs.

Full length protein eudicot sequences are aligned with the CerS homologs from human (HsCerS1-6;
#NM_021267, #NM_181746, #NM_178842, #NM_024552, #NM_147190, #NM_203463) and the LAG1
(#SCU08133) / LAC1 (#NM_001179574) sequences from S.cerevisiae. The two tomato sequences
SIAsc-2 (#SL1.00sc02793_15.1.1) and SlAsc-3 (#SL1.00sc02749_302.1.1) are available from the tomato
genome database http://mips.helmholtz-muenchen.de/plant/tomato/index.jsp. Other proteins are from
Arabidopsis lyrata, (AILOH3 # XM_002892714, AILOH4 # XM_002890624); Arabidopsis thaliana,
(AtLOH1-4, #NM_113450, #NM_112813, #NM_001035960 and #NM_001160896); Brassica rapa
(BrLOH1 #EU186328); Glycine max (GmLOH1 #BT097014 and GmLOH3 #BT093554); Orobance ceruna
(OcLOH1 #GQ181109 and OcLOH3 #GQ181110); Populous trichocarpa (PtLOH1a #XM_002311388,
PtLOH1b #XM_002315949, PtLOH2 #XM_002330290, PtLOH3 #XM_002328643); Riccinus communis
(RcLOH3 #XM_002511975); Solanum lycopersicon (SlAsc-1 #AJ312131); Sorghum bicolor (SbLOH2

#XM_002465463); Vitis vinifera (VWLOH1 #XM_002270764) Sequences are listed in Supplemental
Dataset 1 online.
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Supp. Fig. 1B. Phylogenetic relationship among LAG1 homologs.

The alignment shown in Fig. S1A was used to examine the phylogenetic relationship between
LAG1 protein sequence homologs. Significant groupings are highlighted in colour. The region from
179 to 417 on the alignment ruler was used to establish the tree using Maximum Parsimony
methods, gaps were excluded. The bootstrap consensus tree (1000 replicates) is shown,
branches where divisions produced less than 50% of the time are collapsed. The percentage

of trees where a particular branch occurred is shown next to each branch point. CERS1 is an
unique link between the mammalian and fungal sequences and was selected as the root branch.
Similar tree arrangements were produced using Maximum Likelihood and Neighbour-Joining
algorithms. Alignment is shown in Supplemental Dataset 1 online.



Supplemental Data. Markham et al. (2011). Plant Cell 10.1105/tpc.110.080473

Supp. Fig. 2. Characterization of loh mutants
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Nothern blot with RNA from loh1-1, loh2-1 and loh3-1 and hybridized with LOH1, LOH2 and LOH3
probes. Transcript size (kb) are indicated by solid arrow and the abnormal L OH3 transcript by an
open arrow.
Molecular analysis of loh alleles. RT- PCR of total RNAs from loh1-2, loh2-2, loh3-2 with T-DNA
flanking primers.
Phenotype of 3 week-old rosettes of loh mutant. Scale bar, 1cm.
Lateral root development is inhibited in sesqui mutants loh1-2-/+;loh3-2-/- and loh1-2-/-;loh3-2-/+.
Plants were grown in vitro for two weeks. Scale bar, 1Tmm.
Lateral root outgrowth but not initiation is inhibited by FB1 treatment. Number of lateral roots
expressing DR5:GUS were classified according to different developmental stages (defined
arbitrarily as |, first pericycle divisions; I, first periclinal divisions; Ill, primordia formation; 1V,
primordia outgrowth) in seedlings treated for 9 days with different concentrations of FB1. Data
represent the mean of total lateral roots for 30 seedlings as shown in Fig.S2D. Significant
differences between means (Student’s t-test) are indicated by one (P<0.05) or two (P<0.01)
asterisks.
GUS staining in wild-type primary root meristems containing the DR5::GUS auxin reporter that
were grown for 9 days in the presence of various concentrations (0, 0.5 and 1uM) of FB1. Scale
bar, 100pm.
Rosette leaves from wild-type (WS - top) and loh1-1/loh3-1 mutant plants (bottom). Mutant leaves
are smaller, wrinkled and show premature senescence. Scale bar, 10mm.
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Supp. Fig. 3. Complementation of Jloh1/loh3 double mutant.

A.

Location of primers used to create LOH complementation constructs and analyze the complemented
plants. Primers are shown as green arrows, the position of exons is indicated by blue boxes, the
position of the T-DNA insertions in the loh7-2 and loh 3-2 allele are indicated.

Complementation of loh1-2/loh3-2 by LOH3. Shown are a Col-0 wild-type plant, loh1-2/loh3-2 seedlings
and complemented /loh1-2/loh3-2 plants containing a transgenic copy of the LOH3 allele.

PCR analysis of genomic DNA extracted from the plants shown in B. PCR reactions used the primers
indicated on the right. Primers 175 and 014 detect the wild-type LOH3 allele and the complementing
LOH3 containing T-DNA. Primers 175 and 174 detect only the wild-type LOH3 allele.
Complementation of loh1-1/loh3-1 by LOH1. A loh1-1/loh3-1 plant is shown in the left with typical
delayed flowering and reduced rosette size. Plants containing the complementing LOH1 T-DNA do not
show these phenotypes.

Primers used in making and analyzing the complemented plants.
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Supp. Fig. 4. Fatty acid content of total sphingolipids and free LCBs from loh mutants. (A) Total

sphingolipids Total sphingolipid content of /oh mutants compared to their related control (WS for
loh1-1, loh2-1 and loh3-1; Col0 for loh1-2 and loh3-2). Sphingolipid content is shown according to
the length and saturation of the fatty acid chain. (B) Free LCB content of loh 1-1/loh3-1 compared to
its related control (WS). Analyses were performed on 3-5 biological replicates. Data are the mean and
standard error (n = 5).
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Supp. Fig. 5.Sphingolipid analysis of FB1 treated seedlings.

(A) Ceramide content in seedlings grown for several hours (16h, 24h) or 9 days (9d) on medium
supplemented with 0.5 yM FB1 and compared to untreated seedlings.
(B) Free LCB content in seedlings grown for several hours (16h, 24h) or 9 days (9d) on medium

supplemented with 0.5 uM FB1 and compared to untreated seedlings.

(©) Free t18:0 and d18:0 levels during time course treatment with 1uM FB1 (h, hours).

(D) Total LCB from seedlings treated with two FB1 concentrations for 9 days compared to untreated
seedlings.

(E) Total sphingolipid content of WS and loh1-1/3-1 double mutant treated (+FB1) or not with 0.5uM FB1.

Data show mean plus one standard error and significant differences between means (P < 0.05, Student’s t-test)
are indicated by an asterisk.
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Supp. Fig. 6. Effect of FB1 on root growth and viability.

(A)

Pasticcino1 mutant root growth is more sensitive to FB1 than wild type. Seedlings
were germinated and grown vertically on different concentrations of FB1 for 10
days. Data show root length relative to untreated control seedlings. Data are the
mean of 25 to 33 seedling roots.

Primary and secondary root viability upon FB1 treatment.

Root tips treated or not with FB1 were stained with FM4-64 and FDA. Scale bar,
20um.
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PAUX1:AUX1:YFP

Loh1-2-/- loh3-2-/+

Supp. Fig. 7. FB1 has no effect on several membrane markers.

(A)

(B-C)

(D-G)

Expression of pAUX1:AUX1-YFP in lateral root primordia of Col0 and loh1-2"/loh3-2"* double
mutant. Note tha absence of membrane localization of AUX1-YFP in loh1-2//loh3-27*. Scale bar,
10um.

Expression of pLAX3:LAX3-GFP in FB1-16h treated lateral roots (+) compared to untreated roots (-).
LAX3-GFP expression was observed at two different developmental stages. Scale bar, 10pm.

(B) the first anticlinal division of pericycle cells, and (C) the first periclinal cell divisions leading to the
lateral root emergence.

Plasma membrane markers in untreated (-) and FB1-16h treated (+) epidermal cells from lateral
roots. (D) pPIN2:PIN2-GFP, (E) pPIN2:PIN1-GFP, (F) 35S:LTi6b-GFP and (G) 35S:PIP2-GFP.
Scale bar, 10um.
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Supp. Fig. 8. Subcellular Distrihution of PIN1-GFP and AUX1-YFP and YFP-VAMP711 upon
sphingolipid depleticn

(A) Expression of pPIN1:PIN1-GFP in control (ctrl) and loh1-1/loh3-1 double mutant. Arrows indicate
the columella and arrows head show the presence of PIN1-GFP aggregates.

(B) Detail of pPIN1:PIN1-GFP in loh1-1/loh3-1 double mutant.

(©) Immunolocalization of PIN1 in pAUX1:AUX1-YFP secondary root cells treated (+FB1) or not (-FB1)
with 2.5uM FB1 for 16h. Cells were counterstained with DAPI. Note that PIN1 aggregates in
presence of FB1 and partially colocalize with AUX1-YFP.

(©) Myriocin treatment induces pAUX1:AUX1:YFP aggregation

(D) Expression of the vacuolar marker YFP-VAMP711 (Wave 9Y) in the root stele in presence (+FB1)
or not of FB1-16h treatment.

Scale bar. 20pm in A, 10 ym in B and D, 2um in C.
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Supp. Fig. 9. Endomembrane ultrastructure is altered in
loh1-1/loh3-1 root cells.

(A) Control cells exhibiting characteristic tubular
endoplasmic reticulum (ER), a Golgi stack (GA) and
a large vacuole (V).

(B-C) Inloh 1 mutant (B) and loh1-1/3-1 mutant (C), Golgi
ultrastructure is not affected, cytoplasm is often filled
with small convoluted vacuole-like structures, with
modified ER network.

Scale bar, 200nm
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Supp. Fig. 10. Involvement of endocytosis in YFP-RabA22 aggregation

(A) Proximity but no colocalisation between YFP-Rab-A22 (green) and FM4-64 (red) in presence of FB1.

(B) Kinetics of BOR1-GFP endocytosis in the presence of boron. Five day-old BOR1-GFP seedlings were
treated with 2.5uM FB1 for 16h and incubated in the presence of 100uM boric acid (t=0). Internalization
of BOR1-GFP was then monitored in FB1 treated seedlings (+FB1) compared to untreated (- FB1).
BOR1-GFP are clearly visible in both conditions 10 min after boron application.

(©) Subcellular distribution of Rab-A22 mutants. YFP-Rab-A22[N125I] 'is a nucleotide free mutant
showing the same subcellular distribution as wild type YFP-Rab-A22 but with lower protein levels. YFP-
Rab-A22[S26N] is the GDP-bound inactive isoform localized exclusively in the cytosol and the Golgi.
YFP-Rab-A22[Q71L]L is the GTP-bound constitutively active isoform present in the cytosol and at the
plasma membrane.

Scale bar : A and C, 5um; B ,10um.
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Supp. Fig. 11. Involvement of endocytic and secretory pathways in YFP-RabA22 aggregation

Partial localization of pPIN1:PIN1-GFP (left) and FM4-64 (right) staining in
presence of BFA.

Detail of BFA compartments with presence (open arrow head) or absence
(closed arrow head) of colocalization between FM4-64 and PIN1-GFP.

FM4-64 staining of aggregates in FB1-16h treated pPIN1:PIN1-GFP cells in
presence of BFA. Partial colocalization is observed (arrow heads).

Detail of FM4-64 staining of aggregates in FB1-treated pPIN1:PIN1-GFP cells
showing partial colocalisation of PIN1-GFP with FM4-64 in FB1/BFA
compartments.

FRAP analysis of FB1-16h cells expressing pAUX1:AUX1-YFP. AUX1-YFP
expressing lateral root (pre-bleach) was bleached and recovery of AUX1-YFP
was monitored for 60min.

LeAGP1-GFP expression in absence (-FB1) or presence of 2.5uM FB1 (+ FB1)
in plasmolysed epidermal root cells. Cell wall was stained with propidium lodide
(P.

Scale baris 10 ymin A, C, E and F and 5uM in B and D.
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Sequences (p. 1-5) and alignment (p. 6-10) used for phytogenetic
analysis in Supplemental Figure 1B (FASTA format)

>S1Asc-2
MDSIWANNGAPAVSHLEYAIFFAFGFVIVRLFLDRFIFRRLAVLLLRLGTTHLRNDEATRGKIVKCSESM
WKFAYYATIEFCVLKVAYHEPWFLDVKGYFSGWPNQELTAGIKLIYMCQCGFYLYSIAALVVWETRRKDF
AVMMSHHIVTVFLISSSYILSFFRIGIVILALHDGSDVFLEAAKVFKYSEKELGASVLFGCFAVSWEPLR
LVFFPFWVIRSSSYYLCEVLKLSESYDTMIYYFENTMLLTLLVFHIYWWILIYSMIMKQLRNRGQVGEDI
RSDSEDDD

>PtLOH2
MDPILTENGSANPSHFLLPIYFAFGFFLARFILDRFIFRKLAIWLLYSKAKATISSRIDEATIVKCSESMW
KLTYYATVEICVLKITCNEPWFRDTKEYFRGWPHQELGFPIMLEFYMCQCGFYIYSTAALLIWETRRKDFES
VMMSHHVITVILIGYSYSTSFFRIGTIICAVHDASDVELEAAKVFKYSGKELSASILFGLFAISWVILRL
VEFPEFWITIKATSYELVEFLDLSLAYDKLLYYVENTMLIMLLVFHIYWWILIYSMIMRQLRNRGRVGEDIR
SDSEDDE

>AtLOH2
MESVSSRGGDPVVKPSMEVWHFQIAVYFAFGEFFFLRLVLDRYVFOQRIALWLLSTGSAPIKLNDAATRAKT
VKCKESLWKLLYYAACDFEVLQVIYHEPWARDIKLYFHGWPNQELKLSIKLYYMCQCGFYVYGVAALLAW
ETRRKDFAVMMSHHVITIILLSYSYLTSFFRIGAITILALHDASDVFMETAKIFKYSEKEFGASVCFALFA
VSWLLLRLIYFPFWITRATSIELLDYLDMTSAEGTLMYYSENTMLLMLLVFHIYWWYLICAMIVRLLKNR
GKVGEDIRSDSEDDDD

>SbLOHZ2
MAAVRGGEAVSVALLFSLAFFCARLLLDRLVYKPLAVYLENTKASKLMNDEARQAKIVKESESSWKLTYY
ASVOAWVLMI IKQEPWSLDMMOQYFDGWPNQPIASSLMLFYMCOCGEFYIYSIGALVAWETRRKDFAVMMSH
HVITSTLIGVSYLTGFFRIGTIILALHDASDVFLETAKLCKYTEKELGASLFFGLFAISWLLLRLIYFEPFE
WIIKASSYHSIAFLRKLDEFPTALYYILNTMLLTLLVEHMYWWKLICLMIMRQLNNKGQVTDDVRSDSED
DE

>S1Asc-1
MKNLDHIAASVDWEKESLPEYQDLIFLLFFALFFPVLRFILDREFVFEALAKRMIFGKKTVVNINGREERK
KINKFKESAWKFVYFLSAELLALSVTCNEPWFTDSRYFWAGPGDVVWPNLKMKLKLKLLYMYAGGEYFYS
IFATLYWETRRYDFAAQIIHHVTTVSLIVLSYVYGFARIGSVVLALHDGSDVFMEIAKMSKYSGEDLIAD
IFFSLFALVFTSLRIICYPFWIIRSTCYELLYVLDIQKERTTGIILYFVFNALLICLLVLHLFWFKIILR
MVKNQILSRGHITDDVREDSESDDDHKD

>S1Asc-3
MDWDTESYREYKDLIFIPFFALFFPILRFILDRLVFEALAKRMICGKDAKVIKNGSSIKRKKMNKFKESA
WKEMYFLSAEIFALYVTYNEPWETNTRYYWTGPGDQVWPDLKMKLKLKGWTMYAGGFYLYSIFALIYWET
RRSDFAAHMIHHITSVSLILLSYIFGMARAGSMAALIHDGSDVLMEIAKMSLYSGFHSVADISFALFALS
WLLLRLIYFPFFIIYSTSYEVLFIVDKEKQONINGIILYFVINSMLICLLLLHIYWWTLICRVIINILKK
GQFDDVRSDSESESDEDEHKQS

>PtLOHla
MGFMEYVKSIEWEHESYPGYEDCIVLPLFALFFPEVREFLDREVFQKVAQDLIFGKEHQTLDVQSDERRK
KIRKFKESAWKCIYFLSSEILVLCVTYDEPWLVNTKYEFWVGPGSQAWPDOKMKLKLKAVYMYAAGEYTYS
IFALTFWETRRSDEGVSMSHHVATVILIVLSYILRFGRVGSVVLAIHDASDVELEVGKMSKYSGAEGVAS
FAFILFVLSWILLRLIYYPFWVLWSTSYEVLLILDKEKHPVDGPIYYYVENTLLYCLLELHVYWWVLIYQ
MLAKQIQARGHLSDDVRSDSEGEDEHED
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>PtLOH1Db
MGFMEYAKSIQWEHESYPAYEDYIVLPLESLFFTFVRFFLDREFVFOQKLAQRLTFGKEHQOMLDAQPDERRK
KIGKFKESAWKCIYFLSAEILVLYVTYDEPWEGNTKYFWVGPGSQVWPDOKMKLKLKGAYMYAAGEYTYS
IFALTFWETRRSDEFGVSMSHHVATVILIVLSYILRFGRAGSIVLAIHDASDVEFLEVGKMSKYSGAEGIAS
FAFILFVLSWILLRLIYYPFWVLWSTSYEVLLNLDKEKHAVDGPIYYYVENTLLYGLLVLHIYWWVLMYR
MLVKQIQARGQLSDDVRSDSEGEDEHED

>VvLOH1
MGLLESAASINWEHESFPEYGDFVALPVFAFFFFSVREFLDREVFOQKLGRILIFGKGGOQLDVGVDEKRK
KLRKFKESAWKCVYFLSAELLALSVTYDEPWETNTKYFWVGPGNQVWPDOQIKLKLKGLYMYCGGEFYTYS
IFALTFWETRRSDEGVSMGHHVATFILIVLSYIFRFARVGSVVLALHDASDVELEVGKMSKYKGAETTAS
ISFILFVLSWIVLRLIYYPFWILRSTSYEVILTLDKEKHAVEGPIYYYLFNTLLFCLLVLHIYWWVLMYR
MLVKQVQARGQLSDDVRSDSEDEDEHED

>BrLOH1
MGFFESVKSINWEHESFPTYQDEVCLPLFAVFFPSIRFLLDREVFEKVGRLLIYGKQSPKKNDKKTKIRK
FKESAWKCIYYLSAEVLALSVTYNEPWEFTDTLYFWIGPGDQIWPNQOMKIKLKFLYMYTAGEFYTYSIFAL
IFWETRRSDEFGVSMGHHITTVILIVLSYICRFSRAGSVVLALHDASDVFLEVGKMSKYSGFEGIAAFSEV
LFALSWVLLRLIYYPFWILWSTSYQIIMTVDKEKHPIEGPIYYYMEFNTLLFCLLVLHIFWWVLIYRMLVK
QVODRGKLSEDVRSDSESDDEHED

>AtLOH1
MGLFESVKSIDWEQESFPTYQODLGFLPLFAVEFFPTIRFLLDRFVFEKLASLVIYGRMSTNKSDNIKDRKK
NSPKVRKFKESAWKCIYYLSAELLALSVTYNEPWESNTLYFWIGPGDQIWPDQPMKMKLKELYMFAAGEY
TYSIFALVEWETRRSDFGVSMGHHITTLVLIVLSYICRLTRAGSVILALHDASDVFLEIGKMSKYCGAES
LASISEVLFALSWVVLRLIYYPFWILWSTSYQIIMTVDKEKHPNGPILYYMENTLLYFLLVLHIFWWVLI
YRMLVKQVQODRGKLSEDVRSDSESDDEHED

>AtLOH3
MGLLESVKSINWEHESSPVYQDFRVLPLFAVEFPSIRFLLDRFVFEKLAKYLIYGKHRODMGDDTTERKK
KIRKFKESAWKCVYYLSAEILALSVTYNEPWEMNTKYFWVGPGDOQTWPDQOTKLKLKLLYMEVAGEYTYS
IFALVEWETRRSDEGVSMGHHIATLILIVLSYVCSFSRVGSVVLALHDASDVELEVGKMSKYSGAERIAS
FSFILFVLSWIILRLIYYPFWILWSTSYEVVLELDKDKHPIEGPIYYYMENTLLYCLLVLHIYWWVLMYR
MLVKQIQDRGKLSEDVRSDSEGEDEHED

>A1LOH3
MGLLESVKSINWEHESSPVYQDFRVLPLFAVEFFPTIRFLLDREVFEKLAKHLIYGKHRODMGDDT TERNK
KIRKFKESAWKCVYYLSAEILALSVTYNEPWEMNTKYFWVGPGDOQTWPDQOTKLKLKLLYMEVAGEYTYS
IFALTFWETRRSDEGVSMGHHIATLILIVLSYVCSEFSRVGSVVLALHDASDVELEVGKMSKYSGAERIAS
FSFILFVMSWIILRLIYYPFWILWSTSYEVVLELDKDKHPIEGPIYYYMENTLLYCLLVLHIYWWVLMYR
MLVKQIQDRGKLSEDVRSDSEGEDEHED

>0OcLOH1
MGFLDLMNPIDWEYESYPQYEDFLVLPLFALFFPTVRELLDREVFEKVGRRLIYRKGVQEVENETYEQKK
KIRKFKESAWKCVYYLSAEILALAVTYNEPWETKTKYFWLGPGNQVWPDOQAYKLKLKGLYMEVGGEYTYS
IFALTFWETRRSDEFGVSMSHHVATFILIVLSYVLRFARAGSVVLALHDASDVEFLEVGKMSKYSGAEATIAS
ISFVLEVLSWVVLRLIYYPEWILWSTSYEVIQTVDKEKHRADGPIYYYVENSLLEFSLLVLHIYWWVLMYR
MLVKQIQARGRVSEDVRSDSEDEDEHED

>0OcLOH3
MGFLEMVKSVDWEQESYSQYEDFIVLLFEFVLEFPTVREFLDIFVFEKVSRRLMFGKGMQVVANESEERKK
KIRKFKESAWKCVYFLSADFFALAATYKESWETNTKHFWEGPGNQAWPDOKYNLKLKGLYMYTGGEYTYS
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IFALTFWETRRSDEFGVSMGHHVASSVLIVLSYVEFGSVVLALHDATDVFLEVGKMSKYSGAETLASCSFEVL
FVVSWVILRLIYYPFWILWSTSCEIIPFLDKDTHKVDGPIYYYIFNTLLFSLLVLHIYWEVLMFRMLVDQ
IKAGGQVSGDVRSDSEDEETQDD

>GmLOH1
MTTMSSLSLSLDWHNESYPAYHDFYLLPIFALFFPSLRFFLDRFIFEKVARRLIFGKGHAALDYQTDERR
KKISKFKESAWKCVYYLSAEILALSVTYDEPWETNTINFWVGPRTQVWPDOQKIKLKLKAVYMYAAGEYSY
SIFALIFWETRRSDFGVSMSHHVATVILIVLSYIFRFARVGSVVLALHDASDVFLEIGKMSKYSGAETMA
SFAFILFVLSWIVLRLIYYPFWILWSTSYEVLLTLDKEKHRVDGPIYYYVENSLLYCLLVMHIYWWVLIY
RMLVKQIQARGKVSEDVRSDSEDEDAHEHED

>GmLOH3
MGTWVLQOQVTSIDWNWNHESYPDFRDEFSVIPFFALFFPSLRLLLDTFLFEQVARRLIFGKGHKKMDFQTL
ERKKKISKFMESAWKCVYFLSAETIFALAVTYDEPWETDTRYFWVGPGNQIWPDOQKIKLKLKVLYMYAAGE
YTYSILALVFWETKRSDEVVSMGHHVITVILIVLSYIFRFVRVGSVVLALHDASDVEIETGKMSKYSGAE
TTASIAFILFVLCEFTVTRIIYYPFWILRSTSYEVVHALKMDLVDGPLYYYVENSLLYFLOQVLHIYWWVLM
LRMLVKQIQEKGKVSEDIRSDSEDEDEHKHEE

>RcLOH3
MGVVGTNGFINWESESYPEAIDEFSAVPFFALFFPSVRLFLDTYVFEKLARRLIFGKASTSTDVATHENRK
KINKFKESAWKYIYFSSAEILALSVSYNEPWFTNTKYFWVGPEDQIWPDOQKLKLKLKGHYMEFVAGEFYIYS
IFALIFWETRRSDFAVSMAHHVATVILLVMSYILRFARVGSIVLALHDVCDGFLEIAKMSRYSGYEWISS
IFFVLEVLSWTIFRIIYYPFWILRSTSYEVVLTLDMKKHMVDGPLNYYLFNTLLFCILVENIYWWILMVR
MVVEQIKARGKVSDDVRSDSEGEDEHDD

>PtLOH3
MGVLGINNLIDWESESYPVATDFIAIPLFAVEFFSVREVLDKYVFECSARREFIFGKGHVTVDVGKHGNRK
KVNKEFKESAWKCVYFLCAEILALYVSYDEPWETNTKYFWVGPGDOQVWPDOKLKFELKVLYMYAGGEYTYS
IFALVEWETRRSDEGVSMGHHIVTVEFLIVLSYILRFGRVGAVVLALHDATDVEMETAKMSKYSGYELMAS
VEFLLEVLEFWTILRIIYYPEFWILRSTSYEIVSALNKEKOMVDGSIYYYLENTLLESLLVLHIYWWILMVG
MVMAQIQAGGQVSDDVRSDSEGEDDHDD

>AtLOH4
MDLKLLSRPDWDQESYPDSSDFLVLIFFAPFEFLFLRLILDRCIFERVARRLVVPKGLCADSNERRKKVVK
FKESAWKCLCSFSVEAFALYVTYKEPWEKDTRSEWLGPGDQVWPDOKIKLKMKGMYMEVGGLNVYAFFAL
FFWETRRSDEKVMLVHHIVTSEFLIILSYVFRFARIGSVILALHEISDVEFLEIGKMCKYSGAETMTSVSEV
LFFLSWTTLRLIYYPFWILWSTSYESIKVKTEYWDKKHLMETGPPLILEYYVENTLLYCLOILHIYWWIL
IYRVLISQIRAKGKVAKDIRSDSEGEDDEHQD

>A1LOH4
MDLKLLSRDWDHESYPAFSDLWVLIFFAPFFLFLRLILDRFIFERVARRLVVPRGHYGDSNERRKKIVKE
KESAWKCLCSESVEALALYVTYKEPWEFKDTRCEFWLGPGDQIWPDOKIKRLKMKGMYMEVGGLNVYAFFAL
FFWETRRSDEFKVMLVHHIVTSEFLIILSYVFRFARIGSVILALHEISDVEFLEIGKMCKYSGAEAMTSVSEV
LFFLSWTALRLIYYPFWILWSTSYESIKVKMEYWDKKNLMETGPNLMVEYYVENTLLYCLOQILHIYWWIL
IYRVLISQIRAKGKVAKDIRSDSEGEDDEHHD

>HsCerS2

MLOQTLYDYFWWERLWLPVNLTWADLEDRDGRVYAKASDLYITLPLALLFLIVRYFFELYVATPLAALLNI
KEKTRLRAPPNATLEHFYLTSGKQPKQVEVELLSRQSGLSGRQVERWFRRRRNQDRPSLLKKFREASWRE
TEFYLIAFIAGMAVIVDKPWEFYDMKKVWEGYPIQSTIPSQYWYYMIELSFYWSLLFSIASDVKRKDFKEQTI
IHHVATIILISFSWFANYIRAGTLIMALHDSSDYLLESAKMEFNYAGWKNTCNNIFIVFAIVFIITRLVIL
PFWILHCTLVYPLELYPAFFGYYFFNSMMGVLQLLHIFWAYLILRMAHKFITGKLVEDERSDREETESSE
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GEEAAAGGGAKSRPLANGHPILNNNHRKND

>HsCerS3
MEFWTFKEWFWLERFWLPPTIKWSDLEDHDGLVEVKPSHLYVTIPYAFLLLIIRRVFEKFVASPLAKSFEFGI
KETVRKVTPNTVLENFFKHSTROQPLOTDIYGLAKKCNLTERQVERWFRSRRNOQERPSRLKKFQEACWREA
FYLMITVAGIAFLYDKPWLYDLWEVWNGYPKQPLLPSQYWYYILEMSFYWSLLFRLGFDVKRKDFLAHI I
HHLAAISLMSEFSWCANYIRSGTLVMIVHDVADIWLESAKMFSYAGWTQTCNTLFFIFSTIFFISRLIVEP
FWILYCTLILPMYHLEPFFSYIFLNLQLMILOQVLHLYWGYYILKMLNRCIFMKSIQDVRSDDEDYEEEEE
EEEEEATKGKEMDCLKNGLRAERHLI PNGQHGH

>HsCerS4
MLSSFNEWFWQDREFWLPPNVTWTELEDRDGRVYPHPQODLLAALPLALVLLAMRLAFERFIGLPLSRWLGV
RDOTRROQVKPNATLEKHFLTEGHRPKEPQLSLLAAQCGLTLOQQTOQRWFRRRRNODRPQLTKKFCEASWRE
LEFYLSSEFVGGLSVLYHESWLWAPVMCWDRYPNQTLKPSLYWWYLLELGFYLSLLIRLPFDVKRKDEFKEQV
THHFVAVILMTFSYSANLLRIGSLVLLLHDSSDYLLEACKMVNYMQYQQVCDALFLIFSEFVEFFYTRLVLE
PTOQILYTTYYESISNRGPFFGYYFEFNGLLMLLOLLHVEFWSCLI LRMLYSFMKKGOMEKDIRSDVEESDSS
EEAAAAQEPLQLKNGAAGGPRPAPTDGPRSRVAGRLTNRHTTAT

>HsCerS5
MATAAQGPLSLLWGWLWSERFWLPENVSWADLEGPADGYGYPRGRHILSVFPLAAGIFFVRLLFERFIAK
PCALCIGIEDSGPYQAQPNAILEKVFISITKYPDKKRLEGLSKOQLDWNVRKIQCWFRHRRNOQDKPPTLTK
FCESMWRFTEFYLCIFCYGIRFLWSSPWEFWDIRQCWHNYPFQPLSSGLYHYYIMELAFYWSLMESQFTDIK
RKDFLIMFVHHLVTIGLISFSYINNMVRVGTLIMCLHDVSDFLLEAAKLANYAKYQRLCDTLFVIFSAVFE
MVTRLGIYPFWILNTTLFESWEIIGPYASWWLLNGLLLTLOLLHVIWSYLIARIALKALIRGKVSKDDRS
DVESSSEEEDVTTCTKSPCDSSSSNGANRVNGHMGGSYWAEE

>HsCerS6
MAGILAWEFWNERFWLPHNVTWADLKNTEEATFPQAEDLYLAFPLAFCIFMVRLIFERFVAKPCATIALNIQ
ANGPQIAPPNAILEKVFTAITKHPDEKRLEGLSKQLDWDVRSIQRWFRQRRNQEKPSTLTRFCESMWRE'S
FYLYVFTYGVRFLKKTPWLWNTRHCWYNYPYQPLTTDLHYYYILELSFYWSLMFSQFTDIKRKDFGIMFL
HHLVSIFLITFSYVNNMARVGTLVLCLHDSADALLEAAKMANYAKFQKMCDLLFVMFAVVEITTRLGIFEP
LWVLNTTLFESWEIVGPYPSWWVENLLLLLVQGLNCFWSYLIVKIACKAVSRGKVSKDDRSDIESSSDEE
DSEPPGKNPHTATTTNGTSGTNGYLLTGSCSMDD

>HsCerS1l

MAAAGPAAGPTGPEPMPSYAQLVQRGWGSALAAARGCTDCGWGLARRGLAEHAHLAPPELLLLALGALGW
TALRSAATARLFRPLAKRCCLQPRDAAKMPESAWKFLEFYLGSWSYSAYLLFGTDYPFFHDPPSVEYDWTP
GMAVPRDIAAAYLLQGSFYGHSIYATLYMDTWRKDSVVMLLHHVVTLILIVSSYAFRYHNVGILVLFLHD
ISDVQLEFTKLNIYFKSRGGSYHRLHALAADLGCLSFGFSWFWFRLYWFPLKVLYATSHCSLRTVPDIPF
YFFFNALLLLLTLMNLYWFLYIVAFAAKVLTGQVHELKDLREYDTAEAQSLKPSKAEKPLRNGLVKDKRF

>ScLAG1
MTSATDKSIDRLVVNAKTRRRNSSVGKIDLGDTVPGFAAMPESAASKNEAKKRMKALTGDSKKDSDLLWK
VWESYREMNYRHSWLTPFFILVCVYSAYFLSGNRTESNPLHMEVATISYQVDGTDSYAKGIKDLSEVEEYM
IFFTFLREFLMDVVIRPETVYLNVTSEHROQKRMLEQMYATIFYCGVSGPFGLYIMYHSDLWLEKTKPMYRT
YPVITNPFLFKIFYLGQAAFWAQQACVLVLOQLEKPRKDYKELVFHHIVTLLLIWSSYVEFHFTKMGLATIY I
TMDVSDEFLSLSKTLNYLNSVETPEVEGLEVEFFWIYLRHVVNIRILWSVLTEFRHEGNYVLNFATQQYKC
WISLPIVEVLIAALQLVNLYWLFLILRILYRLIWQGIQKDERSDSDSDESAENEESKEKCE

>ScLAC1
MSTIKPSPSNNNLKVRSRPRRKSSIGKIDLGDTVPSLGTMFETKESKTAAKRRMORLSEATKNDSDLVKK
IWFSFREISYRHAWIAPLMILIAVYSAYFTSGNTTKTNVLHREFVAVSYQIGDTNAYGKGINDLCEVEYYM
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IFFTFLREFLMDVVIRPFATRLHVTSKHRIKRIMEQMYATFYTGVSGPFGIYCMYHSDLWEFEFNTKAMYRT
YPDFTNPFLEFKVEFYLGOQAAFWAQQACILVLOQLEKPRKDHNELTFHHIVTLLLIWSSYVFHFTKMGLPIYT
TMDVSDFLLSEFSKTLNYLDSGLAFFSFATFVVAWIYLRHYINLKILWSVLTQFRTEGNYVLNEFATQQYKC
WISLPIVEVLIGALQLVNLYWLFLIFRVLYRILWRGILKDDRSDSESDEESDESSTTPTDSTPTKKDI
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Alignment used for phylogenetic analysis in Supplemental Figure 1B

SlASC-2 —mmmm e
PtLOH2 @ ———m e
AtLOH2 @ ——mmmm e
SPLOH2 @ ——mmm e e
SlAsC-l ———m—
SIASC—3 ———-— T
PtLOHla ——————
PtLOHlID —————
VVLOH]l @ ———m e
BrILOHl @ ——— e
AtLOH]I @ ———mmm e
AtLOH3 @ ——mmm e
AlLOH3 @ ——m o
OCLOHl  —————m e
OCLOH3  —mmmm e e e
GMLOH]L  —————m e
GMLOH3  —mmmmm e
RCLOH3  —mmm e e e e
PtLOH3 @ ——mm e
AtLOHA  — e e e e e e
AlLOHA  — e e e e
HsCerS2 —-———=—————————— - MLOTLYDYFWWERLWLP
HsCerS3 ————-——————— oo MEWTFKEWFWLERFWLP
HsCerS4 -——-—-——————- oo MLSSFNEWFWQDREWLP
HsCerS5 -——-—----—-—-—mmmm o MATAAQGPLSLLWGWLWSERFWLP
HsCerS6 ———————————— - MAGILAWFWNERFWLP
HsCerS]l ———————— e
ScLAG1 -MTSATDKSIDRLVVNAKTRRRNSSVGKIDLGDTVPGFAAMPESAASKNEAKKRMKALTG
ScLAC1 MSTIKPSPSNNNLKVRSRPRRK-SSIGKIDLGDTVPSLGTMFETKESKTAAKRRMQRLSE

SIASC=2  mmm oo MDSIWANNGAP
PtLOH2  mmmm oo oo MDPILTFNGSA
AtLOH2  mmmmm oo mm oo MESVSSRGGDPVVKPSM
SDLOH2  m oo mm oo - MAAVR
SIASC-] mmmmmm oo MKNLDHIAASVDWEKESLP
SIASC=3  mmm oo MDWDTESYR
PtLOH1a ———mmm oo oo oo MGFMEYVKSIEWEHESYP
PtLOHID  mmmmmmm oo MGFMEYAKSIQWEHESYP
VVLOHL  mm oo oo oo MGLLESAASINWEHESFP
BrLOHL — ——m o m oo oo MGFFESVKSINWEHESFP
AtLOHl  —m oo mmm oo MGLFESVKSIDWEQESFP
AtLOH3  —m oo mmm oo MGLLESVKSINWEHESSP
AILOH3  —m oo mmm oo MGLLESVKSINWEHESSP
OCLOHL = —mm o m oo oo MGFLDLMNPIDWEYESYP
OCLOH3  —mm oo oo oo MGFLEMVKSVDWEQESYS
GMLOHL == mm o oo oo oo MTTMSSLSLSLDWHNESYP
GMLOH3 == ———m oo oo oo MGTWVLQOQVTSIDWNWNHESYP
RCLOH3  —mm o m o oo oo MGVVGTNGFINWESESYP
PtLOH3  mmm o oo oo MGVLGINNLIDWESESYP
AtLOH4  —m oo mmm oo MDLKLLSRPDWDQESYP
AILOH4  —mmm o oo oo MDLKLLSR-DWDHESYP

HsCerS2 VNLTWADLED-RDGRVYAKASDLYITLPLALLFLIVRYFFELYVATPLAALLNIKEKTRL
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HsCerS3
HsCerS4
HsCerS5
HsCerS6
HsCerSl1l
ScLAGL

ScLACLl

S1Asc-2
PtLOH2
AtLOH2
SbLOH2
SlAsc-1
S1Asc-3
PtLOHla
PtLOH1b
VvLOH1
BrLOH1
AtLOH1
AtLOH3
A1LOH3
OcLOH1
OcLOH3
GmLOH1
GmLOH3
RcLOH3
PtLOH3
AtLOH4
A1LOH4
HsCerS2
HsCerS3
HsCerS4
HsCerS5
HsCerSo
HsCerSl1l
ScLAGL
ScLAC1

S1Asc-2
PtLOH2
AtLOH2
SbLOH2
S1Asc-1
S1Asc-3
PtLOHla
PtLOH1Db
VvLOH1
BrLOH1
AtLOH1
AtLOH3
A1ILOH3
OcLOH1
OcLOH3
GmLOH1
GmLOH3
RcLOH3
PtLOH3

PTIKWSDLED-HDGLVEVKPSHLYVTIPYAFLLLIIRRVFEKFVASPLAKSEFGIKETVRK
PNVTIWTELED-RDGRVYPHPQDLLAALPLALVLLAMRLAFERFIGLPLSRWLGVRDQTRR
ENVSWADLEGPADGYGYPRGRHILSVFPLAAGIFFVRLLFERFIAKPCALCIGIEDSGPY
HNVTWADLKN-TEEATFPQAEDLYLAFPLAFCIFMVRLIFERFVAKPCAIALNIQANGPQ
—————————————————— MAAAGPAAGPTGPEPMPSYAQLVQRGWGSALAAARGCTDCGW
DSKKDSDLLWKVWESYREMNYRHSWLTPFFILVCVYSAYFLSGNRTESNPLHMEVAISYQ
ATKNDSDLVKKIWEFSFREISYRHAWIAPLMILIAVYSAYFTSGNTTKTNVLHREVAVSYQ

AVSHLFYATIFFAFGFVIVRLFLDRFIFRRLAVLLLRLGTTHLRNDEATRG——-—-—-- KIVKC
NPSHFLLPIYFAFGFFLARFILDRFIFRKLAIWLLYSKAKAISSRIDEAT-———-—-— IVKC
EVWHFQIAVYFAFGFFFLRLVLDRYVFQRIALWLLSTGSAPIKLNDAATRA----KIVKC
GGEAVSVALLEFSLAFFCARLLLDRLVYKPLAVYLENTKASKLMNDEARQA-———— KIVKF
EYODLIFLLFFALFFPVLRFILDREVFEALAKRMIFGKKTVVNINGREERK-—---KINKF

EYKDLIFIPFFALFFPILRFILDRLVFEALAKRMICGKDAKVIKNGSSIKRK-—--KMNKF
GYEDCIVLPLFALFFPFVRFFLDREVFQKVAQDLIFGKEHQTLDVQSDERRK-—--KIRKF
AYEDYIVLPLEFSLFFTFVRFFLDREVFQKLAQRLIFGKEHQMLDAQPDERRK-—--KIGKF
EYGDFVALPVFAFFFFSVRFFLDREVFOQKLGRILIFGKGGOQLDVGVDEKRK-—--KLRKF
TYQDFVCLPLFAVFFPSIRFLLDREFVFEKVGRLLIYGKQSPKKNDKKT -—————— KIRKF
TYODLGFLPLFAVFFPTIRFLLDREVFEKLASLVIYGRMSTNKSDNIKDRKKNSPKVRKE
VYQDFRVLPLFAVFFPSIRFLLDREVFEKLAKYLIYGKHRQDMGDDTTERKK-—-—-KIRKEF
VYQDFRVLPLFAVFFPTIRFLLDREVFEKLAKHLIYGKHRQDMGDDTTERNK-—-—-KIRKEF
QYEDFLVLPLFALFFPTVRFLLDREVFEKVGRRLIYRKGVOQEVENETYEQKK-—--KIRKF
QYEDFIVLLFFVLFFPTVRFFLDIFVFEKVSRRLMFGKGMOVVANESEERKK---KIRKF
AYHDFYLLPIFALFFPSLRFFLDRFIFEKVARRLIFGKGHAALDYQTDERRK-—--KISKF
DFRDFSVIPFFALFFPSLRLLLDTFLFEQVARRLIFGKGHKKMDFQTLERKK---KISKF
EAIDFSAVPFFALFFPSVRLFLDTYVFEKLARRLIFGKASTSTDVATHENRK---KINKF
VATDFIAIPLFAVFFFSVREVLDKYVFECSARRFIFGKGHVIVDVGKHGNRK-—--KVNKF
DSSDFLVLIFFAPFFLFLRLILDRCIFERVARRLVVPKGLCA---DSNERRK---KVVKF
AFSDLWVLIFFAPFFLFLRLILDRFIFERVARRLVVPRGHYG—---DSNERRK---KIVKF
RAPPNATLEHFYLTSGKQPKQVEVELLSRQSGLSGRQVERWEFRRRRNQDRPS-—--LLKKF
VIP-NTVLENFFKHSTRQPLOTDIYGLAKKCNLTERQVERWERSRRNQERPS - --RLKKF
QVKPNATLEKHFLTEGHRPKEPQLSLLAAQCGLTLOQTORWEFRRRRNODRPQ—-—-—-LTKKEF
QAQPNATILEKVFISITKYPDKKRLEGLSKQLDWNVRKIQCWEFRHRRNQDKPP—---TLTKF
IAPPNAILERKVEFTAITKHPDEKRLEGLSKQLDWDVRSIQRWEFRQRRNQEKPS---TLTREF
GLARRGLAEHAHLAPPELLLLALGALGWTALRSAATARLFRPLAKRCCLQPR---DAAKM

VDGTDSYAKGIKDLSEVFFYMIFFTFLREFLMDVVIRPEFTVYLNVTSEHROQK--———-— RM
IGDTNAYGKGINDLCEFVEYYMIFFTFLREFLMDVVIRPFAIRLHVTSKHRIK-—-—---- RI
SESMWKFAYYATIEFCVLKVAYHEPWFLDVKGYFSG——-——-— WPNQELTAGIKLIYMCQCG
SESMWKLTYYATVEICVLKITCNEPWFRDTKEYFRG-———-— WPHQELGFPIMLEYMCQCG
KESLWKLLYYAACDFFVLQVIYHEPWARDIKLYFHG--——-- WPNQELKLSIKLYYMCQCG
SESSWKLTYYASVQAWVLMI IKQEPWSLDMMQYFDG————-— WPNQPIASSLMLEYMCQCG

KESAWKFVYFLSAELLALSVTCNEPWETDSRYFWAGPGDVVWPNLKMKLKLKLLYMYAGG
KESAWKFMYFLSAEIFALYVTYNEPWETNTRYYWTGPGDQVWPDLKMKLKLKGWTMYAGG
KESAWKCIYFLSSEILVLCVTYDEPWLVNTKYEFWVGPGSQAWPDOQKMKLKLKAVYMYAAG
KESAWKCIYFLSAEILVLYVTYDEPWEGNTKYEFWVGPGSQVWPDQKMKLKLKGAYMYAAG
KESAWKCVYFLSAELLALSVTYDEPWETNTKYEFWVGPGNQVWPDQQIKLKLKGLYMYCGG
KESAWKCIYYLSAEVLALSVTYNEPWETDTLYFWIGPGDQIWPNQOMKIKLKEFLYMYTAG
KESAWKCIYYLSAELLALSVTYNEPWESNTLYFWIGPGDQIWPDQPMKMKLKELYMFAAG
KESAWKCVYYLSAEILALSVTYNEPWEMNTKYEFWVGPGDQTWPDQOTKLKLKLLYMEVAG
KESAWKCVYYLSAEILALSVTYNEPWEMNTKYEFWVGPGDQTWPDQOTKLKLKLLYMEVAG
KESAWKCVYYLSAEILALAVTYNEPWEFTKTKYEFWLGPGNQVWPDQAYKLKLKGLYMEVGG
KESAWKCVYFLSADFFALAATYKESWETNTKHEWEGPGNQAWPDOQKYNLKLKGLYMYTGG
KESAWKCVYYLSAEILALSVTYDEPWETNTINFWVGPRTQVWPDOQKIKLKLKAVYMYAAG
MESAWKCVYFLSAEIFALAVTYDEPWETDTRYFWVGPGNQIWPDOKIKLKLKVLYMYAAG
KESAWKYIYFSSAEILALSVSYNEPWETNTKYEFWVGPEDQIWPDOQKLKLKLKGHYMEVAG
KESAWKCVYFLCAEILALYVSYDEPWETNTKYFWVGPGDQVWPDOQKLKFELKVLYMYAGG
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AtLOH4
A1LOH4
HsCerS2
HsCerS3
HsCerS4
HsCerS5
HsCerSo
HsCerS1l
ScLAGL
ScLAC1l

S1Asc-2
PtLOH2
AtLOH2
SbLOH2
SlAsc-1
S1Asc-3
PtLOHla
PtLOH1b
VvLOH1
BrLOH1
AtLOH1
AtLOH3
A1LOH3
OcLOH1
OcLOH3
GmLOH1
GmLOH3
RcLOH3
PtLOH3
AtLOH4
A1LOH4
HsCerS2
HsCerS3
HsCerS4
HsCerS5
HsCerSo
HsCerSl1l
ScLAGL
ScLACL

S1Asc-2
PtLOH2
AtLOH2
SbLOH2
S1Asc-1
S1Asc-3
PtLOHla
PtLOH1Db
VvLOH1
BrLOH1
AtLOH1
AtLOH3
A1ILOH3
OcLOH1
OcLOH3
GmLOH1

KESAWKCLCSEFSVEAFALYVTYKEPWEFKDTRSEFWLGPGDQVWPDQKIKLKMKGMYMEVGG
KESAWKCLCSEFSVEALALYVTYKEPWEKDTRCEFWLGPGDQIWPDQKIKRLKMKGMYMEVG

REASWRFTFYLIAFIAGMAVIVDKPWEYDMKKVWEG-—-—-— YPIQSTIPSQYWYYMIELS
QEACWRFAFYLMITVAGIAFLYDKPWLYDLWEVWNG-—-—-- YPKOQPLLPSQYWYYILEMS
CEASWRFLFYLSSEFVGGLSVLYHESWLWAPVMCWDR—-———-— YPNQTLKPSLYWWYLLELG
CESMWRFTEFYLCIFCYGIRFLWSSPWEWDIRQCWHN—-—-—-- YPFQPLSSGLYHYYIMELA
CESMWRESEFYLYVEFTYGVREFLKKTPWLWNTRHCWYN—-—-—-- YPYQPLTTDLHYYYILELS
PESAWKFLEYLGSWSYSAYLLFGTDYPFFHDPPSVEYD--WTPGMAVPRDIAAAYLLOGS
LEOMYATIFYCGVSGPFGLYIMYHSDLWLEFKTKPMYRT----YPVITNPFLEFKIFYLGQAA
MEQMYAIFYTGVSGPFGIYCMYHSDLWEFNTKAMYRT ----YPDFTNPFLFKVEFYLGQAA

FYL-YSTAALVVWETRRKDFAVMMSHHIVTVFLISSSYILSFFRIGIVILALHDGSDVEL
FYI-YSTAALLIWETRRKDFSVMMSHHVITVILIGYSYSTSFFRIGTIICAVHDASDVEL
FYV-YGVAALLAWETRRKDFAVMMSHHVITIILLSYSYLTSFFRIGAITILALHDASDVEM
FYI-YSIGALVAWETRRKDFAVMMSHHVITSTLIGVSYLTGFFRIGTIILALHDASDVEL
FYF-YSTIFATLYWETRRYDFAAQITHHVTTVSLIVLSYVYGFARIGSVVLALHDGSDVEFM
FYL-YSTIFALIYWETRRSDFAAHMIHHITSVSLILLSYIFGMARAGSMAALTIHDGSDVLM
FYT-YSIFALIFWETRRSDFGVSMSHHVATVILIVLSYILRFGRVGSVVLAIHDASDVEL
FYT-YSIFALIFWETRRSDFGVSMSHHVATVILIVLSYILRFGRAGSIVLAIHDASDVEL
FYT-YSIFALIFWETRRSDFGVSMGHHVATFILIVLSYIFRFARVGSVVLALHDASDVEL
FYT-YSIFALIFWETRRSDFGVSMGHHITTVILIVLSYICRFSRAGSVVLALHDASDVEL
FYT-YSIFALVFWETRRSDFGVSMGHHITTLVLIVLSYICRLTRAGSVILALHDASDVEL
FYT-YSIFALVFWETRRSDFGVSMGHHIATLILIVLSYVCSFSRVGSVVLALHDASDVEL
FYT-YSIFALIFWETRRSDFGVSMGHHIATLILIVLSYVCSFSRVGSVVLALHDASDVEL
FYT-YSIFALIFWETRRSDFGVSMSHHVATFILIVLSYVLRFARAGSVVLALHDASDVFEL
FYT-YSIFALIFWETRRSDFGVSMGHHVASSVLIVLSYVE-—-—-—-— GSVVLALHDATDVFEFL
FYS-YSIFALIFWETRRSDFGVSMSHHVATVILIVLSYIFRFARVGSVVLALHDASDVEL
FYT-YSILALVFWETKRSDEVVSMGHHVITVILIVLSYIFREVRVGSVVLALHDASDVEI
FYI-YSIFALIFWETRRSDFAVSMAHHVATVILLVMSYILRFARVGSIVLALHDVCDGFEL
FYT-YSIFALVFWETRRSDFGVSMGHHIVTVFLIVLSYILRFGRVGAVVLALHDATDVEM
LNV-YAFFALFFWETRRSDFKVMLVHHIVTSFLIILSYVFRFARIGSVILALHEISDVFEL
GLNVYAFFALFFWETRRSDFKVMLVHHIVTSFLIILSYVFRFARIGSVILALHEISDVFEL
FY--WSLLFSIASDVKRKDFKEQITHHVATIILISFSWFANYIRAGTLIMALHDSSDYLL
FY--WSLLFRLGFDVKRKDFLAHITHHLAAISLMSEFSWCANYIRSGTLVMIVHDVADIWL
FY--LSLLIRLPFDVKRKDFKEQVIHHEVAVILMTEFSYSANLLRIGSLVLLLHDSSDYLL
FY--WSLMFSQFTDIKRKDFLIMEFVHHLVTIGLISEFSYINNMVRVGTLIMCLHDVSDFLL
FY--WSLMFSQFTDIKRKDFGIMFLHHLVSIFLITEFSYVNNMARVGTLVLCLHDSADALL
FYG-HSIYATLYMDTWRKDSVVMLLHHVVTLILIVSSYAFRYHNVGILVLFLHDISDVQL
FWAQQOACVLVLQLEKPRKDYKELVFHHIVTLLLIWSSYVFHFTKMGLAIYITMDVSDEFL
FWAQOACILVLQLEKPRKDHNELTFHHIVTLLLIWSSYVFHFTKMGLPIYITMDVSDEFLL

EAAKVFKYSEKELGASVLEGCFAVSWEPLRLVEFEFPEFWVIRSSSYYLCEVLKLSESYD--—
EAAKVFKYSGKELSASILEGLFAISWVILRLVFFPFWIIKATSYELVEFLDLSLAYDK--
ETAKIFKYSEKEFGASVCFALFAVSWLLLRLIYFPFWIIRATSIELLDYLDMTSA----—
ETAKLCKYTEKELGASLFFGLFAISWLLLRLIYFPFWIIKASSYHSIAFLRKLDEF----
EIAKMSKYSGEFDLIADIFFSLFALVETSLRIICYPFWIIRSTCYELLYVLDIQKER---—
EIAKMSLYSGFHSVADISFALFALSWLLLRLIYFPFFIIYSTSYEVLEIVDKEKQ-—---—
EVGKMSKYSGAEGVASFAFILFVLSWILLRLIYYPFWVLWSTSYEVLLILDKEK-—----—
EVGKMSKYSGAEGIASFAFILFVLSWILLRLIYYPFWVLWSTSYEVLLNLDKEK-—----—
EVGKMSKYKGAETTASISFILFVLSWIVLRLIYYPFWILRSTSYEVILTLDKEK-—-—---—
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EVGKMSKYSGAETLASCSEVLEVVSWVILRLIYYPFWILWSTSCEIIPFLDKDT-—---—
EIGKMSKYSGAETMASFAFILFVLSWIVLRLIYYPFWILWSTSYEVLLTLDKEK-—-----
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—-HPVDGPIYYYVENTLLYCLLFLHVYWWVLIYOMLAKQIQARGHLSDDVRSDSEGEDE-H
-HAVDGPIYYYVENTLLYGLLVLHIYWWVLMYRMLVKQIQARGQLSDDVRSDSEGEDE-H
-HAVEGPIYYYLFNTLLFCLLVLHIYWWVLMYRMLVKQVQOARGQLSDDVRSDSEDEDE-H
-HPIEGPIYYYMFNTLLFCLLVLHIFWWVLIYRMLVKQVQODRGKLSEDVRSDSESDDE-H
-HP-NGPILYYMFNTLLYFLLVLHIFWWVLIYRMLVKQVQODRGKLSEDVRSDSESDDE-H
-HPIEGPIYYYMFNTLLYCLLVLHIYWWVLMYRMLVKQIQDRGKLSEDVRSDSEGEDE-H
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—HRVDGPIYYYVEFNSLLYCLLVMHIYWWVLIYRMLVKQIQARGKVSEDVRSDSEDEDA-H
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————————— YYFENSMMGVLOLLHIFWAYLILRMAHKFIT--GKLVEDERSDREETESSE
————————— YIFLNLOQLMILOVLHLYWGYYILKMLNRCIF--MKSIQDVRSDDEDYEEEE
————————— YYFENGLLMLLOLLHVFWSCLILRMLYSFMK-KGOMEKDIRSDVEESDSSE
————————— WWLLNGLLLTLOQLLHVIWSYLIARIALKALI-RGKVSKDDRSDVESSSEEE
————————— WWVENLLLLLVQGLNCEFWSYLIVKIACKAVS-RGKVSKDDRSDIESSSDEE
D-———- IPEYFFEFNALLLLLTLMNLYWFLYIVAFAAKVLTGQVHELKDLREYDTAEAQSL
C————- WISLPIVEVLIAALQLVNLYWLFLILRILYRLIW-QG-IQKDERSDSDSDESAE
C————- WISLPIVEVLIGALQLVNLYWLFLIFRVLYRILW-RG-ILKDDRSDSESDEESD
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