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Accelerated lymphocyte reconstitution and long-term recovery
after transplantation of lentiviral-transduced rhesus CD34þ cells

mobilized by G-CSF and plerixafor
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Uniformed Services University of Health Sciences, Bethesda, Md., USA
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Objective. Granulocyte colony-stimulating factor (G-CSF) in combination with plerixafor
produces significant mobilization of CD34+ cells in rhesus macaques. We sought to evaluate
whether these CD34+ cells can stably reconstitute blood cells with lentiviral gene marking.

Materials and Methods. We performed hematopoietic stem cell transplantation using G-CSF
and plerixafor-mobilized rhesus CD34+ cells transduced with a lentiviral vector, and these
data were compared with those of G-CSF and stem cell factor mobilization.

Results. G-CSF and plerixafor mobilization resulted in CD34+ cell yields that were twofold
higher than yields with G-CSF and stem cell factor. CD123 (interleukin-3 receptor) expression
was greater in G-CSF and plerixafor-mobilized CD34+ cells when compared to G-CSF alone.
Animals transplanted with G-CSF and plerixafor-mobilized cells showed engraftment of all
lineages, similar to animals who received G-CSF and stem cell factorLmobilized grafts.
Lymphocyte engraftment was accelerated in animals receiving the G-CSF and plerixafor-
mobilized CD34+ cells. One animal in the G-CSF and plerixafor group developed cold
agglutinin-associated skin rash during the first 3 months of rapid lymphocyte recovery.
One year after transplantation, all animals had 2% to 10% transgene expression in all blood
cell lineages.

Conclusions. G-CSF and plerixafor-mobilized CD34+ cells accelerate lymphocyte engraft-
ment and contain hematopoietic stem cell capable of reconstituting multilineage blood cells.
These findings indicate important differences to consider in plerixafor-based hematopoietic
stem cell mobilization protocols in rhesus macaques. � 2011 ISEH - Society for Hematology
and Stem Cells. Published by Elsevier Inc.

Hematopoietic stem cell (HSC) transplantation is a thera-
peutic strategy for hematologic malignancies, immunodefi-
ciency states, nonmalignant hereditary and acquired
hematologic diseases, and inherited metabolic disorders.
HSC transplantation is an ideal platform for delivering
stem cell therapies, such as ex vivo cell manipulation for
gene therapy applications [1,2]. HSCs can be mobilized

into peripheral blood and collected by apheresis. This
method of peripheral blood stem cell collection is
frequently used clinically for obtaining HSCs for allogeneic
and autologous HSC transplantation. Currently, injection of
granulocyte colony-stimulating factor (G-CSF) is the clin-
ical standard for mobilization of human HSCs [1]. Suffi-
cient numbers of HSCs for transplantation, however, are
not obtained from all donors by G-CSF mobilization. Pler-
ixafor (also known as AMD3100 or Mozobil) represents
a new alternative agent for mobilization of HSCs. This
low molecular weight, highly charged compound
(C28H54N8) inhibits chemokine stromal cell�derived
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factor-1a binding to CXC chemokine receptor 4 (CXCR4)
to interrupt adherence of HSCs to the stem cell niche [3].

Rhesus macaques are Old World monkeys frequently
used in preclinical studies evaluating HSC transplantation
[4�6]. In the rhesus transplantation model, the combination
of G-CSF and stem cell factor (SCF) is a standard strategy
to mobilize CD34þ cells in which CD34þ cell numbers are
approximately twofold greater than those achieved with use
of G-CSF alone [5]. Recently, we found that G-CSF and
plerixafor mobilization in rhesus macaques increased
CD34þ cell yields approximately three- to fivefold more
than mobilization with G-CSF alone, plerixafor alone, or
G-CSF and SCF combined together [7]. These CD34þ cells
demonstrated different gene expression profiles in each
mobilization strategy, suggesting that the composition of
mobilized CD34þ cells is dependent on the mobilization
protocol [7].

Based on these differences, we hypothesized that G-CSF
and plerixafor-mobilized CD34þ cells might include
different hematopoietic progenitor cells when compared
to previous mobilization strategies. In this study, we per-
formed HSC transplantation using transduced rhesus
CD34þ cells that were mobilized by G-CSF and plerixafor
to evaluate whether these CD34þ cells would reconstitute
long-term hematopoiesis differently and to determine
what kind of progenitor cells were contained in the
mobilized population of CD34þ cells.

Materials and methods

Rhesus HSC transplantation
Rhesus HSCs were obtained after five daily injections of 10 mg/kg
recombinant human G-CSF (Amgen, Inc., Thousand Oaks, CA,
USA), followed by a single injection of 1 mg/kg plerixafor (Gen-
zyme Corporation, Cambridge, MA, USA), or five-daily injections
of both 10 mg/kg G-CSF and 200 mg/kg SCF (Amgen, Inc.). Two to
four hours after the last dose of mobilizing agent, the CD34þ cells
were harvested by leukapheresis and immunoselection was per-
formed as described previously [4,5]. The rhesus CD34þ cells
were cultured in serum-free X-VIVO10 media (Lonza, Allendale,
NJ, USA) containing SCF, FMS-like tyrosine kinase 3 ligand, and
thrombopoietin (all at 100 ng/mL; R&D Systems, Minneapolis,
MN, USA) on fibronectin CH-296�coated (RetroNectin, TaKaRa,
Otsu, Shiga, Japan) cell culture flasks for 1 day. These cells
were then transduced with enhanced green fluorescent protein
(EGFP)�expressing lentiviral vector at multiplicity of infection
50 in the same media and cytokines for 1 day [8,9]. The rhesus
macaques to be transplanted received a total of 10 Gy total body
irradiation, delivered as 5 Gy daily on 2 consecutive days. The
transduced CD34þ cells were infused into these irradiated rhesus
macaques. Complete blood cell counts, cell surface markers of
differentiation, and EGFP expression rates in circulating blood cells
were assessed periodically for a minimum of 1 year.

Lentiviral vector preparation
We developed a chimeric HIV1-based lentiviral vector system
(cHIV vector), which included simian immunodeficiency

virus�capsid instead of HIV1-capsid, for efficient transduction
of rhesus CD34þ cells [8]. The vesicular stomatitis virus glycopro-
tein pseudotyped cHIV vector, including the EGFP-expressing
cassette under the control of a murine stem cell virus�long term
repeat promoter, was prepared and its titer quantitated as
described previously [10,11]. The basic HIV1 vector plasmid
was kindly provided by Dr. Arthur Nienhuis (St. Jude Children’s
Research Hospital, Memphis, TN, USA) [12,13].

Flow cytometry analysis
Transduced rhesus CD34þ cells were cultured for an additional 3 to
4 days in vitro and EGFP expression rates were evaluated by
FACSCalibur (BD Biosciences, Franklin Lakes, NJ, USA). After
transplantation, we analyzed EGFP expression and cell surface
markers in rhesus peripheral blood cells and bone marrow cells
using phycoerythrin (PE) or allophycocyanin (APC)-conjugated
antibodies (CD3-PE, clone 10D12; CD4-PE, clone M-T466;
CD8-PE, clone BW135/80; CD20-PE, clone LT20; CD33-PE, clone
AC104.3E3; CD34-PE, clone 563; CD41a-PE, clone HIP8;
CD56-PE, clone AF12-7H3; CD71-APC, clone L01.1; RBC, clone
T3G6; mouse IgG1-PE, clone A85-1; BD Pharmingen). After
immunoselection, CD34þ cells were assessed for purity using
a mouse anti-human CD34-PE (clone 563; BD Pharmingen), for
interleukin (IL)-3 receptor expression (CD123) using a mouse
anti-human CD123-APC (clone 7G3; BD Pharmingen), and for
CD45RA using an anti-human CD45RA-FITC (clone 5H9; BD
Pharmingen).

EGFP expression on lymphocytes was determined in periph-
eral blood, lymph nodes, and rectal mucosa collected post-
transplantation using multicolor flow cytometry. Cells were iso-
lated from these tissues as described previously [14�16]. Freshly
isolated cells were labeled with CD3-Cy7-APC, CD4-PB, CD8-
Alexa700, CD45RA-ECD, CD28-Cy5PE, and/or CD95-APC for
phenotypic analysis of T cells. To determine the frequency of
EGFP-expressing B-cell subsets, cells were labeled with CD20-
PE, CD3-Cy7APC, and IgM-Cy5PE. Labeled cells were fixed in
0.5% paraformaldehyde and analyzed on an LSR-II flow cytome-
ter. Approximately 1 million events were collected for analysis.

Red blood cell serologic testing
Direct antiglobulin testing was performed by standard tube tech-
nique using heavy chain specific human anti-IgG and murine
monoclonal anti-C3d (Ortho Clinical Diagnostics, Raritan, NJ,
USA). Cold agglutinin titers were performed using serial 10-fold
dilutions of serum in phosphate-buffered saline, incubated with
normal human adult group O or normal rhesus macaque red blood
cells (RBCs) for 24 hours at 4�C. Rhesus RBCs were tested for
polyagglutination using the following lectins: Glycine soja,
Arachis hypogea, Salvia sclarea and Salvia horminum (Gamma
Lectin System; Immucor/Gamma, Norcross, GA, USA).

Antibody screening of animal sera was performed by standard
tube technique against a panel of human adult group O, umbilical
cord group O, and rhesus macaque control RBCs at immediate
spin (22�C) and antiglobulin (37�C) phases of testing, using
a low ionic strength solution potentiator. Sera were treated with
0.01 M dithiothreitol to differentiate IgG from IgM reactivity.
To determine if a drug-related RBC antibody was present,
a 1 mg/mL solution of fluconazole in phosphate-buffered saline
was incubated at 37�C for 2 hours with animal sera plus native
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or papain-treated group O RBCs, with or without a fresh source of
complement. After a serial washing step, anti-IgG was added to all
tubes.

Determination of serum immunoglobulins
Serum IgG, IgA, and IgM levels were quantified by immunone-
phelometry on a Dimension Vista 1500 automated analyzer using
the manufacturer’s methods for human subjects (Siemens Health-
care Diagnostics, Deerfield, IL, USA).

Serum protein and immunofixation electrophoresis
For analysis of various protein fractions, all sera were electrophor-
esed in agarose gel by a semi-automated electrophoretic system
developed for human subjects (Hydragel 7 or 15 Protein(e) gels,
Hydrasys system; Sebia, Norcross, GA, USA). Gels were stained
with Amidoblack. Select specimens were further analyzed with
immunofixation electrophoresis in agarose gel (Hydragel 2F or
4F; Sebia) using the same semi-automated system as for protein
electrophoresis (Hydrasys) and the manufacturer’s monospecific
anti-human immunoglobulin antibodies. The immunofixation
electrophoresis method uses a more sensitive protein stain (acid
violet) for improved detection of possible paraproteins.

Statistical analysis
Statistical analyses were performed using JMP 8 software (SAS
Institute Inc., Cary, NC, USA). Comparison between G-CSF and
plerixafor vs. G-CSF and SCF mobilization was evaluated by
Student’s t-test. A p value !0.05 or 0.01 was considered signifi-
cant. Standard errors of the mean are shown as error bars in all
figures. For G-CSF and SCF-mobilized CD34þ cells, we applied
the linear regression t-test to %EGFP data between in vitro bulk
CD34þ cells and lymphocytes at 1, 3, and 6 months post-
transplantation. The 90% confidence intervals are also included.

Results
To evaluate whether G-CSF and plerixafor-mobilized
CD34þ cells could stably reconstitute blood cells, we per-
formed HSC transplantation using rhesus macaque
CD34þ cells transduced with an EGFP-expressing cHIV
vector, which was developed for efficient transduction of
rhesus CD34þ cells [8]. First, we evaluated the number
and %EGFP of immunoselected CD34þ cells, which were
transplanted into rhesus macaques. As shown in Figure 1,
G-CSF and plerixafor mobilization (n 5 3) yielded twofold
greater CD34þ cell numbers compared to yields observed
with the G-CSF and SCF combination (n 5 5) (p !
0.01). Transduction rates with the cHIV vector, however,
were fourfold lower in G-CSF and plerixafor-mobilized
CD34þ cells when compared with G-CSF and SCF-
mobilized harvests (p! 0.01). G-CSF and plerixafor mobi-
lization tended to result in a lower overall number of
EGFPþCD34þ cells compared to G-CSF and SCF mobili-
zation (9.6 6 0.9 � 106 vs. 2.1 6 0.5 � 107, respectively;
not significant).

Additionally, we evaluated the composition of the
CD34þ cell population in three different mobilizations
from a single animal using cell surface analysis. Time
between mobilizations was 1 month or longer. CD123þ

(IL-3 receptor) expression has been found to vary on
CD34þ cell subpopulations [17]. CD34þCD123þ popula-
tions were higher in CD34þ cells mobilized by G-CSF
and plerixafor or plerixafor alone when compared with
that of G-CSF alone (Fig. 2).

To determine repopulating ability, G-CSF and
plerixafor-mobilized CD34þ cells were transduced with
EGFP-expressing lentiviral vector and transplanted into 5
Gy � 2 days (total dose 10 Gy) irradiated rhesus macaques

Figure 1. G-CSF and plerixafor mobilization increased CD34þ cell apheresis yields. G-CSF and plerixafor mobilization (n 5 3) yielded a twofold higher

number of CD34þ cells, compared to that observed with G-CSF and SCF mobilization (n 5 5) (p ! 0.01). Transduction rates with cHIV vector, however,

were fourfold lower in G-CSF and plerixafor-mobilized CD34þ cells, compared to that observed for G-CSF and SCF-mobilized cells (p ! 0.01).
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(n5 3, Fig. 3A). Whole cultures of mobilized and immuno-
selected CD34þ cells were transduced and transplanted
without sorting. Blood cell counts and transgene expression
levels were followed during 1 year, and these data
were compared to those of G-CSF and SCF-mobilized
animals (n 5 5) transplanted previously [8]. As shown in
Figure 3B, animals transplanted with G-CSF and plerixafor-
mobilized cells had similar recovery of myelocytes (2900 6
700/mL vs. 3500 6 700/mL on day 30, not significant)
and earlier recovery of lymphocytes (3300 6 900/mL vs.
1200 6 300/mL on day 30; p ! 0.05) compared to animals
who received G-CSF and SCF-mobilized grafts. Although
hemoglobin concentration and platelet counts showed
a tendency toward earlier recovery in animals receiving
transduced CD34þ cells obtained after G-CSF and plerixafor
mobilization, there was no significant difference between the
two groups (hemoglobin: 10.56 0.3 g/dL vs. 9.96 0.6 g/dl;
not significant; platelet: 1.96 0.2 � 105/mL vs. 1.26 0.3 �
105/mL on day 30; not significant). These data suggested
that G-CSF and plerixafor-mobilized CD34þ cells contained
increased numbers of early lymphoid progenitor cells.

One year after transplantation, animals transplanted with
G-CSF and plerixafor-mobilized cells showed engraftment
of EGFPþ cells in all lineages. Transgene expression levels
in peripheral blood cells were 2% to 5% in the first animal
(RQ7424), 2% to 5% in the second animal (RQ7375), and
5% to 10% in the third animal (RQ7277) in all lineage cells
(Fig. 4A). Multilineage marking was observed by cell
surface analysis in peripheral blood cells and bone marrow
cells (Fig. 4B). These data indicated that G-CSF and
plerixafor-mobilized CD34þ cells could stably reconstitute
peripheral blood in the rhesus macaque. Additionally, both
na€ıve and memory CD4 and CD8 T cells stably expressed
EGFP in peripheral and mucosal lymphoid compartments
(Fig. 5A, B, and D). Likewise, both CD3�CD20þIgMþ

and CD3�CD20þIgM� (includes IgG and IgA) cells
expressed EGFP (Fig. 5C, E), indicating long-term

reconstitution of multiple phenotypes in both primary and
secondary lymphoid tissues of rhesus macaques.

Because lymphocyte recovery was more rapid in the
G-CSF and plerixafor group, we compared transgene
expression levels (%EGFP) among the CD34þ cells
present in the component (graft, in vitro) and among
peripheral blood lymphocytes (repopulating cells,
in vivo) at 1, 3, and 6 months post-transplantation. In
G-CSF and SCF-mobilized animals, there was a significant
correlation of %EGFP between the CD34þ cells in the
component (graft) and the circulating lymphocytes at all
three time points (p !0.01) (Fig. 6, line of regression
drawn for data from G-CSF and SCF-mobilized products,
n 5 5). Data from G-CSF and plerixafor mobilizations
showed a lower ratio of %EGFP labeling of CD34þ cells
in the component to %EGFP labeling in circulating
lymphocytes at 1 and 3 months after transplantation
when compared to the G-CSF and SCF-mobilized trans-
plants. Six months after transplantation, however, the
ratios were similar to those obtained in animals receiving
G-CSF and SCF-mobilized CD34þ cells, with all points
being inside 90% confidence intervals of the regression
line for the G-CSF and SCF mobilized products (Fig. 6).
These results suggest that in vitro transduction rates
predict in vivo EGFP expression in peripheral blood
lymphocytes, and also that G-CSF and plerixafor-
mobilized CD34þ cells might include a larger proportion
of early lymphoid progenitor cells when compared to
G-CSF and SCF-mobilized cells.

Thirty days after transplantation, a transient skin rash
developed in one of the three animals transplanted with
G-CSF and plerixafor-mobilized cells (Fig. 7A). The rash
resolved 79 days after transplantation (Fig. 7B). This
animal (RQ7375) had the most rapid lymphocyte recovery
of the three animals transplanted (Fig. 3B). Skin biopsy
(day 49) showed an acanthotic epidermis with superficial
dermal edema and perivascular lymphocytic infiltrates

Figure 2. Cell surface analysis of G-CSF and plerixafor-mobilized CD34þ cells. CD34þ cells were immunoselected from a single animal (RQ6712) and

immunophenotyped with murine anti-human CD34-PE and CD123 (IL-3 receptor)-APC antibodies known to be cross-reactive with rhesus macaques. Mobi-

lizations using the designated regimens and leukapheresis procedures were separated by at least 1 month. The percentage of CD34þCD123þ expression for

each mobilization regimen is shown.
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Figure 3. G-CSF and plerixafor-mobilized cells demonstrated early lymphocyte recovery. (A) G-CSF and plerixafor-mobilized CD34þ cells were transduced

with EGFP-expressing chimeric HIV1-based lentiviral vector, including the simian immunodeficiency virus�capsid (cHIV vector), and these cells were

transplanted into lethally irradiated rhesus macaques. Blood cell counts and transgene expression levels in each lineage of peripheral blood cells were assayed

for at least 1 year. (B) After transplantation of transduced CD34þ cells, recipients of G-CSF and plerixafor-mobilized autologous grafts (n 5 3) showed

engraftment of all lineage cells and accelerated recovery of lymphocytes (lymphocytes: 3300 6 900/mL vs. 1200 6 300/mL on day 30, p ! 0.05) compared

to recipients of G-CSF and SCF-mobilized grafts (n 5 5). There was also a trend for an accelerated recovery of hemoglobin concentration (Hb) and platelet

count (PLT), but this did not reach statistical significance.
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Figure 4. G-CSF and plerixafor-mobilized cells demonstrated long-term reconstitution of peripheral blood in rhesus macaques. (A) After infusion of G-CSF

and plerixafor-mobilized CD34þ cells transduced with EGFP-expressing lentiviral vector, EGFP expression rates in peripheral blood were evaluated for at

least 1 year in three rhesus macaques. EGFP expression rates were 2% to 4% in all lineage cells in the first animal (RQ7424) at 2 years, 2% to 5% in the

second animal (RQ7375) at 1½ years, and 5% to 10% in the third animal (RQ7277) at 1 year after transplantation. (B) In lineage marker analysis, all lineage

cells demonstrated EGFP expression in peripheral blood cells (RQ7424 on day 503, RQ7375 on day 559, and RQ7277 on day 391) and bone marrow cells

(RQ7424 on day 503, RQ7375 on day 700, and RQ7277 on day 532).
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(Fig. 7C). Fifty-five days post-transplantation, clumping of
RBCs was observed in vitro at room temperature, but not at
37�C. Direct antiglobulin testing revealed that the animal’s
RBCs were coated with complement (C3d) but not

immunoglobulin G (IgG). Serological evaluation revealed
an IgM cold agglutinin with a titer of 1:640 when tested
against rhesus macaque control RBCs. Antibody screening
revealed that the serum was reactive at immediate spin

Figure 5. G-CSF and plerixafor-mobilized cells demonstrated long-term reconstitu-

tion of multiple T- and B-cell lineages in peripheral blood, lymph node, and rectal

mucosa in rhesus macaques. Representative dot plots from a control (RC808) and G-

CSF and plerixafor-treated animal (RQ7375) showing EGFP expression in (A)

CD3þCD4þ T-cell subsets (B) CD3þCD8þ T-cell subsets and (C) CD3�CD20þ

B-cell subsets from peripheral blood 155 days post-transplant. (D) %EGFP

expressing subsets of CD4þ and CD8þ T cells from peripheral blood (n5 3), lymph

node (n 5 3), and rectal mucosa (n 5 3) collected at day 232 (RQ7424),

155 (RQ7375), and 173 (RQ7277) post-transplantation. (E) %EGFP expressing

subsets of B cells from peripheral blood (n 5 3), lymph node (n 5 3), and rectal

mucosa (n 5 2) collected at day 232 (RQ7424), 155 (RQ7375), and 173

(RQ7277) post-transplantation.
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(22�C) and antiglobulin (37�C) phases of testing with
a panel of human adult (I-positive) group O RBCs, but
was nonreactive at immediate spin and only weakly reac-
tive, microscopically, at antiglobulin phase when tested
against human adult I-negative and umbilical cord RBCs.
IgG cold-reactive RBC autoantibodies were not present.
Further serological testing did not detect evidence of poly-
agglutination or drug-induced agglutination or hemolysis
using medications administered to the monkey in the peri-
transplant period. Serum immunoglobulin measurements
(Fig. 7D), serum protein electrophoresis (Fig. 7D), and im-
munofixation electrophoresis (Fig. 7E) revealed elevations
in serum IgG and IgM with transient appearance of corre-
sponding paraproteins and transient disappearance of IgA
levels at the time when the cold agglutinin and skin rash
were apparent. By day 79, both the skin rash and cold
agglutinin had resolved. This animal had no evidence of
infection when the skin rash developed or upon skin biopsy,
suggesting that an autoimmune reaction initiated by cells in
the graft might be occurring. Aside from the transient skin
rash, cold agglutinin disorder, and serum paraproteins in

one of the three transplanted animals, no other complica-
tions were observed.

Discussion
The CD34 antigen is the most frequently used antigen for
identifying human HSCs [10,18,19], and cells expressing
this antigen contain both HSCs and committed progenitors.
In this work, we found that G-CSF and plerixafor mobilized
higher numbers of CD34þ cells, and this increase,
compared with that of G-CSF and SCF mobilization in rhe-
sus macaques [7], likely represented lymphoid progenitors,
as evidenced by higher IL-3 receptor (CD123) expression
and faster peripheral blood lymphocyte recovery after
transplantation. This is consistent with our previous
in vitro microarray data, which showed CD34þ cells iso-
lated with either plerixafor alone or G-CSF and plerixafor
had gene expression profiles predominantly associated
with lymphocyte development [7].

When we followed peripheral blood reconstitution
after transplantation of these two types of mobilized

Figure 6. Correlation between in vitro and in vivo transduction rates. We evaluated the ratio of %EGFP in the immunoselected CD34þ cells of the graft to

%EGFP of circulating lymphocytes at 1 month, 3 months, and 6 months post-transplantation. In G-CSF and SCF-mobilized animals (n5 5), there was a signif-

icant linear correlation of %EGFP among in vitro CD34þ cells in the graft and in vivo circulating lymphocytes at all three time points (p! 0.01). (The regres-

sion line and 90% confidence intervals (shaded areas) are shown for the G-CSF and SCF components.) In G-CSF and plerixafor-mobilized animals (n 5 3),

a lower ratio at 1 and 3 months after transplantation was seen, compared to the ratios in the G-CSF and SCF-mobilized transplants. In contrast, the ratio was

similar in both types of mobilizations at 6 months after transplantation.

802 N. Uchida et al./ Experimental Hematology 2011;39:795–805



CD34þ cells, we found that lymphoid recovery after trans-
plantation with G-CSF and plerixafor-mobilized CD34þ

cells was accelerated. Although the exact lymphoid
subpopulations involved within this more rapid recovery
were not identified, this novel observation may explain

the autoimmune reaction seen in rhesus macaque
RQ7375. This animal had the fastest lymphocyte recovery
and developed a transient skin rash and RBC cold agglu-
tinin associated with oligoclonal elevation in IgG and
IgM immunoglobulin levels and loss of measurable IgA.

Figure 7. Complication of cold agglutinin disease in one animal after G-CSF and plerixafor-mobilized cell transplantation. In the animal with the most

accelerated lymphocyte recovery, RQ7375, an erythematous skin rash developed on the face, neck, and axilla 30 days after transplantation (A: day 49).

This rash was transient and resolved by day 79 (B). A skin biopsy taken on day 49 revealed an acanthotic epidermis with superficial dermal edema and

perivascular lymphocytic infiltrates (C). On day 55, clumping of RBCs at room temperature was observed. Serological evaluation revealed an IgM-

mediated cold agglutinin with a titer of 640 against healthy monkey red cells. Serum immunoglobulin measurements (D) and serum protein electrophoresis

(D) and IFE (E) revealed transient primarily oligoclonal elevations in IgG and IgM levels, and non-measurable levels of IgA (all in mg/dL). These levels

returned to near pretransplantation levels after resolution of the rash and cold agglutinin disorder. In inset (E): anode at the top, short horizontal arrows point

at oligoclonal bands in the g-globulin region of the acid-fixed lane (ELP), and lanes G, A, M, K, and L refer to immunofixation with monospecific antibodies

against human g-, a-, and m-immunoglobulin heavy chains and human k and l immunoglobulin light chains, respectively.
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Although the pattern of anti-I reactivity found in the
animal’s serum during the reaction is consistent with that
typically seen in human idiopathic cold agglutinin disease,
this disease in nonhuman primates has not been reported
before, and this animal did not have the hemolytic anemia
that is usually seen in humans. The rash and cold agglutinin
were transient and disappeared when IgM and IgG levels
decreased to baseline and IgA reappeared. The relationship
of this transient autoimmune dysregulated immunoglobulin
expression to the use of G-CSF and plerixafor-mobilized
CD34þ cells remains speculative.

We also provided clear evidence for the first time that
G-CSF and plerixafor-mobilized CD34þ cells contain an
HSC population capable of reconstituting multilineage
hematopoietic cells by lentiviral gene marking. These
results corroborate and expand upon our earlier studies
using plerixafor alone to mobilize and transplant HSCs in
rhesus macaques [20]. In the current study, we used an
EGFP-expressing cHIV vector optimized for transduction
of rhesus CD34þ cells [8] to mark and follow the reconsti-
tution of G-CSF and plerixafor-mobilized CD34þ cells. In
rhesus gene transfer preclinical studies as well as human
gene therapy trials, transgene expression rates among
peripheral blood cells generally fluctuate for the first few
months after transplantation, then plateau at low levels
approximately 6 months after transplantation [8,21,22].
One explanation for this observation is that committed
progenitor cells contribute to the reconstitution of circu-
lating blood cells in the first few months and stem cells
contribute significantly later. In this study, three rhesus
macaques showed long-term (1�2 years) reconstitution of
multiple lineage blood cells that contained EGFPþ cells
originating from the G-CSF and plerixafor-mobilized
CD34þ cells and confirmed that HSCs are included in
this CD34þ cell population. The proportion of CD34þ

progenitors to HSCs, however, appears to be higher within
the G-CSF and plerixafor-mobilized than with other
mobilization regimens based on the reconstitution data.

We were initially surprised that G-CSF and plerixafor-
mobilizedCD34þ cells had reduced invitro transduction effi-
ciency (Fig. 1B) and lower in vivo %EGFP (Fig. 6). This
observation occurred even when we used a chimeric vector
that was constructed specifically for rhesus CD34þ cells
[8]. This reduced transgene expression may have resulted
from higher number of lymphocytes and lymphoid progeni-
tors in the mobilized graft because the specific conditions
required for efficient gene transfer to lymphocytes (e.g.,
CD3 antibody and IL-2)were not present [23].Other possible
explanations include an alteration in theCD34þ progenitor to
stem cell ratio, which may have increased signaling via
cascades that block efficient transduction; or a higher number
of plasmacytoid dendritic cell precursors may have been
mobilized, which were resistant to transduction [24].

In summary, G-CSF and plerixafor mobilization
increased CD34þ cell yields by apheresis. This population

of CD34þ cells appears to contain more lymphoid progen-
itors and a similar number of HSCs capable of long-term
reconstitution and stable multilineage transgene expression
in vivo. The lymphoid progenitors within the CD34þ cell
population accelerated lymphoid recovery. These findings
should be helpful in developing plerixafor-based mobiliza-
tion protocols in HSC transplantation studies.
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