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ABSTRACT

Opiates are among the most powerful analgesics and pain-relieving agents. However, they are potentially
extremely addictive thereby limiting their medical use, making them exceedingly susceptible to abuse
and adding to the global drug problem. It is believed that positive memories associated with the plea-
surable effects of opiates and negative memories associated with dysphoria during opiate withdrawal
contribute to compulsive opiate-seeking behavior characterizing addiction. There is a vast amount of
available data regarding the neuroadaptations in response to opiates during opiate tolerance, depen-
dence and withdrawal that contribute to opiate addiction, yet it is still a major challenge to identify the
neurobiological adaptations that underlie the hallmarks of opiate addiction such as compulsive drug use,
and relapse to drug seeking. Since the discovery of synaptic plasticity as the cellular correlate of learning
and memory, strong overlaps between neural and cellular substrates of learning and addiction have been
recognized. Consequently, the current notion of addiction supports the idea that aberrant forms of drug-
induced synaptic plasticity and learning in the brain drive addictive behaviors. Here we discuss current
progress on some of the recently identified forms of synaptic plasticity at excitatory and inhibitory
synapses in opioid-sensitive areas of the brain that are targeted by opiates and other addictive drugs. The
neuroadaptations involved in opiate tolerance, dependence and withdrawal will be re-visited since they
share many features with synaptic learning mechanisms.

This article is part of a Special Issue entitled ‘Synaptic Plasticity and Addiction’.

Published by Elsevier Ltd.

1. Introduction

Opiates are among the most powerful analgesics and pain-
relieving agents though extremely addictive. Unfortunately in
addition to illicit opiate use, the nonmedical use and abuse of
prescription opiates are troublingly on the rise (Rawson et al., 2007)
adding to the global drug problem. The phenomena of opiate
tolerance, dependence and withdrawal in the context of opiate
addiction have been extensively investigated (Christie, 2008; De
Vries and Shippenberg, 2002; Frenois et al., 2005; Williams et al.,
2001) but it is still a major challenge to identify the neurobiolog-
ical adaptations that underlie the hallmarks of addiction including
compulsive drug use and relapse to drug seeking.

Abbreviations: LTP, Long-term potentiation; LTD, long-term depression; VTA,
ventral tegmental area; NAc, nucleus accumbens; PFC, prefrontal cortex; mPFC,
medial PFC; DA, dopamine; eCB, endocannabinoids; PKA, protein kinase A; PKG,
protein kinase G; GC, guanylate cyclase; LOR, p opioid receptor; BDNF, brain-
derived neurotrophic factor.

* Corresponding author. Edward Hebert School of Medicine, Department of
Pharmacology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda,
MD 20814, USA. Tel.: +1 301 295 3243; fax: +1 301 295 3220.

E-mail address: fnugent@usuhs.mil (ES. Nugent).

0028-3908/$ — see front matter Published by Elsevier Ltd.

The initial intense sensation of euphoria (“rush”) after intrave-
nous heroin use lasts for periods of a few minutes and yet the
memories of this experience linger for a lifetime for some people.
While this may trigger drug taking, additional factors associated
with tolerance, withdrawal and allostasis also substantially
contribute to the process of addiction. Based on the allostatic
concept of addiction, as the addict develops the compulsion of
addiction, the motivation and drive for drug taking behavior tran-
sitions from positive reinforcement related to the euphoric effects
of drugs to negative reinforcement in which the removal of the
aversive states of withdrawal obliges the subject to seek and take
the drug and sets the tone for craving and relapse (Aston-Jones and
Harris, 2004; Koob and Le Moal, 2001). Additionally, the sensiti-
zation theory of addiction favors the idea that drug-induced
sensitization (the increase of drug’s effect with repeated use of
a drug manifested as an increased locomotor activity in sensitized
animal models) leads to the enhanced motivational value of the
drug, “compulsive wanting”, and this incentive salience of drug or
of drug-associated stimuli underlies drug craving and vulnerability
to relapse (Robinson and Berridge, 2008). Thus, the sensitized
behavior of an animal in response to drugs of abuse is interpreted as
the compulsive drug seeking and drug taking behaviors of a drug
addict.

doi:10.1016/j.neuropharm.2011.01.028
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Whereas discrete brain regions mediate different aspects of
addictive behaviors, the dopaminergic pathways originating from
the ventral tegmental area (VTA) dopamine (DA) neurons seem to
be critically involved in the early key neuroadaptations underlying
addiction. The increased release of DA in the VTA projection areas is
triggered in response to acute exposure to all classes of major
addictive drugs including opiates and also to cues associated with
drugs. This enhanced DA release is proposed to mediate positive
reinforcing effects of drugs and may also highlight the motivational
value of drugs which then promotes drug taking, craving and
relapse (Di Chiara and Imperato, 1988; Robinson and Berridge,
1993). The neural substrates for acute drug withdrawal seem to
also engage the same neural systems implicated in the positive
reinforcing effects of drug of abuse. Therefore, dysphoria and
aversion associated with acute drug withdrawal involves a decrease
in VTA DA cell activity and consequently low levels of dopamine
(Koob, 1992). Along with the VTA dopaminergic system, other
critical areas involved in motivation and goal-directed behaviors to
include the striatum (ventral and dorsal striatum), prefrontal cortex
(PFC), hippocampus, and amygdala all of which play a key role in
addiction. Subjective self-reports of reward (pleasure, high, and
euphoria), withdrawal (dysphoria, anxiety, depression and loss of
motivation for natural reward/anhedonia) and drug craving
(wanting drugs, urge to use drugs) in response to drugs, and drug-
related stimuli in combination with human brain imaging studies
have also highlighted the same neural circuits as the key elements
of drug craving and relapse (Sell et al., 1999, 2000; Volkow et al.,
2004; Zijlstra et al.,, 2009). For example, recent work demon-
strated the association of the PFC with subjectively reported
anhedonia in response to natural rewarding stimuli and also the
critical role of the VTA in subjectively reported increases in opiate
craving after exposure to heroin-associated cues in opioid-depen-
dent patients (Zijlstra et al., 2009). For a more comprehensive
discussion of the neurocircuitry associated with the addiction cycle,
see the following reviews (Koob and Volkow, 2009; Volkow et al.,
2004).

Now the major question is what changes induced by drugs of
abuse in these brain areas are critical to promote addictive
behaviors, in another words, how does the brain become addicted?
The current best hypothesis for how the nervous system stores
memories and other forms of experience-dependent plasticity
involves changes in synaptic strength between neurons (synaptic
plasticity). The two best-studied forms of synaptic plasticity are
long-term potentiation (strengthening of synapses, LTP) and long-
term depression (weakening of synapses, LTD) (Bliss and
Collingridge, 1993). Emerging evidence suggests that the pursuit
of rewards and avoidance of harmful stimuli engage synaptic
plasticity mechanisms in areas of the brain essential for processing
of reward (Chen et al., 2008; Reynolds et al., 2001; Schultz, 2010;
Stuber et al., 2008). Therefore, synaptic plasticity could be an
ideal neural substrate for reward-based learning and motivated
behaviors. With this current perspective of synaptic plasticity in the
field of drug addiction, neuroscientists have begun to make exciting
new discoveries of the molecular mechanisms underpinning the
reinforcing, aversive and addictive properties of drugs of abuse
through their interaction with learning mechanisms (Gerdeman
et al., 2003; Harnett et al.,, 2009; Hyman et al., 2006; Kauer and
Malenka, 2007; Wolf, 2002). Recent research now suggests that
during addiction, the reward pathways are hijacked by addictive
drugs in a manner suggesting that drug-associated memories are
critical parts of the addiction process (Kauer and Malenka, 2007).
Therefore, it appears that the brain may, in fact, be learning to crave
drugs. The correlation between synaptic plasticity and drug
addiction has also been made in recent work by Piazza and Man-
zoni’'s teams (Kasanetz et al, 2010). They show a form of

“anaplasticity” (lack of plasticity) associated with cocaine addiction
which may also occur during opiate addiction. Their data
convincingly suggests that synaptic plasticity is one of the active
processes that could allow for control of drug intake, and its
selective permanent loss in addiction-prone animals could
promote the shift from a controlled drug use to addiction. In this
review, we will further elaborate on the topic of synaptic plasticity
associated with opiates in areas of the brain important in opiate
addiction. An understanding of how neurons integrate and form
these cellular memories could conceivably point to a better
understanding of neural mechanisms underlying motivated
behaviors and also present new directions in pharmacotherapy for
drug addiction.

2. Acute in vitro opiates and synaptic plasticity

Opiates act through G- protein coupled opioid receptors, though
the action of opiates on p opioid receptors (pOR) is mostly
responsible for the major addictive effects of opiates. The best
known acute effects of opiates are the activation of potassium
channels (specifically the G protein inwardly rectifying K™ chan-
nels/GIRKs), inhibition of calcium channels, inhibition of adenylyl
cyclase, and inhibition of transmitter release. These effects are
mediated through the GTP-bound form of the a-subunit as well as
free B/y-subunits of G proteins (Williams et al., 2001). Given the
widespread expression of opioid receptors in the brain, it is no
wonder that opioids and opiates could modulate neurotransmis-
sion and regulate synaptic strength (plasticity). Interestingly, it has
been shown that an abrupt cessation of a brief exposure to opioids
in vitro is able to induce an activity-independent form of LTP at
excitatory synapses of nociceptive C fibers in the spinal cord that is
proposed to underlie opioid-induced hyperalgesia (Drdla et al.,
2009; Zhou et al., 2010). Curiously, we have observed a similar
plasticity (LTP) at VTA GABAergic synapses after a brief in vitro
exposure to morphine which may explain the aversive aspect of
opioid-induced hyperalgesia at the supra-spinal level (unpublished
observations, see below for detailed information on this type of
LTP). These data suggest that even an acute in vitro exposure to
opioids and opiates locally in the spinal cord and the VTA is enough
to produce powerful and long-lived synaptic modifications which
may provide mechanisms for some of the central reinforcing and
aversive effects of acute opiates.

3. Acute in vivo opiates and synaptic plasticity in the VTA

Numerous brain regions are identified to be critically involved in
opiate addiction (De Vries and Shippenberg, 2002). Among those
the VTA and nucleus accumbens (NAc/ventral striatum), critical
components of the brain reward circuitry, have been a particular
focus of vigorous investigation (Fig. 1a) (Di Chiara and Imperato,
1988; Schultz, 1997; Wise, 1989, 2008). It is a general consensus
that synaptic plasticity in the VTA may be a common and initial
cellular substrate for all drugs of abuse in the establishment of
addictive behaviors (Bellone and Luscher, 2006; Borgland et al.,
2004; Dong et al., 2004; Faleiro et al., 2004; Guan and Ye, 2010;
Mansvelder and McGehee, 2000; Melis et al., 2002; Nugent et al.,
2007; Saal et al., 2003; Ungless et al., 2001).The effects of a single
in vivo passive administration of drugs of abuse on synaptic plas-
ticity have been mostly evaluated in the VTA because of its critical
role in initiation of sensitization, a prominent model of addiction
(Kauer and Malenka, 2007). Strikingly, a single in vivo exposure to
cocaine and tetrahydrocannabinol (THC) also transiently blocks an
endocannabinoid (eCB)-mediated LTD at excitatory and inhibitory
synapses in the NAc, and the hippocampus (Fourgeaud et al., 2004;
Mato et al., 2004), but the acute effects of other addictive drugs
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Fig. 1. Neural substrates of opiate addiction and opiate-associated plasticity.
(a) demonstrates the mesolimbic DA system consisting of the VTA, NAc, PFC and
hippocampus (Hipp) which plays an important role in opiate addiction. (b) and
(c) summarizes some of the identified forms of synaptic plasticity associated with
acute and chronic in vivo exposures to opiates. (b), acute opiates can trigger LTP of
excitatory synapses and block NO-mediated LTP at GABAergic synapses in the VTA DA
neurons. (c), on the other hand, based on the brain region, chronic opiates may trigger
postsynaptic LTP (increased insertion of AMPARs), postsynaptic LTD (decreased surface
expression of AMPARs) and/or presynaptic LTD (decreased presyanptic glutamate
release). The widespread GABAergic plasticity associated with chronic opiates is the
cAMP-dependent LTP (increased presynaptic GABA release).

including opiates on this form of plasticity in these areas have not
been further investigated. Therefore, in this section we will only
focus on what is known about acute opiate exposure and VTA
synaptic plasticity. Although an acute drug use by itself is not
necessarily addictive, this manipulation has provided valid models
for examining drug-induced alterations of synapses in drug-
sensitive neurons that may contribute to the processes involved in
over-learning of the incentive value of drugs and/drug-related cues.

3.1. LTP and LTD at excitatory synapses

DA released from the VTA DA neurons in a VTA target (especially
in the NAc) codes for reward, reward prediction, and also drug-
induced reward (Di Chiara and Imperato, 1988; Schultz, 1997). The
balance of excitatory (glutamatergic) and inhibitory (GABAergic)
inputs onto DA neurons is one of the determinants of DA release
(Johnson and North, 1992b). Therefore, it is apparent that LTP and
LTD of these excitatory and inhibitory synapses can critically affect
DA cell firing and transmitter release. An innovative approach of
AMPA/NMDA receptor ratio measurements was taken to determine
whether a single in vivo treatment with addictive drugs could
trigger synaptic plasticity at excitatory synapses (Ungless et al.,
2001). A significant increase in AMPA receptor-mediated currents
without any change in NMDA receptor mediated-currents results in
an increase in AMPA/NMDA receptor ratio which is inferred as
glutamatergic LTP. Interestingly, 24 h after a single in vivo exposure
to multiple drugs of abuse including morphine, glutamatergic
synapses in VTA DA neurons are potentiated (seen as increased
AMPA/NMDA receptor ratios in slices from drug-treated rats
compared to those in slices from saline-treated rats: drug-induced
glutamatergic LTP, Fig. 1b) (Saal et al., 2003; Ungless et al., 2001).

Cocaine-induced LTP in the VTA had been well characterized; it is
dependent on dopamine D5 receptor activation of NMDA receptors,
protein synthesis, insertion of GluR1-containing AMPA receptors
and orexin A (Argilli et al., 2008; Borgland et al., 2004, 2006; Dong
et al,, 2004; Saal et al., 2003; Schilstrom et al., 2006; Ungless et al.,
2001). Intriguingly, the magnitude and durability of cocaine-
induced LTP was independent of the number of cocaine exposure
(acute or chronic intraperitoneal experimenter-administration).
However, only self administration of cocaine resulted in a persis-
tent LTP (lasting for three months of abstinence) in contrast to the
transient LTP in response to passive cocaine infusions or food/
sucrose self administration (Chen et al., 2008). These remarkable
results suggest that the process of natural reward-related learning
employs transient glutamatergic plasticity in the VTA. On the
contrary, active (operant) associative learning processes involved in
voluntary intake of drugs are necessary to produce cocaine-
induced long-lasting plasticity in the VTA DA neurons (Chen et al.,
2008). Unfortunately, data regarding the time course and mecha-
nisms underlying morphine-induced LTP at excitatory synapses in
the VTA are not yet available. Because of the similarity between
cocaine and heroin-seeking behaviors, it is tempting to assume that
the cellular mechanisms underlying cocaine-induced plasticity
could be extended to opiates. However, we should also bear in mind
that there are drug-specific and even opposite changes in neural
systems across these drugs (Bossert et al., 2005; Brown and
Lawrence, 2009; De Vries and Shippenberg, 2002; Russo et al.,
2010).

Several forms of glutamatergic LTD (metabotropic glutamate
receptor (mGluR)-mediated LTD, cAMP-protein kinase A (PKA)
dependent LTD and eCB-mediated LTD) have been described in the
VTA (Bellone and Luscher, 2005, 2006; Gutlerner et al., 2002; Haj-
Dahmane and Shen, 2010; Jones et al., 2000; Thomas et al., 2000).
These forms of LTD could also be targeted by opiates. For example, it
is possible that synaptic depression induced by opiate exposure
could inhibit the induction of glutamatergic LTD in the VTA by
reducing glutamate release needed for the induction process. It is
yet to be determined how opiates would interact with these
different forms of glutamatergic LTD.

3.2. LTP and LTD at inhibitory synapses

Most completed studies to date have focused on the role of
glutamatergic excitatory plasticity in the VTA, but emerging
evidence suggests the potential role for GABAergic inhibitory
plasticity in drug addiction (Nugent and Kauer, 2008). VTA DA
neurons have a widely accepted role in reward-motivated behav-
iors and drug reward. However VTA GABA neurons also respond to
rewarding stimuli and drugs of abuse suggesting a DA-independent
mechanism for processing reward and drug-induced reward
(Laviolette et al., 2004; Laviolette and van der Kooy, 2001; Liu et al.,
2005; Melis et al., 2002; Steffensen et al., 2001, 2006; Williams
et al., 2001; Xi and Stein, 2002). Interestingly, the DA-dependent
mechanism of opiate-reward also involves GABA neurons. Opiates
inhibit GABA neurons, and therefore disinhibit DA neurons,
resulting in increased DA release in the VTA projection sites as well
as an increase in dendrodendritic DA release in the VTA (Beckstead
et al., 2007; Johnson and North, 1992a). Interestingly, manipulation
of GABA inhibition has been found to modify abuse-related effects
of addictive drugs suggesting that inhibitory GABAergic signaling
serves as a promising target for treatment of drug addiction (Barrett
et al,, 2005; Brebner et al., 2002; Brodie et al., 2003; Stromberg
et al.,, 2001). Because of the importance of morphine-induced LTP
at excitatory synapses in sensitization (Saal et al., 2003), and given
the impact of GABA inhibition on DA cell activity, it is important to
determine if GABAergic synapses onto DA neurons can exhibit
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plasticity and be modulated by drugs of abuse. Looking beyond
glutamatergic plasticity, it is obvious that the plastic capabilities of
inhibitory GABAergic synapses could provide natural mechanisms
to prevent (through LTP) or promote (through LTD) excitability of
DA neurons, therefore modulating DA release.

3.2.1. Opiates block LTPgapa

Our previous work by one of the authors, performed in the
laboratory of Dr. Julie Kauer provided the first compelling evidence
that a single in vivo exposure to opiate drugs (e.g., morphine) blocks
a form of an inhibitory LTP (LTPgaga) in VTA DA neurons (Niehaus
et al., 2010; Nugent et al., 2009, 2007). LTPgaga is a form of inhib-
itory GABAergic plasticity which is induced in response to
a patterned afferent stimulation and results in long-lasting increase
in GABAergic synaptic transmission in the VTA. LTP¢caga is hetero-
synaptic, induced postsynaptically but expressed presynaptically.
LTPcaga requires activation of NMDARSs in postsynaptic DA neurons
which subsequently produces the retrograde messenger, nitric
oxide (NO). NO diffuses back to GABAergic terminals to activate
a guanylate cyclase (GC)-cGMP-protein kinase G (PKG) pathway,
resulting in an increased GABA release from these terminals
(LTPcaga)- A single injection of morphine in vivo is sufficient to
block LTPgaga Within 2 h and 24 h after exposure to morphine, but
not after 5 days (see Fig. 1b) (Niehaus et al., 2010; Nugent et al.,
2007). Morphine-induced blockade of LTPcapa specifically affects
the NO-cGMP-PKG pathway, presumably at the level of GC (Nugent
et al., 2007). Interestingly, activation of GC with a GC activator in
slices from morphine-treated rats is also able to induce LTPcaga,
providing indirect evidence for the presence of adequate levels of
GC in morphine-treated slices to produce enough cGMP and thus
mimic LTPgapa (Niehaus et al., 2010). Whether morphine directly or
indirectly interacts with GC to disrupt LTPgapa is still not known
and merits further investigation. Additionally, transient activation
of the cAMP-PKA pathway may persistently increase GABA release
at these synapses and interact with LTPgaga suggesting a conver-
gence between PKG and PKA pathways (Nugent et al., 2009). The
nature of presynaptic receptors located on the VTA GABAergic
interneurons that can activate the cAMP-PKA pathway is not
known, nor is the converging mechanism for PKA and PKG. Similar
to drug-induced LTP at excitatory synapses in the VTA, blockade of
LTP at GABAergic synapses seems to be induced by several addictive
drugs (opiates, ethanol, nicotine, and cocaine), and may also occur
in response to stress (Guan and Ye, 2010; Niehaus et al., 2010).
Intriguingly, the ethanol-induced blockade of LTPgaga involves
UORs confirming the role of endogenous opioids in VTA inhibitory
plasticity and also in neuroplasticity associated with ethanol (Guan
and Ye, 2010).

3.2.2. LTD at GABAergic synapses in the VTA

Most synapses are capable of exhibiting bidirectional plasticity
(i.e., expression of LTD in addition to LTP). Recently, we have been
able to induce a novel form of non-eCB- mediated LTD at GABAergic
synapses onto VTA DA neurons (LTD¢apa: a long-lasting decrease in
GABAergic transmission) in response to synaptic stimulation that
can also be modulated by morphine in vivo (Dacher and Nugent,
2010). The induction of LTD at these synapses not only reduces
the inhibition of DA neurons, but may also promote the induction of
LTP at excitatory synapses (metaplasticity), thereby resulting in
increased activity of DA neurons and increased DA release in VTA
projection areas, potentially coding or enhancing coding for
salience and reward. The control of bidirectional GABAergic plas-
ticity by morphine in the VTA may be a neural correlate of some of
the addictive features of morphine action in the VTA.

Taken together, data from Sections 3.1 and 3.2 convincingly
support the idea that opioids and opiates are potent intrinsic

modulators of synaptic strength in the VTA and even their short-
term action may produce long-lasting changes in the brain
circuitry. Moreover, recent data support the idea that drug-associ-
ated neuroplasticity in the VTA may be a likely common theme for
all drugs of abuse in initiation of drug-induced aberrant forms of
synaptic plasticity and consequently the establishment of addictive
behaviors.

4. Chronic opiates and synaptic plasticity

The neuroadaptations associated with chronic morphine and
the neural correlates of opiate-seeking and relapse have been the
subject of several reviews (Aston-Jones and Harris, 2004; Bossert
et al.,, 2005; Brown and Lawrence, 2009; Christie, 2008; De Vries
and Shippenberg, 2002; Martini and Whistler, 2007; von Zastrow,
2010; Williams et al., 2001). The emerging view of drug addiction
as abnormalities in neuroplasticity of reward learning (Hyman
et al., 2006) makes it possible to integrate some of the vast exist-
ing data on opiate tolerance, dependence, withdrawal and addic-
tion into a single synaptic model that could explain different
aspects of opiate addiction. Opioids and opiates interact and change
a variety of signaling pathways that are also involved in synaptic
plasticity. In the next section, we will review the most recent
progress on synaptic modifications and plasticity associated with
chronic opiates in some of opioid-sensitive areas of the brain (see
Fig. 1c).

4.1. The VTA

Opiate-induced plasticity at excitatory and inhibitory synapses
after a single exposure in the VTA provides potential mechanisms
involved in mediating the rewarding effects of opiate drugs and
sensitization to such rewarding effects (see previous section). Now
the important and challenging question is whether repeated
exposure to opiates would induce and stabilize such plasticity at
both excitatory and inhibitory synapses.

Gultamatergic neurotransmission and plasticity in the VTA can
also be altered in response to chronic opiates. Fitzgerald et al.
(1996) showed increased levels of AMPA glutamate receptor
subunit (GluR1) levels in the VTA after chronic exposure to
morphine, cocaine and stress (which could reflect a postsynaptic
excitatory LTP). The authors suggest that excessive excitation of
VTA DA neurons, followed by depolarization blockade in response
to chronic morphine, would suppress the activity of DA neurons
and reduce DA release thus underpinning aversive withdrawal. In
contrast, Manzoni and Williams (1999) more recently showed
a mGIuR II-mediated presynaptic reduction of glutamate release
onto VTA DA neurons (reminiscent of presynaptic mGIluR2/3-
dependent LTD in the NAc, refer to Section 4.2) during withdrawal
from chronic opiate exposure. This withdrawal-induced decrease in
glutamatergic signaling, in concert with withdrawal-induced
increase in GABAergic inhibition (see below), could inhibit DA
neurons and subsequently diminish DA release. One may wonder
whether the decreased glutamate release would result in
a compensatory over-expression of AMPARs as observed in Fitz-
gerald et al.’s study. Obviously, it is most likely that different forms
of glutamatergic plasticity in the VTA DA neurons could be differ-
entially and/simultaneously modulated by opiates, since opiates
can interact with and affect a number of signaling mechanisms
involved in plasticity. Consistently, chronic morphine induces
a structural plasticity in VTA DA neurons (i.e., reduction in the size
of DA neurons by 25%) mediated by the insulin receptor substrate
2-thymoma viral proto-oncogen (Akt) signaling that can be
observed up to two weeks after withdrawal from morphine. This
structural plasticity can be prevented by intra-VTA infusion of
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brain-derived neurotrophic factor (BDNF) suggesting that the
disruption of BDNF signaling by chronic morphine may be
responsible for the structural changes in the VTA (Russo et al.,
2007; Sklair-Tavron et al., 1996).

There is a consistency in the literature that continuous opiate
exposure triggers a set of homeostatic compensations that is
observed during withdrawal as an overshoot of these compensa-
tory mechanisms (Williams et al., 2001). One of the widespread
plasticities associated with chronic opiates is increased presynaptic
GABA release due to the upregulation of the cAMP-PKA pathway
(which may represent a cAMP-PKA- dependent inhibitory LTP) and
is recognized as a necessary neural correlate of opiate tolerance,
dependence and withdrawal. Interestingly, this inhibitory plasticity
is found to be expressed in several areas of the brain to include the
VTA, NAc, locus ceruleus, and periaqueductal gray (Christie, 2008;
Williams et al., 2001).

Recently, Madhavan et al. (2010) showed the importance of pOR
receptor trafficking (a mechanism proposed for opiate tolerance) in
a PKA-dependent opiate-induced form of GABAergic plasticity in
VTA DA neurons (at GABAa synapses originating from local VTA
GABA neurons in the VTA). This phenomenon was firstly described
by Williams’ team in the VTA after opiate withdrawal (Bonci and
Williams, 1997). There is a general consensus that unlike the
majority of opioids and opiates, morphine fails to induce internal-
ization and endocytosis of uORs, thereby resulting in a sustained
activity of nORs and upregulation of downstream transduction
pathways such as cAMP-PKA (Williams et al., 2001). Madhavan
et al. used knock-in mice with a genetic modification in which
unlike normal conditions, jfORs were capable of undergoing
morphine-induced receptor endocytosis and desensitization (i.e.,
recycling pOR) exclusively in GABA interneurons of the VTA. The
cAMP-PKA dependent LTP was absent in recycling pOR knock-in
mice suggesting a critical role of receptor trafficking in GABAergic
plasticity of the VTA during withdrawal (Madhavan et al., 2010).
This increased GABAergic inhibition in the VTA DA neurons could
underlie the decreased DA release seen after opiate withdrawal
which is thought to be associated with negative motivational states
of withdrawal (dysphoria and anhedonia) promoting opiate-
seeking and relapse (Koob and Le Moal, 2005).

Considering the myriad signaling pathways mediating opiates’
actions, it is logical to expect that other signaling molecules could
also be upregulated or altered in parallel with the cAMP-PKA
pathway in opioid-sensitive neurons. For example, the NO-cGMP-
PKG mediated LTPgaga shown in the VTA (Nugent et al., 2007) may
also be triggered in parallel with the cAMP-PKA withdrawal LTP and
participate in the withdrawal-induced GABAergic plasticity in the
VTA and also in other addiction-related brain regions. In fact,
several reports provided strong independent support for a role of
the NO-cGMP-PKG pathway in opiate dependence and withdrawal
(Adams et al., 1993; Hall et al., 1996; Herman et al., 1995; Kimes
et al.,, 1993; Tayfun Uzbay and Oglesby, 2001).

Taken together these results confirm that chronic opiates
potently modulate both glutamatergic, GABAergic, and structural
plasticity in the VTA possibly through complicated and inter-
connected processes with the final outcome of decreased excit-
ability of DA neurons.

4.2. The NAc

Similar to the VTA, chronic exposure to opiates could affect NAc
glutamatergic plasticity. The general observation in cocaine-
induced plasticity in the NAc is enhanced cell surface expression of
AMPAR GIuR1 type subunits after chronic cocaine exposure and
during withdrawal (Chen et al., 2010). In contrast to stimulants,
chronic morphine exposure results in decreased levels of surface

expression of AMPARs in the NAc (Glass et al.,, 2008) which is
consistent with the reducing effects of chronic morphine on NAc
dendritic spine density (Robinson et al., 2002). On the other hand, it
has been shown that presynaptic mGluR2/3-dependent LTD at
glutamatergic synapses in the NAc is absent in slices from
morphine-withdrawn mice (Robbe et al., 2002). This in fact could
result in increased inhibitory NAc-VTA feedback and may explain
why activation of mGIuR2/3 has been found to attenuate heroin-
seeking behaviors in animal models of opiate relapse (maybe
through restoration of mGluR2/3 LTD)(Bossert et al., 2006). This
could be true if LTD is blocked by morphine withdrawal, however it
is also possible that withdrawal from morphine would induce
mGluR2/3 LTD, thereby occluding further induction of LTD in
response to a mGluR2/3 agonist. As mentioned earlier (Section 4.1)
similar to the VTA a form of GABAergic plasticity (i.e. the CAMP-
dependent withdrawal LTP) at GABA4 synapses onto medium spiny
neurons in the NAc has also been reported after opiate withdrawal
which could result in suppression of activity of these neurons
during withdrawal (Chieng and Williams, 1998).

Different forms of plasticity are reported in the striatum
including NAc; e.g., expression of eCB-mediated LTD seems to be
awidespread property of both excitatory and inhibitory synapses in
the brain including this area and the VTA (Heifets and Castillo,
2009; Lovinger, 2008). Yet the modulation of this plasticity and
other forms of plasticity in response to morphine and other drugs of
abuse is still a major question warranting future investigation
(although more is known about cocaine-induced plasticity).

4.3. The hippocampus

The role of endogenous opioids and opioid receptors in induc-
tion and/modulation of hippocampal plasticity has been well
documented (Bramham, 1992; Drake et al., 2007; Harrison et al.,
2002; Simmons and Chavkin, 1996; Wagner et al, 2001;
Weisskopf et al., 1993). The hippocampus has traditionally been
recognized for its role in learning and memory but recent evidence
also supports its key action in the rewarding and aversive central
actions of drugs of abuse including opiates. Several lines of
evidence suggest that changes in plasticity and its molecular
mechanisms in the hippocampus are associated with the formation
of drug-induced contextual positive and negative memories,
promoting relapse to drug seeking in addicts (Frenois et al., 2005;
Hou et al., 2009; Robbins and Everitt, 2002; Taubenfeld et al.,
2010; Wise, 1989). In other words, the strong link between envi-
ronmental cues and drug use could take place through drug-
induced signaling and plasticity in the hippocampus. Opiate
dependence/withdrawal has been shown to affect hippocampal
plasticity with the general observation of inhibition of LTP (Bao
et al,, 2007; Lu et al,, 2010; Pu et al,, 2002; Salmanzadeh et al,,
2003). Interestingly, the effects of acute opiates on hippocampal
circuitry are exclusively mediated through inhibitory GABAergic
interneurons (resulting in excitation of pyramidal neurons through
disinhibition) (Robinson and Deadwyler, 1980) which could in fact
facilitate LTP. So is it possible that the blockade or reduction of
hippocampal LTP after chronic opiate treatment is due to the fact
that chronic opiates induce LTP thereby occluding further induction
of LTP in response to synaptic stimulation. Given the powerful
inhibitory impact of GABAergic interneurons in the hippocampus,
and the fact that hippocampal GABAergic synapses are also capable
of expressing plasticity (Gibson et al., 2008; McMahon and Kauer,
1997), it will be critical to assess how hippocampal plasticity
involving hippocampal GABAergic interneurons might be altered
after chronic opiates. It should also be noted that chronic opiate
treatment upregulates the cAMP-adenosine cascade, a regulator of
transmitter release at most synapses, through which they could
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alter presynaptic transmitter release (Williams et al., 2001). Recent
evidence also confirmed that the disruption of hippocampal LTP at
excitatory synapses onto CA1 neurons is linked to the enhanced
adenosine-adenosine A1 receptor signaling in the hippocampus
after chronic morphine (Lu et al., 2010). On the other hand, Billa
et al. (2010) demonstrated the effects of chronic morphine treat-
ment on AMPAR expression, its subunit composition and LTD. Like
the VTA (Section 4.1), the expression of AMPAR GIuR1 subunit was
increased after chronic morphine treatment at hippocampal
synapses. Furthermore, chronic morphine increased the expression
of the GIuR3 subunit and resulted in a switch in the subunit
composition of AMPARs (replacement of GluR2-containing recep-
tors for GluR2-lacking receptors, similar to cocaine-induced plas-
ticity in the NAc, Conrad et al., 2008). Because of this switch chronic
morphine reduced the magnitude of LTD in the hippocampus.
These changes in glutamatergic signaling in the hippocampus in
response to chronic morphine are also proposed to underlie the
extinction of morphine-induced conditional place preference (Billa
et al, 2009). Altogether these studies suggest that morphine-
induced modulation of hippocamal plasticity may provide the
neural basis for memory deficits seen in opiate addicts. Further-
more, the relapse caused by drug-associated environmental cues
could be linked to drug-induced plasticity in the hippocampus
which is tightly interconnected with other opioid-sensitive areas
such as the reward mesolimbic pathway (see Fig. 1a).

4.4. The prefrontal cortex

The prefrontal cortex (PFC), a crucial part of the reward pathway,
plays an important role in the initiation of motivated behaviors and
is critically involved in opiate addiction. Specifically, relapse in
response to drug-associated cues could involve this region (De Vries
and Shippenberg, 2002). New studies have shown that relapse to
heroin-seeking is associated with plasticity in both glutamatergic
and GABAergic synapses in the PFC specifically in the medial part
(mPFC). For example, using an animal model of heroin self admin-
istration, Van den Oever et al. (2008) elegantly demonstrate that re-
exposure of heroin self-trained animals to heroin-associated cues
produces an LTD (reduced AMPAR- but not NMDAR-mediated
currents) in the mPFC pyramidal neurons which is dependent on
clathrin-mediated endocytosis of GluR2 AMPARs. Prevention of
AMPAR endocytosis significantly attenuated cue-evoked relapse to
heroin-seeking suggesting that glutamatergic plasticity and AMPAR
endocytosis in the PFC are critical targets for opiates in reinstate-
ment of heroin-seeking behaviors. Recently, the same group
provided evidence for heroin-induced GABAergic plasticity in the
mPFC. Interestingly, re-exposure to heroin-cues in animals self-
administering heroin also strengthened GABAergic transmission,
thereby enhancing the inhibition of mPFC pyramidal neurons. Given
that both the VTA and NAc are the main recipients of the PFC inputs,
the reduced excitatory inputs from the PFC could critically affect the
activity of its target neurons and contribute to drug-induced plas-
ticity in these areas (see Fig. 1a).

5. Synaptic plasticity contributes to addictive behaviors

So far we have discussed the recent literature on opiates and
synaptic plasticity in several main opiate-sensitive areas of the
brain but the challenging question arises as to how these effects of
opiates on synaptic transmission and plasticity contribute to
specific aspects of addictive behaviors? Based on the current
theories of addiction, at least three major contributors to relapse
and compulsive drug use are increased cravings, negative motiva-
tional states of withdrawal and diminished inhibitory control (Koob
and Volkow, 2009). Here, we will briefly start making the

connections between abnormalities of synaptic plasticity induced
by opiates in each region to different aspects of opiate-addictive
behaviors based on the individual role of each brain region and
neuronal pathway in drug-related behaviors. Insights from human
imaging studies have tremendously contributed in revealing the
roles of different brain regions and neuronal pathways that are
activated in response to natural reinforcers, drugs and drug-related
stimuli (Volkow et al., 2004). For more details on the correlation
between synaptic plasticity and drug-related behaviors, refer to the
following excellent reviews (Hyman et al., 2006; Koob and Le Moal,
2001; Volkow et al., 2004; Wolf, 2002).

Many of the behavioral models of addiction such as behavioral
sensitization, conditioned place preference, drug- self administra-
tion paradigms and human self-reports are context-dependent and
require activation of learning mechanisms (involvement of synaptic
plasticity) (Sell et al., 1999; Taubenfeld et al., 2010; Valjent et al.,
2010, 2006). For example, blockade of NMDA receptors in the VTA
prevents the induction of behavioral sensitization (Kalivas and
Alesdatter, 1993) as well as glutamatergic LTP in the VTA DA
neurons (Ungless et al., 2001). Therefore, it was proposed that LTP
at glutamatergic synapses onto the VTA DA neurons leads to
sensitization which may underlie altered learning and motivation
in response to drugs and drug-related cues contributing to
compulsive drug wanting and craving. Acute opiates induce this
form of glutamatergic LTP and also block LTPgapa in the VTA which
could promote DA cell excitability and result in increased DA
release in the NAc and PFC. The increased activity of the meso-
corticolimbic DA pathway and consequently prolonged DA release
in VTA targets could change synaptic plasticity in these dop-
aminoceptive areas as dopamine is a modulator of synaptic plas-
ticity. As a result the saliency value of drugs and drug-associated
cues could be exaggerated. In fact, it has been shown that cocaine-
induced plasticity in the VTA may trigger enduring forms of
cocaine-induced synaptic plasticity in the NAc. The authors
elegantly showed that local interference with mGluRs in the VTA
DA neurons triggered early and long-lasting forms of cocaine-
evoked plasticity in the NAc whereas local ablation of NMDARs in
DA neurons prevented cocaine-evoked plasticity in the NAc
(Mameli et al., 2009). Their data provided the first evidence for
a hierarchical link of cocaine-evoked plasticity between the VTA
and NAc and demonstrated the critical role for drug-induced
plasticity in the VTA and NAc in cue-induced cocaine seeking
behaviors. We assume that acute opiate-induced abnormalities of
LTP and LTD in the VTA and NAc may also account for positive
reinforcement of opiate-taking behaviors and opiate craving.

Opposite to the acute effects of opiates, chronic opiates are
associated with decreased DA release as a result of a marked
reduction in DA cell activity which could contribute to anhedonia
(less sensitivity to natural reinforcing and salient stimuli),
dysphoria and loss of inhibitory control observed in addicts
(Volkow et al., 2004). We assume that low- tonic level of DA activity
could also be shifted transiently to high-phasic DA activity in
response to drugs and drug-related cues promoting craving and
relapse. In the next paragraphs we will discuss how opiate-induced
plasticity in different brain regions may be involved in low- tonic
and high-phasic DA activity and its shift after chronic opiate use
and during withdrawal.

The effects of opiates on glutamatergic plasticity in the VTA are
complicated. Whereas chronic opiates have been shown to increase
the expression of GluR1 subunits in the VTA (induction of LTP),
however withdrawal from chronic opiates also results in decreased
glutamate release in the VTA (induction of LTD). Moreover, the
increased GABAergic inhibition (inhibitory LTP) in the VTA in
addition to the diminished size of DA neurons (structural plasticity)
after withdrawal from chronic opiate exposure would result in
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a reduced DA signaling. These alterations in synaptic transmission
in the VTA-NAc-PFC pathway after exposure to chronic opiates
could contribute to low-tonic DA activity which underlies the
aversive and negative motivational states of withdrawal critical for
opiate replace (Koob, 1992; Koob et al., 1989). Consistently, chronic
opiate-induced plasticity in the PFC (induction of glutamatergic
LTD and inhibitory LTP) could result in reduced activity of PFC
neurons, thereby decreasing the excitatory actions of PFC on the
VTA which may also contribute to low-tonic DA activity and the
aversive aspects of opiate withdrawal. A recent human study has
also confirmed that the PFC might be involved in anhedonia seen in
opiate addicts (Zijlstra et al., 2009). On the other hand, it is possible
that exposure to opiates and opiate-related cues triggers gluta-
matergic LTP and inhibitory LTDgaga While blocks LTPgaga in VTA
DA neurons. This could shift the DA activity from low-tonic to high-
phasic mode, resulting in an opiate-enhanced phasic DA signaling.
If this occurs, the phasic increase in DA release could promote the
sensitization to incentive motivational values of opiates and opiate-
related cues. In fact, higher activity of VTA is shown in response to
heroin-associated cues in abstinent heroin users (Zijlstra et al.,
2009). Consistently, the effects of chronic opiates on NAc plas-
ticity (induction of glutamatergic LTD and GABAergic LTP) could
lead to a reduced inhibitory feedback onto VTA DA neurons,
promoting an increase in activity of DA neurons. Nevertheless, we
should consider the possibility that different forms of plasticity in
response to drugs may be triggered simultaneously and/or
sequentially in different areas of the brain and each circuitry may
only be activated in response to specific stimulus/stimuli (for
example contextual cues for the hippocampus, see below).

The glutamatergic inputs from PFC, hippocampus and amygdala
and the DA inputs from the VTA determine NAc neuronal excit-
ability. The NAc therefore acts like a hub to integrate different
signals arising from limbic and cortical areas. The plasticity induced
by opiates in each of these areas could influence the net NA activity.
For example, the less excitability of NAc and PFC after chronic
opiates is proposed to underlie the loss of inhibitory control
important in drug addiction as both regions play an important role
in execution of goal-directed behaviors as well as drug seeking
behaviors (Wolf, 2002). Interestingly, the association between
environment and general contexts with the availability of drugs
could be shaped through hippocampal plasticity which could
enable drug-related contextual cues to elicit craving and relapse
(Taubenfeld et al., 2010). While different studies have linked the
impairment of hippocampal LTP to memory deficits in addicts, the
role of opiate-induced hippocampal plasticity in drug-related
contextual memories has been far less studied. Finally, it is
worthwhile to mention that an abnormal drug-induced plasticity
may be the first step in the cascade leading to the structural brain
changes that are necessary for long-lasting modifications in brain
function and consequently shaping drug-related behaviors
(Robinson and Kolb, 2004; Thomas et al., 2008; Wolf, 2002).

6. Conclusion

Regardless of the vast amount of data on the neuroadaptations
induced by opiates, it is a major challenge to pinpoint specific
adaptations underlying the hallmark features of opiate addiction,
i.e. opiate relapse and compulsive opiate-seeking and opiate-
taking. Fortunately, after the discovery of synaptic plasticity as
a cellular correlate of learning and memory, it has been recognized
that the process of addiction involves synaptic plasticity and
consequent pathological over-learning of drug values by the brain.
Different forms of plasticity at excitatory and inhibitory synapses
are found in opioid-sensitive areas of the brain that are the main
targets for opiates and also other addictive drugs. In general acute

and chronic opiates mainly induce LTP at excitatory glutamatergic
synapses (with some exceptions, e.g., in the NAc and the PFC). On
the other hand, the effects of acute and chronic opiates on
GABAergic plasticity may be different. Whereas acute opiates block
LTP, and may promote LTD at inhibitory GABAergic synapses,
chronic opiates mostly induce inhibitory LTP. It will be critical to
assess how glutamatergic, GABAergic and structural plasticity in
different opioid-sensitive areas work in concert to finally shape
opiate-addictive behaviors. The new synaptic concept of addiction
has begun to reveal the specific neurobiological processes involved
in natural reward as well as drug reward and holds high promise in
the discovery of efficient pharmacologic targets for drug craving
and relapse in addicts.
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