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Quality Assessment of Filtered Smoked Yellowfin
Tuna (Thunnus albacares) Steaks
Lori F. Pivarnik, Cameron Faustman, Santiago Rossi, Surendranath P. Suman, Catherine Palmer, Nicole L. Richard,
P. Christopher Ellis, and Michael DiLiberti

Abstract: Filtered smoke (FS) has been used to preserve taste, texture, and/or color in tuna and other fish species. This
treatment is particularly important in color preservation during frozen storage. The objective of this study was to compare
changes in the quality profiles of FS-treated and untreated (UT) yellowfin tuna (Thunnus albacares) steaks stored in 3 ways:
room temperature (21 to 22 ◦C), refrigerated (4 to 5 ◦C), and iced (0 ◦C). FS and UT steaks were processed from the
same lot of fish and analyzed for chemical, microbiological, lipid oxidation, color, and sensory profiles. Similar trends
were seen for microbial proliferation and accumulation of apparent ammonia and total volatile base nitrogen (TVB-N)
during the storage temperatures evaluated. Notable exception in quality profile was found in lipid oxidation which was,
as expected, lower for treated samples at all storage temperatures for TBARS (P < 0.05) and lower or significantly (P <

0.05) lower for POV values. FS increased the initial redness value significantly (P < 0.05). Unlike UT product, there was
no loss of color value concomitant with quality changes for FS-treated tuna for all storage temperatures evaluated.

Keywords: carbon monoxide, color, filtered wood smoke, seafood quality, tuna steaks

Practical Application: The overall goal of this project was to evaluate filtered smoked tuna steaks as to the impact on the
overall quality profile. As a color-stabilizing technology, it could mask deteriorating quality.

Introduction
Color of meat and seafood has a strong influence on consumer

acceptance. A bright red color is an important quality determi-
nant in seafood, particularly tuna, as the market value is based
on this attribute. After being cut and during standard commercial
frozen storage of tuna, there is a rapid formation of a brown color
(Anderson and Wu 2005). Color changes in tuna, from red/purple
to red-brown to brownish-red, reflect the chemical oxidation state
of the myoglobin within the muscle. The reduced ferrous heme
iron ion (Fe2+) in the myoglobin molecule is prone to oxidation
to the ferric form (Fe3+), which affects the color, taste, and tex-
ture (Faustman and Cassens 1990; Chan and others 1998). The
use of carbon monoxide (CO) either alone or as part of a filtered
wood smoke (FS) process, has been applied to seafood in an ef-
fort to maintain the desirable color attributes during storage and
transportation. When CO complexes with the heme iron of myo-
globin in meat it forms the stable red pigment, carboxymyoglobin.
Carboxymyoglobin is more resistant to oxidation than oxymyo-
globin because CO has a stronger binding affinity to the heme iron
than oxygen does (Livingston and Brown 1981). Although tuna
has been a primary product treated by this process, other seafood
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products—snapper, mahi mahi, marlin, swordfish, and tilapia—are
also being treated to help preserve color. During the FS process,
natural wood smoke is filtered to remove all or most of the taste
and odor components, and particulate matter from the vapor phase
of the smoke. This leaves CO as a significant component to bind
to the heme molecule and “fix” the red color in dark muscle
(Kristinsson and others 2006b). In addition, improving myoglobin
stability may improve lipid stability. The heme proteins are strong
catalysts of lipid oxidation in muscle (Richards and Hultin 2002;
Undeland and others 2004). Research on meat and tuna muscle
has shown an interaction between oxymyoglobin oxidation and
lipid oxidation (Faustman and others 1989; Lee and others 2003).
Oxymyoglobin oxidation by-products are prooxidative towards
unsaturated fatty acids, and conversely, the process of lipid oxida-
tion can generate chemical species that predispose myoglobin to
rapid oxidation (Greene 1969; Greene and others 1971; Faustman
and others 2010). FS treatment could result in fewer oxidation
products of fatty acids, which in turn, would result in delayed
production of off-flavors and off-odors in meat. However, the
use of color-stabilizing technologies with fresh meat might mask
microbial spoilage (Faustman and others 1989).

Filtered smoke treatment, when compared to UT controls, has
been shown by previous research to decrease bacterial load, in-
crease oxidative stability, and increase red color stability in stored
tuna (Ludlow and others 2004; Kristinsson and others 2008), mahi
mahi (Demir and others 2004; Kristinsson and others 2007), and
Spanish mackerel (Garner and Kristinsson 2004). The researchers
speculated that CO2 (21% of FS) and CO (18% of FS) worked
together to reduce and suppress microbial growth and that a va-
riety of other compounds in FS may impart antimicrobial effects.
Impacts observed when FS was applied were not always seen when
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pure CO was used (Kristinsson and others 2006a). The application
of pure CO gas on tuna quality resulted in a delay of undesirable
color changes when high gas concentration (100%) was used; low
levels (4%) did not impact color. In addition, FS has been shown
to have a greater impact on microbial growth than pure CO due
to possible residual impacts in the muscle tissue (Kristinsson and
others 2006b).

Thus far, research has focused on the effects of CO alone and/or
FS treatment on fish quality as delineated by microbial, lipid oxida-
tion and color stability assessments (Garner and Kristinsson 2004;
Ludlow and others 2004; Kristinsson and others 2007, 2008).
Only mahi-mahi was studied for sensory attributes with semi-
trained sensory analysts (Kristinsson and others 2008). No study
has integrated expert sensory assessments and traditional seafood
spoilage indicators (for example, TVB) with microbial, lipid ox-
idation, and color determinants for a complete quality profile of
tuna that has been treated with FS. This additional information
would be necessary to more fully assess the impact of FS on per-
ceived quality of seafood. Concerns have been raised regarding
quality and safety of these products which may be disguised by a
“fresh-looking” piece of fish (Anderson and Wu 2005). The orig-
inal draft of the Food Safety Enhancement Act (H.R. 3/26/2009;
H.R. July 2009) reflected this on-going concern by including a
directive for the FDA to conduct a safety assessment on the use of
carbon monoxide on meat, poultry, and seafood products. While
this order does not appear to be included in the final amended
bill, it indicated that there were still concerns about this particular
technology on quality and safety of food. Therefore, more infor-
mation is still needed to completely evaluate the impact of filtered
smoke on the indicators of quality of seafood.

The overall goal of this project was to evaluate commercially
processed, filtered smoked tuna steaks as to the overall quality
profile. Specific objectives included establishing (1) profiles of
chemical quality indicators, (2) enumeration of microbial growth,
(3) lipid oxidation changes, (4) sensory assessment parameters, and
(5) color change and stability.

Materials and Methods

Raw material
Yellowfin tuna (Thunnus albacares) was obtained through

Clearsmoke R© Technologies, Atlanta, Georgia. The fish were
caught by long lines in the Gulf of Mexico in December and
were headed, gutted, and fins removed on-board. The fish were
shipped via ground transportation from Louisiana, packaged in
ice, and held under refrigeration upon receipt at the Clearsmoke
Technologies facility. The 4 to 5 d old fish were rated as Grade 2.
Grade 2 tuna is used in the lower end sashimi markets or high end
restaurants, where tuna is prepared semi cooked (Bartram 1996;
Ledafish 2011). The main differences between Grade 1 and Grade
2 tuna is with respect to red color; where Grade 1 tuna has bright
red muscle and translucent flesh (clarity) compared to Grade 2 tuna
with red muscle and some translucency (Bartram 1996; Ledafish
2011). Total of 3 whole tuna, from the same lot, were used for
this project. One upper and one lower tuna loin from each fish
were separated into 2 groups—one that would be treated with FS.
and one that would not be treated (UT). Each group contained
equal numbers of pieces from upper and lower loins. A total of
48 steaks for FS and UT samples were used for this study and the
steaks were sampled randomly. The average weight and thickness
measurements were taken on 14 (n = 14) randomly selected tuna
steaks for untreated and treated samples. The average weight and

thickness of UT steaks were 236.9 ± 86.2 g and 20.3 ± 2.7 mm,
respectively. The average weight and thickness of FS steaks were
235 ± 73.2 g and 20.0 ± 3.5 mm, respectively. UT steaks were
vacuum-packaged and frozen immediately. Remaining steaks were
treated with filtered smoke.

Filtered smoke treatment
A total of 4 to 6 randomly sampled steaks were placed in a

vacuum bag, air removed, and treated with filtered smoke using
pilot scale equipment at Clearsmoke Technologies. The smoke
contained 16% CO (verified on-site). Bags were held under re-
frigeration for about 48 h, flushed, vacuum-packaged, sealed, and
frozen after treatment. All UT and FS samples were held for 30 d
and shipped frozen, overnight, to the Univ. of Rhode Island where
they were held frozen until storage trials began.

Storage and preparation of fish samples
All frozen samples were thawed at refrigerated temperature (4 to

5 ◦C) prior to time/temperature storage trials. Three steak sam-
ples were placed next to each other in unclosed, oxygen permeable
plastic bags and stored at room temperature (22 ◦C), refrigerated
(4 to 5 ◦C), and in ice (0 ◦C). UT and FS products were packaged
separately. Fish stored at room temperature were evenly spaced out
in plastic trays under a fume hood. Products held at refrigerated
temperatures were stored in plastic trays and spaced evenly. Sam-
ples held in ice were positioned upright in an insulated cooler,
surrounded by ice with the opening to the plastic bags oriented
to prevent melting ice water from entering the bag. A day “zero”
represented the first set of samples.

Packages for each sampling interval were assigned a ran-
dom 3-digit code and duplicate bags of fish samples, each bag
with 3 steaks, were selected randomly at each time point. One
bag containing samples (n = 3) was immediately tested for
aerobic plate counts and then vacuum-packaged (Super Vac,
Smith Equipment, Clifton, N.J., U.S.A.), frozen and stored at
−70 ◦C for chemical analyses. The other package was vacuum-
packaged, stored at −70 ◦C until overnight shipment for sensory
testing at the Natl. Marine Fisheries Service, Gloucester, Mass.,
U.S.A.

Samples for color and lipid oxidation were transported on ice to
the Univ. of Connecticut. Fish samples were stored and sampled
under the same conditions as at the URI facility. Color deter-
minations were made on each steak followed by lipid oxidation
measurements.

Microbiological assessment
Psychrotrophic bacteria counts were obtained by the standard

agar plate count per AOAC (1990) method 966.23 and FDA (1995)
BAM. Total aerobic plate counts on fish tissue were done asep-
tically. Approximately one-half of each steak was blended using
a Handy-ChopperTM (Black-Decker, Shelton, Conn., U.S.A.).
Total of 11 g of the blended tissue were transferred into indi-
vidual sterile Whirlpak bags containing 99 mL of sterile Butter-
fields Phosphate buffer and pulsified, using a PulsifierTM (Filtaflex
Ltd., Almonte, Ontario, Canada) for 60 s. This was followed by
standard dilutions and plating using the spread plate technique
onto plate count agar and incubated at 25 ◦C for 48 h follow-
ing accepted methods of sampling, preparation, and enumeration
(Banwart 1989; FDA 1995; Venkitanarayanan and others 1997; Jay
2000). Mean values represented the 3 determinations.

S370 Journal of Food Science � Vol. 76, Nr. 6, 2011
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Sample preparation for apparent ammonia and TVB-N
analyses

Vacuum-sealed frozen samples were thawed using cold running
water in preparation for chemical analyses. Thawed steaks were ho-
mogenized, individually, using a handy-chopper (Black-Decker).
Each homogenate was then sampled for apparent ammonia and
TVB determinations resulting in 3 measurements. All homog-
enized samples were vacuum-packaged (Super Vac) in pouches
(Market Sales Co., Newton, Mass., U.S.A.) and frozen at −70 ◦C
until analysis was performed.

Apparent ammonia by ISE
Apparent ammonia was determined on all homogenates using

the ISE procedure (AOAC 2000) method 999.01 as originally
outlined by Pivarnik and others (1998). Briefly, 5 g of comminuted
fish tissue samples were blended with 95 mL of water for 2 min,
and pH adjusted with 2 mL alkaline ion-strength adjuster (ISA)
solution. The compounds contributing to the ammonia response
were immediately determined using a precalibrated Orion model
95–12 ammonia gas-sensing, ion-specific electrode, and an Orion
Model 290A portable pH/ISE meter (Thermo Orion, Beverly,
Mass., U.S.A.). All results were reported as miligram apparent
ammonia per 100 g of fish tissue (Pivarnik and others 1998).

TVB-N analysis
TVB analysis was conducted on a double trichloroacetic acid

(TCA) extraction. TVB concentrations were determined by distil-
lation and titration as specified by published procedures (Malle and
Tao 1987; Malle and Poumeyrol 1989). Briefly, 50 g comminuted
fish were blended in 100 mL 7.5% (w/v) TCA solution at high
speed for 2 min. The homogenate was filtered through Whatman
nr 1 filter paper. A 25 mL aliquot of the TCA extract was pipetted
into a distilling flask (250 mL Tecator digestion tube) and 10 mL
10% NaOH was added. Steam distillation (Tecator Kjeltec Model
1002 distillation unit) lasted until 75 mL liquid was collected in
a 125 mL Erlenmeyer flask containing 10 mL Kjeldahl indicator
solution (4 g boric acid in distilled water containing 0.7 mL 0.1%
alcoholic solution of methyl red and 1.0 mL 0.1% alcoholic solu-
tion of bromocresol green diluted to 100 mL in distilled water) per
AOAC (1995) method 980.10. The green alkaline distillate was
back-titrated with 0.025 N sulfuric acid to its original red color.

Lipid oxidation
The thiobarbituric acid (TBA) procedure of Yin and others

(1993) was used to assess lipid oxidation and reported as TBA-
Reactive Substances (TBARS). Analysis of peroxide values (POV)
was conducted by a modified procedure of Shantha and Decker
(1994). Whole muscle steak samples were stored in vacuum pack-
ages for the storage portion of this study to prevent oxygen pen-
etration into the package. For the TBA test, BHA was added
into the acid tissue extract to prevent the production of oxidation
products during the analytical preparation of the sample. Briefly,
triplicate 5 g samples were each added to 10 mL distilled water
and 12.5 mL 20% trichloroacetic acid (TCA). The mixture was
homogenized for 1 min in a Waring blender and filtered through
Whatman nr 1 filter paper. A total of 1 mL filtrate was mixed with
1 mL 20 mM aqueous TBA and incubated at 25 ◦C for 21 h. The
absorbance was measured at 532 nm and reported as TBARS.

Color assessment
L∗ (lightness), a∗ (redness), and b∗ (yellowness) values (Faustman

and Phillips 2001) were recorded from 2 different surface locations

on the tuna steaks using a Minolta Chromameter CR 200 (Osaka,
Japan) calibrated to a standard white plate. Illuminant used was
C (6774K) and the measuring area was 8 mm. All fish samples
were analyzed in their vacuum packages. Total of 3 different mea-
surements were taken across each product surface and averaged to
obtain the mean value for each experimental unit. In addition, the
color penetration was measured in representative samples. Samples
were sliced in half, perpendicular to the long axis of the muscle,
and measured (mm) relative to the depth of surface red coloration.
This was done over storage to determine if the surface color layer
changed in a manner consistent with what has been observed in
red meat (Faustman and Cassens 1990).

Expert sensory assessment
Vacuum-packaged, frozen fish samples were shipped overnight

to the USDC/NOAA sensory laboratory in Gloucester, MA. This
laboratory fulfilled all of the requirements mandated by the ASTM
STP 913 (ISO 1993) guidelines for physical design of sensory eval-
uation laboratories. Upon arrival, the samples were checked to
ensure that the frozen integrity had been maintained and placed
in a −80 ◦C freezer and stored for no longer than 1 mo before
sensory evaluation of raw product. Prior to a scheduled sensory
session, samples were prepared in an odor-free area that was sepa-
rated from the sensory testing facility. The vacuum-sealed samples
were tempered at 4 ◦C for 12 h, and brought to room tempera-
ture in running water immediately before sensory evaluation. All
packages were identified by random 3-digit codes and placed in
booths.

Three expert inspectors, internationally calibrated and trained,
and who had achieved test scores of greater than 85% during past
testing sessions, were chosen to conduct the sensory assessments on
all samples. Each inspector had at least 10 y of practical experience
and had been trained by attending a minimum of 3 international
free trade harmonization workshops. After training, using a 100
mm line, each inspector was presented with 120 test samples and
had to achieve a score of 85% or better and “expert” status accord-
ing to statistical criteria agreed upon by FDA and NMFS in the
U.S. and the Canadian Food Inspection Agency (Reilly and York
1993). Each inspector also met International Standards (ISO) for
sensory evaluation criteria (ISO 1993). A minimum of 3 sensory
experts is required to achieve statistically valid results for qual-
ity and decomposition evaluation and to ensure a high degree of
acuity and reproducibility (Poste and others 1991; Sims and others
1992; Pivarnik and others 2001). The analysts independently eval-
uated each sample for appearance, texture, and odor in the raw
state. Sample evaluation was conducted in a facility illuminated
with artificial daylight and red amber lights.

Analysts evaluated each sample using a standardized ballot de-
veloped during international exercises involving harmonization
for product sensory standards and criteria that USDC/NOAA
seafood analysts had participated in developing. The ballot con-
sisted of the 3-digit sample number, an unstructured 100-mm line
scale, a place to indicate whether the sample passed or failed for de-
composition, and a space to write any descriptive information for
each sample. Overall evaluation, while primarily reflecting odor,
incorporated some general textural and appearance qualifiers as
verification for the odor assessment. The line scale represented
the degree of continuous deterioration of the sample, where 0 =
no deterioration and 100 = severe decomposition. Samples ob-
taining sensory scores of greater than 50 were considered unac-
ceptable, as agreed during an International Free Trade agreement
workshop and detailed during the harmonization workshops.

Vol. 76, Nr. 6, 2011 � Journal of Food Science S371
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Following independent evaluation, a panel leader collected
pass/fail decisions, numerical data, and any terminology that de-
scribed sensory characteristics.

Statistical analysis
All assays were determined in triplicate and the results were

reported as means. The significance of the differences were de-
termined between treated and untreated samples, at the different
temperature storage conditions by two-way analysis of variance
(ANOVA) followed by F-tests and student t-tests using the Excel
data analysis tools (Microsoft Excel 2000, Microsoft Corp., Red-
mond, Wash., U.S.A.). Significance of difference was reported at
P ≤ 0.05.

Results and Discussion
Microbiological analyses indicated that at time zero, there was a

significant (P < 0.05) difference between UT and FS samples
(Figure 1), where initial microbial concentrations were 3.9 ±
0.39 log CFU/g fish and 5.0 ± 0.4 log CFU/g fish, respec-
tively. However, no differences (P > 0.05) in microbial pro-
liferation were found between UT and FS samples when the
entire storage period was evaluated. These results were unex-
pected, since the results of previous research had shown an im-
pact of FS treatment on lowering the initial microbial levels
in tuna. While similar microbial growth trends to this study
were observed in tilapia, where no differences were found over
storage time at room temperature and refrigerated storage tem-
perature (Leydon and others 2005), other research has shown
an impact of treatment on the initial microbial load in mahi
mahi (Kristinsson and others 2007) and tuna (Ludlow and others
2004; Kristinsson and others 2008). Kristinsson and others (2007)
showed that while lower (P < 0.05) microbial concentrations
were determined for FS-treated mahi mahi during initial storage at
4 ◦C, no differences (P > 0.05) were determined between UT and

FS product after 8 d of storage. Application of Clearsmoke (FS) to
yellowfin tuna was also shown by Kristinsson and others (2008) to
depress microbial growth. However, in some of the studies, while
the same FS was applied, it was done in a controlled laboratory
environment, using a commercial cylinder as the source of the
FS gas at 18% CO (Kristinsson and others 2006b, 2008). The gas
applied in this study reflected commercial application in a pilot
plant facility using 1 d old compressed FS gas with a CO con-
centration of 16%. This variation could account for the difference
in the results obtained reflecting application parameters and/or
level of gas saturation in the product (not evaluated in this study).
This disagreement in microbial profiles reported by the different
studies is noteworthy since they could reflect the importance of
standardized protocol for FS application and its ultimate impact on
microbial assessment. In this study, filtered smoke did not appear to
impact microbial proliferation either initially or during prolonged
storage at the temperatures evaluated.

The other quality indices measured did not show a quality
profile impact of treatment over untreated samples during storage
at the different storage temperatures. Accumulation of apparent
ammonia, with the exception of room temperature storage, and
TVB-N in UT and FS tuna samples did not differ (P > 0.05)
during storage (Figure 2 to 4). FS-treated product did have slightly
higher apparent ammonia at time zero, 19 mg/100g compared
with 16.7 mg/100g for untreated product, and significantly greater
(P < 0.05) accumulation during room temperature storage.

A notable exception to the lack of difference in quality profile
indicators between FS and UT samples was for lipid oxidation.
Lipid oxidation indicators were lower (P < 0.05) for treated sam-
ples at room temperature and iced for POV values (Figure 5) and
at all storage temperatures for TBARS (Figure 6). As expected,
these values were lower at lower storage temperatures (P < 0.05).
The FS treatment depressed the oxidative rancidity development
(P < 0.05) during all storage temperatures evaluated. Other
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Figure 1–Microbiological proliferation in FS
and UT tuna steaks stored at room
temperature (22 ◦C), refrigerated (4 to 5 ◦C),
and in ice (0 ◦C).
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researchers have also shown that CO and/or FS treatments, when
compared with untreated products, effectively depressed lipid ox-
idation in mahi mahi (Kristinsson and others 2007), tuna (Ludlow
and others 2004), and Spanish mackerel (Garner and Kristins-
son 2004). The major components involved in lipid oxidation
of fish muscle are the heme proteins, hemoglobin, and myo-
globin (Richards and Hultin 2002; Richards and Dettmann 2003;

Kristinsson and others 2007; Faustman and others 2010). Stabiliza-
tion of heme proteins would be expected to reduce lipid oxidation
rates (Kristinsson and others 2007) as the relationship between
myoglobin and lipid oxidation in yellowfin tuna has been docu-
mented (Lee and others 2003; Faustman and others 2010). Other
components of FS include carbon dioxide (CO2), and gaseous
phenolics (Kowalski 1999; Kristinsson and others 2007). Carbon
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Figure 2–Apparent ammonia and TVB-N in FS
and UT tuna steaks stored at room
temperature (22 ◦C).
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Figure 3–Apparent ammonia and total volatile
base-nitrogen (TVB-N) in treated (FS) and
untreated (UT) tuna steaks stored refrigerated
(4–5 ◦C).
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dioxide and N2 might impact bacterial growth, but these gases
have not shown a strong correlation with color and/or lipid oxi-
dation (Kristinsson and others 2006a). Phenolics may contribute
to the antioxidant impact of the FS. Although many of the partic-
ulate phenols are removed during filtration, some minor gaseous

phenols remain; however, their antioxidative function would be
minor compared to CO (Kristinsson and others 2006a).

Significantly (P < 0.05) different expert sensory evaluations
are shown for UT and FS tuna steaks stored at all trial tempera-
tures in Figure 7 to 9. The chemical and microbial quality profile
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Figure 4–Apparent ammonia and TVB-N in FS
and UT tuna steaks stored in ice (0 ◦C).
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refrigerated (4 to 5 ◦C), and in ice (0 ◦C).
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measurements for refrigerated (Figure 7) and iced (Figure 8) tuna
steaks were supported by the sensory evaluation, where the time
of rejection or borderline acceptability (≥ 50 mm) of the tuna
steaks were not different between UT and FS products. Similar
results were obtained for mahi-mahi where FS and UT samples,
stored at 4 ◦C, both crossed above the limit of sensory accept-
ability at the same time (Kristinsson and others 2007). Both UT

and FS samples were at borderline quality after 4 d at refrigeration
temperatures and were considered unacceptable after 15 d on ice,
in agreement with the microbial proliferation profile observed.
However, when fish was stored at abusive or room temperature
(Figure 9), sensory assessment indicated significant differences in
acceptability between UT and FS, with UT samples having ac-
celerated unacceptable sensory scores. During the storage trials,
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Figure 6–TBAR values for FS and UT tuna
steaks stored at room temperature (22 ◦C),
refrigerated (4 to 5 ◦C), and in ice (0 ◦C).
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Figure 7–Expert sensory evaluation of FS and
UT tuna steaks stored refrigerated (4 to 5 ◦C).
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in addition to the documented added benefit of FS treatment,
lower temperatures would also suppress the development of ox-
idative rancidity. Concentrations of oxidative compounds formed
(Figure 5 and 6) at lower temperatures, though lower in FS-treated
products than UT, may not have been sufficiently high enough in
either product to have impacted expert sensory assessment of UT
or FS tuna. However, at room temperature oxidative rancidity

developed quickly and dramatically to levels that may have been
more easily identified by sensory analysts in the UT product. This
could account for the sensory differences (P < 0.05) obtained
between UT and FS tuna stored at room temperature.

Finally, color is an important quality attribute of meat and
seafood, especially for tuna where the market value is based on
muscle appearance and color. Lightness (L∗), yellowness (b∗), and
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Figure 8–Expert sensory evaluation of FS and
UT tuna steaks stored in ice (0 ◦C).
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Figure 9–Expert sensory evaluation of FS and
UT tuna steaks stored at room temperature (22
◦C).
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redness (a∗) are presented in Table 1 to 3, respectively. No dif-
ferences were observed for initial L∗ and b∗ color values between
UT and FS tuna (Table 1 and 2, respectively). Overall, there were
no clear trends that showed that treatment affected L∗ or b∗ color
values consistently. There were no changes in L∗ for any of the
storage conditions for FS fish (Table 1). While b∗ showed a slight
significant (P < 0.05) increase in FS tuna during storage in ice,
this was not observed for other samples evaluated (Table 2). No
effect of treatment on L∗ and b∗ was reported by other researchers
(Kristinsson and others 2006b). However, redness, a∗ value, which
is considered an important color parameter since red color is highly
valued for quality, was impacted by the filtered smoke treatment
for all storage temperatures. Treatment significantly (P < 0.05)
increased a∗ at time zero, with values of 5.1 ± 1.2 and 9.7 ±
1.4 for UT and FS tuna, respectively (Table 3). These results agree
with Kristinsson and others (2006c), who reported an approximate
2-fold increase in a∗ for tuna steaks, grades A and B, treated with
either 100% CO or FS (20% CO). When grade C brown tuna
steaks were treated with 100% CO, the red color was restored.
However, color restoration for grade C steaks did not occur with
FS (20% CO; Kristinsson and others 2006c). A significant (P <

0.05) decrease in a∗ was observed for the UT product during all
storage temperatures evaluated in this study. This initial discol-
oration difference may be due to the impact of oxidation of heme
proteins due to cutting and freezing, with the color stabilized by
the treatment of tissue with FS (Anderson and Wu 2005). How-
ever, there were no significant (P > 0.05) changes in a∗ for treated
tuna steaks during any of the storage temperatures evaluated.

Discoloration in stored meat is generally attributed to the
change in the myoglobin redox status (Richards and Hultin 2002;

Faustman and others 2010). The redox state of the heme iron
dictates the color of fish muscle (Lee and others 2003). The re-
duced ferrous heme iron ion (Fe2+) in the myoglobin molecule
is prone to oxidation to the ferric form (Fe3+), which affects the
color, taste, and texture (Faustman and Cassens 1990; Chan and
others 1998). The CO component of FS binds with the heme
iron of myoglobin forming carboxymyoglobin, which is more re-
sistant to oxidation than oxymyoglobin because CO has a stronger
binding affinity to the heme iron than oxygen does (Livingston
and Brown 1981; Kristinsson and others 2007). While forma-
tion of Maillard products could contribute to surface browning
through aldehyde groups of lipid oxidation products and amines,
this has been more typically associated with cooked or freeze-dried
meat products. Conversion of red ferrous oxy-heme proteins (that
is, myglobin, hemoglobin) to brownish ferric met-heme proteins
has been attributed to the color changes typically observed in
fresh/frozen tuna (Chow and others 2004; Sohn and others 2005;
Thiansilakul and others 2011). While it has been well documented
that FS and/or CO treatment stabilizes red color in tuna, mahi
mahi, and Spanish mackerel during frozen or refrigerated stor-
age, research has indicated that redness faded upon aerobic storage
albeit at a much slower rate that what occurs in untreated fish
(Kristinsson and others 2006b). The color change with storage
time did not occur in this study. As stated previously, the differ-
ence seen in color stability between the current study and that
reported by other researchers could be attributed to treatment
methodology. Therefore, if applications of FS are not uniformly
applied and different procedures are used, then assurances of the
quality profiles of fish, as mirrored by color changes, may not be
the same.

Table 1–Changes of lightness (L∗) color value in untreated and filtered smoked tuna steaks stored and sampled at 3 different time/temperature
conditions: room temperature (22 ◦C) sampled hourly, refrigerated (4 to 5 ◦C) sampled daily, and refrigerated on ice (0 ◦C) sampled daily.

Untreated Tuna Filtered Smoked Tuna
Sampling time/storage temperature Sampling time/storage temperature

Hour/22 ◦C Day/4 to 5 ◦C Day/0 ◦C Hour/22 ◦C Day/4 to 5 ◦C Day/0 ◦C

0a 32.3 ± 2.7 0 32.3 ± 2.7 0 32.3 ± 2.7 0a 32.2 ± 1.9 0 32.2 ± 1.9 0 32.2 ± 1.9
6 39.6 ± 1.4 1 33.3 ± 2.0 3 35.4 ± 4.2 6 36.8 ± 4.7 1 31.3 ± 1.1 3 32.2 ± 1.5
12 33.3 ± 2.1 2 31.9 ± 1.6 6 37.4 ± 2.8 12 33.9 ± 1.9 2 31.8 ± 0.7 6 31.8 ± 0.7
18 31.5 ± 1.3 3 35.5 ± 3.1 9 36.7 ± 3.8 18 34.0 ± 1.7 3 34.3 ± 1.4 9 34.5 ± 0.7
26 36.3 ± 2.8 4 33.3 ± 3.1 12 33.8 ± 2.0 26 34.0 ± 1.5 4 31.9 ± 0.5 12 32.0 ± 1.0
32 36.1 ± 0.8 15 34.4 ± 2.8 32 35.5 ± 3.1 15 34.4 ± 2.9
40 35.3 ± 3.1 40 36.2 ± 1.4

Significant difference (P < 0.05) in lightness during storage
YES NO NO NO NO NO

aTime zero lightness (L∗) color values between untreated and filtered smoke tuna samples were not different (P > 0.05).

Table 2– Changes of yellowness (b∗) color value in untreated and filtered smoked tuna steaks stored and sampled at 3 different
time/temperature conditions: room temperature (22 ◦C) sampled hourly, refrigerated (4 to 5 ◦C) sampled daily, and refrigerated on
ice (0 ◦C) sampled daily.

Untreated tuna Filtered smoked tuna
Sampling time/storage temperature Sampling time/storage temperature

Hour/22 ◦C Day/4 to 5 ◦C Day/0 ◦C Hour/22 ◦C Day/4 to 5 ◦C Day/0 ◦C

0a 2.1 ± 1.5 0 2.1 ± 1.5 0 2.1 ± 1.5 0a 1.0 ± 0.3 0 1.0 ± 0.3 0 1.0 ± 0.3
6 5.1 ± 2.7 1 1.7 ± 0.4 3 2.0 ± 0.4 6 1.9 ± 0.7 1 2.6 ± 1.0 3 1.6 ± 0.3
12 3.0 ± 1.5 2 1.7 ± 0.7 6 2.4 ± 0.3 12 1.1 ± 0.6 2 2.0 ± 0.8 6 2.1 ± 0.7
18 2.2 ± 1.1 3 3.2 ± 1.3 9 4.7 ± 2.1 18 1.6 ± 0.5 3 3.1 ± 1.8 9 2.8 ± 0.4
26 2.5 ± 1.1 4 1.7 ± 0.3 12 4.0 ± 0.7 26 1.1 ± 0.6 4 1.9 ± 1.5 12 2.5 ± 0.1
32 2.9 ± 0.8 15 2.6 ± 0.4 32 1.5 ± 0.9 15 2.4 ± 1.1
40 2.2 ± 0.8 40 1.0 ± 0.5

Significant difference (P < 0.05) in yellowness during storage
NO NO NO NO NO YES

aTime zero yellowness (b∗) color values between untreated and filtered smoke tuna samples were not different (P > 0.05).
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Table 3–Changes of redness (a∗) color value in untreated and filtered smoked tuna steaks stored and sampled at 3 different time/temperature
conditions: room temperature (22 ◦C) sampled hourly, refrigerated (4 to 5 ◦C) sampled daily, and refrigerated on ice (0 ◦C) sampled daily.

Untreated tuna Filtered smoked tuna
Sampling time/storage temperature Sampling time/storage temperature

Hour/22 ◦C Day/4 to 5 ◦C Day/0 ◦C Hour/22 ◦C Day/4 to 5 ◦C Day/0 ◦C

0a 5.1 ± 1.2 0 5.1 ± 1.2 0 5.1 ± 1.2 0a 9.7 ± 1.4 0 9.7 ± 1.4 0 9.7 ± 1.4
6 5.5 ± 1.5 1 4.3 ± 0.8 3 3.3 ± 0.7 6 11.3 ± 0.2 1 11.2 ± 3.7 3 9.3 ± 0.5
12 4.0 ± 0.1 2 2.7 ± 0.7 6 3.0 ± 0.5 12 9.9 ± 0.5 2 10.6 ± 1.3 6 10.3 ± 2.3
18 3.6 ± 0.8 3 3.9 ± 0.4 9 3.6 ± 0.9 18 10.6 ± 1.1 3 11.1 ± 2.9 9 9.8 ± 1.5
26 3.1 ± 1.2 4 3.1 ± 0.2 12 3.4 ± 0.3 26 9.2 ± 0.7 4 9.3 ± 2.6 12 10.4 ± 0.5
32 2.7 ± 0.7 15 2.5 ± 0.5 32 10.5 ± 0.2 15 10.0 ± 0.2
40 3.4 ± 0.3 40 10.0 ± 1.1

Significant difference (P < 0.05) in redness during storage
YES YES YES NO NO NO

aTime zero redness (a∗) color values between untreated and filtered smoke tuna samples were significantly different at P < 0.05.

Conclusions
Microbial, chemical and expert sensory analyses all showed sim-

ilar patterns of quality and spoilage changes during storage for
UT- and FS-treated tuna. The impact on enhanced lipid stability
through decreased oxidation rates in FS-treated samples would be
important in the protection of the omega-3 fatty acids, important
to health. However, while color, as determined by redness, faded
during storage of UT tuna and paralleled the laboratory and sen-
sory assessments, there were no significant changes in red color
in the FS tuna over the storage periods, regardless of tempera-
ture, even if all other quality profile indicators revealed a declining
product. Furthermore, in this study, FS treatment did not in-
crease the shelf life of the tuna when stored at refrigerated or
iced temperatures. Therefore, a general statement indicating that
all FS treatments would extend shelf life or depress initial micro-
bial growth would not be appropriate. Finally, the lack of color
change, a primary sensory assessment used by consumers when
purchasing this product, confirms that FS application could mask
a lower quality product in the marketplace.
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