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ABSTRACT 

Acoustic methods may improve the ability to identify cetacean species during 
shipboard surveys. Whistles were recorded from nine odontocete species in the 
eastern tropical Pacific to determine how reliably these vocalizations can be clas- 
sified to species based on simple spectrographic measurements. Twelve variables 
were measured from each whistle ( n  = 908). Parametric multivariate discrimi- 
nant function analysis (DFA) correctly classified 41 . l% of whistles to species. 
Non-parametric classification and regression tree (CART) analysis resulted in 
5 1.4% correct classification. Striped dolphin whistles were most difficult to clas- 
sify. Whistles of bottlenose dolphins, false killer whales, and pilot whales were 
most distinctive. Correct classification scores may be improved by adding prior 
probabilities that reflect species distribution to classification models, by rneasur- 
ing alternative whistle variables, using alternative classification techniques, and 
by localizing vocalizing dolphins when collecting data for classification models. 

Key words: species identification, towed hydrophone array, sonobuoy, discrimi- 
nant function analysis, decision tree, dolphin, whistle, acoustic, Stenella longirost- 
ris, Stenella attenuata, Stenella coeruleoalba, Delphinus delpbi.c, Delpbinzls capensis, 
Tursiops truncatuJ , Steno bredanensis, Globicepbala macrorhyncbus, Pseudorca crassidens. 

Visual detection and identification of cetaceans during shipboard surveys is 
often constrained by inclement weather, darkness, and animal behavior. Sound 
propagates long distances in the ocean (Medwin and Clay 1998) and many ceta- 
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ceans are extremely vocal (Richardson et al. 1995). As a result, acoustic tech- 
niques can augment visual surveys by providing methods for detection and iden- 
tification of cetaceans when they are likely to be missed by visual observers. The 
use of acoustic techniques to complement visual efforts has increased rates and 
distances of detection for several cetacean species, including: humpback whales 
(Megaptera novaeangliae, Winn et al. 1975), sperm whales (Physeter macrocephalus, 
Leaper et al. 1992), blue and fin whales (Balaenoptera mzlsculus and B. physalus, 
Clark and Fristrup 1997), bowhead whales (Balaena mysticetus, Clark and Ellison 
2OOO), striped dolphins (Stenella coeruleoalba, Gordon et  al. 2000), and other del- 
phinids (Thomas et al. 1986). While the use of acoustic techniques to detect ma- 
rine mammals is becoming an increasingly common element of shipboard 
surveys, acoustic species identification has, until recently, received less attention 
(Steiner 1981, Potter et al. 1994, Schultz and Corkeron 1994, Wang et al. 1995, 
Matthews et  al. 1999, Rendell et al. 1999, Mellinger and Clark 2000). 

Using multivariate discriminant function analysis, Steiner (1981) correctly 
classified the whistles of five western North Atlantic odontocete species 70% of 
the time. Wang et al. (1995) correctly classified 65% of the whistles of seven 
odontocete species from diverse geographic locations. Rendell et al. (1999) cor- 
rectly classified 55% of the whistles of five odontocete species from several geo- 
graphic locations. In contrast, Matthews et  al. (1999) examined the potential for 
acoustic species recognition using published spectrographic measurements for 10 
cetacean species (nine odontocetes and one mysticete) and achieved only 28% 
correct classification. 

To facilitate comparisons among studies, Steiner (198l), Wang et al. (1995), 
Rendell et  al. (1999), and Matthews et al. (1999) reported similar spectrographic 
measurements. These measurements can be taken quickly and reliably in the 
field, which is advantageous if the goal is to aid visual observers with real-time 
species identification. As an alternative approach, Fristrup and Watkins (1993) 
devised a number of statistical measures to resolve the many acoustic features 
used to describe sounds. When these measures were taken from the vocalizations 
of 53 marine mammal species (including mysticetes, odontocetes, and pinnipeds) 
and linear classification techniques were applied, a correct classification score of 
50% was obtained. Fristrup and Watkins (1993) also used tree-based classifica- 
tion models, which classified 66% of vocalizations to the correct species. 

Correct classification scores obtained in most whistle classification studies have 
been significantly greater than would be expected by chance alone, suggesting 
that differences in whistle structures can be used to identify species. However, in 
most cases whistles were recorded from only a few different groups of animals. 
As a result, high correct classification scores could be biased by over-sampling 
groups or individuals and not controlling for group composition or behavioral 
variation in call types. 

With the exception of Steiner (1981), the aforementioned studies classified the 
vocalizations of species recorded in widely separated geographic locations. The 
correct classification scores in these studies may therefore be a function of geo- 
graphic differences as well as interspecies differences. To determine whether 
acoustic signals can be useful for species identification during marine mammal 
surveys, many recordings from a single study area should be classified. In this 
study two different statistical methods are used to develop classification systems 
for the tonal whistles of nine odontocete species recorded in the eastern tropical 
Pacific Ocean (ETP). 
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METHODS 

Data Collection 

Acoustic recordings were made from 31 July through 9 December 1998 and 
from 28 July through 9 December 1999 during a marine mammal survey con- 
ducted in the ETP. The study area extended from the United StatedMexico bor- 
der to the territorial waters of Peru, and from the continental shores of the 
Americas to the longitude of Hawaii (Fig. 1). Visual line-transect methods were 
used to survey all cetaceans encountered in the study area.’ 

During the 1998 survey, a hydrophone array was towed during daylight hours 
at a depth of 4-6 m,  approximately 200 m behind the 56-m NSFIUNOLS 
research vessel Endeavor while traveling at a speed of 10 kn. The depth of the 
array was periodically monitored using a Suunto “Solution Nitrox” dive computer. 
A three element array (SonaTech Inc., flat frequency response 2 3  dB from 500 
Hz to 150 kHz at -163 dB re lv/pPa after internal amplification) was used for 
the majority of the survey. A five element array (Innovative Transducers Inc., flat 
frequency response 2 3  dB from 32 Hz to 25 kHz at -173 dB re lv/pPa after 
internal amplification) was used for approximately one month of the survey. An 
acoustic technician monitored signals from two hydrophones in the array using a 
stereo headset and custom-written software that displayed real-time spectrograms 
from a single channel. Signals were high-pass filtered at 500 Hz to 2 kHz to 
reduce system, ship, and flow noise and were low-pass filtered at 20 kHz to 
prevent aliasing. Signals of interest were recorded onto digital audio tape (DAT) 
using Sony TCD-D7 and TCD-D8 DAT recorders (20 Hz to 22 kHz 2 1 dB). 

During the 1999 survey sonobuoys (type 57A) were deployed when dolphins 
were sighted. These sonobuoys had a flat frequency response from approximately 
2 kHz to 20 kHz, and were deployed at a hydrophone depth setting of either 18 
or 27 m. Sonobuoy signals were transmitted to a multichannel receiver aboard 
the research vessel (NOAA ships McArthur or David Starr Jordan) and were re- 
corded onto DAT using Sony TCD-D7 DAT recorders. 

Spectrographic Analysij 

Recordings of dolphins that had been visually identified to species by experi- 
enced marine mammal observers were digitized (44.1 kHz sample rate, 16 bit 
precision) using a Pentium I11 dual-processor personal computer and the com- 
mercially available software packages Spectrogram 4.2.8 (R. S. Horne) and Cool 
Edit 96 (Synttillium Corp.). Only recordings of groups that had been observed 
to contain a single species were digitized. Because i t  is possible that some re- 
cordings identified as “single species” may contain distant faint vocalizations 
produced by other species in the area, only “loud and clear” whistles were 
analyzed. Whistles were considered to be “loud and clear” if they were easily 
detected aurally and by visual inspection of the spectrogram. Richardson et a/. 
(1995) suggest that the maximum detection range for many delphinid species is 

Kinzey, D., T. Gerrodette, J.  Barlow, A. Dizon, W. Perryman, P. Olson and A. von Saunder. 
1999. Marine mammal data collected during a survey in the eastern tropical Pacific Ocean aboard 
the NOAA ships MrArthur and David Scum Jordan and the UNOLS ship Endeavor 31 July-9 
December 1998. NOAA Technical Memorandum NOAA-TM-NMFS-SWFSC-283. 113 pp. 
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Figure I .  Eastern tropical Pacific study area. Locations of all recordings included in 
analysis are indicated, with each species represented by a different symbol. 

on the order of 1 krn (0.54 nmi). To be conservative, recordings made within 3 
km (1.62 nmi) of any other sightings were excluded from the analysis. Distance 
to the next sighting was calculated as the distance between the location of the 
ship at the beginning of the acoustic recording session and the location of the 
next group of dolphins when initially sighted (based on angle and reticle mea- 
surements read from binoculars). Distance to the previous sighting was calculated 
as the distance between the location of the ship at the beginning of the acoustic 
recording session and the location of the previous group of dolphins when last 
seen. 

Spectrograms ( 5  12 point FFT, 20 kHz bandwidth) were produced using Spec-- 
tropzrn 4.2.8 software. Loud and clear tonal whistles that did not overlap exten- 
sively with other whistles were randomly chosen for analysis. To avoid 
oversampling groups or individuals (which can lead to non-independence of data) 
a maximum of 35 randomly selected whistles were analyzed from each recording 
session. 

Twelve variables were measured from each whistle: (1) beginning frequency 
(Hz), (2) end frequency (Hz), (3) minimum frequency (Hz), (4) maximum fre- 
quency (Hz), (3) duration (msec), (6) slope of the beginning sweep (positive, 
negative, or zero), (7) slope of the end sweep (positive, negative, or zero), (8) 
number of inflection points (defined as a change from positive to negative or 
negative to positive slope), ( 9 )  number of steps (defined as a portion of the whis- 
tle with zero slope lasting at least 20 msec that separates two portions of similar 
slope. Similar slope refers to direction, not necessarily magnitude. The angles be- 
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tween the sloped portions and the zero slope portion must lie between 90” and 
135”), (10) presenceiabsence of harmonics (a binary variable), (1 1) off-scale (a bi- 
nary variable, indicating whether any portion of the whistle extended beyond the 
20 kHz upper limit of the spectrogram), and (12) frequency range (Hz, deter- 
mined by subtracting minimum frequency from maximum frequency). These 
variables were chosen because they can be easily measured from a spectrogram 
and to allow comparisons with results of previous studies. 

Statistical Analysis 

Multivariate discriminant function analysis (DFA) was used to classify whistles 
within and among species. Prior to running DFA, continuous variables (fre- 
quency variables, duration, and number of steps and inflection points) were 
tested for normality and were square root or log transformed as necessary. Binary 
and categorical variables were coded as dummy variables. Frequency variables 
with values above 20 kHz were assigned a value of 22 kHz. Assigning the same 
value to all off-scale cases reduced the variability of the data, however omitting 
these cases resulted in lower overall means and a loss of information regarding 
which portions of the whistles extended beyond 20 kHz. 

Discriminanr function analysis classified whistles to prespecified groups based 
on orthogonal linear functions derived from the measured variables. Some whis- 
tles were missing measurements for one or more variables because a portion of 
the whistle was higher than the maximum recorded frequency of 20 kHz. Whis- 
tles that were missing measurements were excluded from the DFA. A series of 
DFAs was run using the statistical software package SPSS 7.0 (SPSS Inc.). With- 
in each species, the presence of group-specific whistle patterns was examined by 
using DFA to predict group membership from whistle characters (where a group 
is defined as a “recording session” at one time and location). Only recording ses- 
sions containing at least three whistles were included in this analysis. Differences 
among species were examined by using a DFA to predict species from whistle 
characters. 

The jackknife, or cross-validation, method was used to calculate percent cor- 
rect classification for within-species DFAs. Each whistle was omitted from the 
total sample and new discriminant functions were calculated for classification of 
the omitted whistle. A modified jackknife method, omitting entire recording 
sessions instead of individual whistles, was used to calculate percent correct clas- 
sification for among-species DFAs. The discriminant functions calculated using 
this method were created therefore from data independent of the whistles being 
classified. This helped ensure that whistles were classified based on species-specif- 
ic characteristics rather than group- or individual-specific characteristics. To eval- 
uate correct classification scores, it  is necessary to compare them to what would 
be expected by chance alone (50% for two species, 33% for three species, 11% 
for nine species). Chi-square was used to test whether correct classification was 
significantly greater than expected by chance alone. Statistical significance was 
evaluated at a = 0.05 without corrections for multiple testing. 

Tree structured, non-parametric data analysis was performed using CART 
(Classification And Regression Trees) software (Salford Systems). CART “grows” 
the largest possible decision tree by separating data into groups (nodes) through 
a series of binary splits. Each split is based on a value for a single variable, and 
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the criteria used for making splits are known as primary splitting rules. Surro- 
gate splitters are provided at each node. Surrogate splitters closely mimic the ac- 
tion of primary splitting rules and can be used in cases when the primary 
splitting variable is missing. As a result, all whistles with missing values were 
included in this analysis. Nodes are labeled based on the number of whistles of 
each species in the node. “Pure” nodes are nodes that contain the whistles of only 
one species. Final classification is reached at terminal nodes. When the maximal 
tree has been grown, CART removes branches and examines the error rates of 
smaller trees. The smallest tree with the highest predictive accuracy is considered 
to be the optimal tree. The misclassification rate is estimated using a cross-vali- 
dation technique similar to the modified jackknife method used in DFA. CART 
software, however, is not sufficiently flexible to allow the use of recording ses- 
sions as the unit for cross-validation. In CART analysis, data are divided into ten 
roughly equal subsets, each created by random sampling stratified on the de- 
pendent variable. These subsets are the units used in cross validation (Breiman et 
al. 1984, Steinberg and Colla 1995). Because classification trees are built using 
whistles recorded from the same group and possibly the same individual, percent 
correct classification of the CART analysis is likely to be exaggerated. 

Because CART is a non-parametric technique, it was not necessary to assume 
normality or transform data. For the reasons cited earlier, off-scale variables were 
assigned a value of 22 kHz before running the analysis. Initially, a decision tree 
was constructed using all twelve variables; however, a decision tree requiring 
fewer variables would increase efficiency in the field. A series of trees were con- 
structed using different subsets of the twelve variables in order to find the small- 
est subset with acceptable predictive accuracy. 

RESULTS 

A hydrophone array was towed and monitored for approximately 17,980 km 
(9,702 nmi) and a total of 38 sonobuoys were deployed. Single species recordings 
were made of nine species including: spinner dolphins (Stenella longirostris), 
striped dolphins (S. coeruleoalba), pantropical spotted dolphins (S. attenuata), long- 
beaked common dolphins (Delpbinus capensis), short-beaked common dolphins 
(D. delpbis), rough-toothed dolphins (Steno bredanensis), bottlenose dolphins (Tursiops 
truncatus), short-finned pilot whales (Globicepbala macrorbyncbus), and false killer 
whales (Pseudorca crassidens). 

A total of 908 whistles recorded in 62 locations were included in the analysis 
(Table 1, Fig. 1). Recordings from at least two and up to ten different locations 
were analyzed for each species. Descriptive statistics for the eight continuous 
whistle variables are presented in Table 2. Number of inflection points and num- 
ber of steps had the highest coefficients of variation for every species. Of the nine 
species, short-finned pilot whales and rough-toothed dolphins generally had the 
highest coefficients of variation for all variables. Whistles of false killer whales 
have a markedly narrow frequency range and, similar to short-finned pilot 
whales, relatively few inflection points and steps. In contrast, whistles of pan- 
tropical spotted dolphins and bottlenose dolphins contain a relatively large num- 
ber of steps. Bottlenose dolphins also produce whistles with distinctively long 
durations and numerous inflection points. 
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Tuhle 1. Number of recording sessions and whistles analyzed for each species. Different 
recording sessions separated by time and geographic location. 

Species # Recording sessions # Whistles 
Bottlenose dolphin 
Short-beaked common dolphin 
False killer whale 
Pantropical spotted dolphin 
Long-beaked common dolphin 
Short-finned pilot whale 
Rough- toothed dolphin 
Striped dolphin 
Spinner dolphin 
Total 

7 
7 
2 
7 
6 

10 
5 

10 
8 

62 

157 
88 
69 
97 
73 

153 
68 
91 

112 
908 

Discriminant Function Analysis 

Within-.ipecie.r-The percentage of whistles classified to the correct recording 
session was significantly greater than expected by chance alone for every species 
(x’ test, P < 0.05; Table 3). Correct classification compared to chance alone was 
particularly high for short-finned pilot whales. 

Amon~-.~ecies-Ovetall, 41.1% of whistles were classified to the correct species. 
Correct classification scores for individual species ranged from 6.7% for striped 
dolphins to 66.0% for short-finned pilot whales (Table 4). Only false killer 
whales, striped dolphins and short-beaked common dolphins had correct classifi- 
cation scores that were not significantly greater than expected by chance alone 
(false killer whales: x~~ = 0.0, P = 1.0; striped dolphins: xZ8 = 1.52, P = 
0.99; short-beaked common dolphins: xZx = 2.75, P = 0.95). An examination 
of misclassification scores in Table 4 and the plot of group centroids for the first 
two canonical discriminant functions (Fig. 2) suggests similarities in whistles 
among several species. For example, striped dolphin whistles were not accurately 
classified by the DFA, and misclassifications as bottlenose dolphin, short-beaked 
common dolphin, long-beaked common dolphin, pantropical spotted dolphin, or 
spinner dolphin were more likely than correct classification. These facts indicate 
that striped dolphin whistles lie between those five species (as seen on the group 
centroid plot) and may be more variable than those of the other species. 

Clusszfcation Treu 

Using all 12 variables, the optimal classification tree consisted of 70 terminal 
nodes and produced an overall correct classification score of 51.4%. In subse- 
quent CART runs, the tree that provided the best trade-off between number of 
variables and predictive accuracy included seven of the original 12 variables: 
beginning frequency, end frequency, minimum frequency, maximum frequency, 
duration, number of inflection points, and number of steps. Using these seven 
variables resulted in an optimal tree with 66 terminal nodes and a correct classi- 
fication score of 53.1 %. Correct classification scores for individual species ranged 
from 24.7% for long-bcaked common dolphins to 88.4% for false killer whales 
(Table 5) .  All correct classification scores were significantly greater than the 11 % 
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expected by chance alone except for long-beaked common dolphins (xZ8 = 12.4, 
P = 0.13). Classification errors followed similar patterns to those in DFA. 

The four frequency variables (beginning, end, minimum, maximum) were the 
most important discriminating variables in the seven variable tree, as judged by 
their performance as both primary and secondary splitters. Number of inflection 
points was the least important discriminating variable. Note that the importance 
of a variable pertains only to that variable’s performance in the tree in question 
and cannot necessarily be generalized to the performance of that variable in any 
other model. 

DISCUSSION 

Within-species 

The percentage of whistles classified to the correct recording session in within- 
species comparisons was high for every species (Table 3). Our ability, within a 
species, to correctly associate a whistle with other whistles from the same record- 
ing session may indicate geographic variation in whistle patterns; however, it 
may also be attributable to other sources of variation, such as behavior, group 
composition, or distinctive individual vocal characteristics. An attempt was made 
to analyze as many different recording sessions as possible to obtain a representa- 
tive sample of the vocal repertoire of each species, but behavioral data and group 
composition were not recorded. I t  would be valuable to collect such data during 
future recording sessions in order to determine the relative contributions of social 
context, geographic separation, and differences among individuals. 

A mong-specia 

The results of both DFA and the classification tree suggest that whistles may 
be useful for the identification of delphinid species during marine mammal sur- 
veys. Overall, correct classification of whistles was between 40% and 50% for 
both types of analyses, much greater than the 11 % correct classification expected 
by chance alone. Whistles of individual species were correctly classified signifi- 
cantly more often than expected by chance alone, with only a few exceptions. At 
least one of these exceptions is likely due to sample size; the low correct classifi- 
cation score for false killer whales may be due to the fact that there were only 
two false killer whale recording sessions in the analysis. Thus, when DFA classifi- 
cation functions were created using the modified jackknife method, they were 
based on one recording session at a time. Using whistles from only one recording 
session is nor likely to allow a complete representation of the whistle repertoire 
of a species, especially if that species produces whistles containing pod specific 
characteristics. Future collection of false killer whale whistles in the eastern trop- 
ical Pacific will allow an examination of pod- and species-specific characteristics 
for this species. 

Similarity in overall correct classification scores from a parametric statistical 
method (DFA) and a non-parametric method (CART) supports the use of either 
technique for species identification. One beneficial feature of CART is that surro- 
gate splitters are available at each node so whistles can be classified even if 
primary splitting variables are missing. Surrogate splitters closely mimic the 
actions of primary splitters so there is little, if any, loss in accuracy when surro- 
gate splitters are used (Breiman et  a/. 1984). A classification tree also provides an 
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Table 3.  Results of within-species discriminant function analysis (DFA). Only  recording 
sessions containing at least three whistles included in the analysis. Fourth column lists 
percent of whistles classified to correct recording session in within-species DFAs. Column 
labelled “chance” lists correct classification scores that would be expected by chance alone. 
Correct classification was significantly greater than expected by chance alone for every 
species (x2 test, P < 0.05). 

~ 

# Recording % Correct Chance 
Species sessions # Whistles classification (%I 

Botclenose dolphin 
Short-beaked common dolphin 
False killer whale 
Pantropical spotted dolphin 
Long-beaked common dolphin 
Short-finned pilot whale 
Rough-toothed dolphin 
Striped dolphin 
Spinner dolphin 
Total 

7 
7 
2 
5 
5 

10 
4 
8 
6 

54 

1 5 1  
88 
68 
81 
64 

149 
64 
87 

107 
859 

36.4 
47.7 
91.2 
37.5 
40.9 
41.6 
64.2 
29.9 
45.8 

14.3 
14.3 
50.0 
20.0 
20.0 
10.0 
25.0 
12.5 
16.7 

intuitive diagrammatic representation of the classification process. I t  displays 
patterns in  the data that may not be apparent using techniques such as DFA. A 
disadvantage t o  using CART is that the software is not flexible enough to allow 
the use of recording sessions as the unit for cross-validation. As a result, percent 
correct classification of the CART analysis is likely to be exaggerated. 

Based on the seven variable classification tree and the 12-variable DFA, false 
killer whales, pilot whales, and bottlenose dolphins have the most distinctive 
whistles. These three species lie apart from the others on the plot of group cent- 
roids (Fig. 2), and have a small number of relatively pure terminal nodes in  the 
decision tree (Fig. 3), resulting i n  high correct classification scores (Table 5). The  
species with the lowest correct classification scores (short-beaked common, long- 
beaked common, and spinner dolphins) cluster together on  the plot of group cen- 
troids (Fig. 2), and have many terminal nodes that are generally not very pure. 

Although our results show that dolphin whistles contain species-specific infor- 
mation, our correct classification scores are much lower than the usual standards 
applied to visual identification (i.e., near certainty). Additional research is needed 
before whistle classification can be used routinely as a field identification tool. 
W e  note, however, that the task of classifying species from a single whistle is a 
difficult challenge. I t  might  be analogous to asking a visual observer to deter- 
mine species from a single random surfacing of a single individual. It may prove 
to be an easier task to determine species from the collection of all whistles 
recorded during a recording session. 

A potential method for increasing the probability of correctly identifying 
whistles in  the field is the use of classification models that take species distribu- 
tion into account. In  the current DFA and CART models, each whistle was 
assigned to species without considering whether that species is common, rare, or 
even absent in the specific area where the whistle was recorded. Some species are 
more common in the study area than others and their distributions are not uni- 
form across these waters. Long-beaked common dolphins were seen only in  coast- 
al waters during the 1998 survey, while short-beaked common dolphins ranged 
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Figure 2. Plot of group centroids for first two canonical discriminant functions in 
nine-species comparison. X Long-beaked common dolphin (Delphinus capensis), w bottle- 
nose dolphin (Tursiups truncatus), 0 short-beaked common dolphin (Delphinus delphis), A 
false killer whale (Pseudurra crassidens), + pantropical spotted dolphin (Stenella attenuutu), 
A striped dolphin (S. cueruleualba), 0 spinner dolphin (S. lungirustris), 0 rough-toothed 
dolphin (Stenu bredanensis), 0 short-finned pilot whale (Glubicephala macrarhynchus). 

much farther offshore.' Wade and Gerrodette (I  993) observed that pantropical 
sported and spinner dolphins were most abundant in the warm tropical waters of 
the eastern tropical Pacific, short-beaked common dolphins were most abundant 
in cold upwelling-modified waters, and striped dolphins were most abundant 
where the other three species were not. To take species distribution into account, 
the study area should be divided into strata and classification models built using 
prior probabilities based on sighting frequencies in each stratum. 

Lower than desired correct classification scores may also be a result of the vari- 
ables measured. The twelve variables used in this study were chosen due to their 
compatibility with previous work, allowing for comparisons among studies. They 
are variables that can be measured relatively easily and reliably in the field and 
do not require extensive training of operators. These variables, however, do not 
provide a complete representation of dolphin whistles. Additionally, it  is difficult 
to make biological interpretations based on these variables, as they are simply a 
representation of the way humans perceive whistles and may not reflect whistle 
characters actually utilized by dolphins. Measuring additional ot  alternative vari- 
ables (such as frequency at intervals along a whistle) may provide a more accurate 
representation of whistles and lead to higher correct classification scores. 

The fact that the variables in this study are measured by human operators 
reduces the need for special programs or hardware; however, it  introduces an ele- 
ment of subjectivity to the measurements. I t  can also create a bottleneck when 
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6 a3 
7 7 

Roughtoothed Dolphin Boltlenose Dolphin 
species #wi%stles species llwhislles 

2 2 1 63 
5 1 

2 6 

7 9 3 1 

duration c: 0.1 sec 

there are large volumes of data to analyze, and may make the measurement of 
additional or alternative variables difficult. An automated feature extraction sys- 
tem could be implemented in order to reduce subjectivity and make the mea- 
surement of additional variables more feasible. 

The use of alternative classification methods, such as artificial neural networks, 
may be another way to increase the accuracy of whistle classification. Artificial 
neural networks operate in a non-linear, self-organizing way and therefore may 
be able to detect differences among species that would be missed by other statis- 
tical methods (Deecke et al. 1999). Artificial neural networks have been success- 
fully utilized to recognize the calls of bowhead whales (Potter et al. 1994) and to 
measure the similarity of discrete calls of killer whales (Deecke e t  a/. 1999). 

Another consideration that must be taken into account before the classification 
system can be used in the field is that it currently includes only 9 of the 16 
delphinid species encountered in the ETP.* Adding the missing species (Risso’s 

#steps<= 7 - 2 1  
4 1  
5 1  
6 1  
7 1  

’ Kinzey, D., T. Gerroderte, J. Barlow, A. Dizon, W. Perryman and P. Olson. 2000. Marine mam- 
mal data collected during a survey in the eastern tropical Pacific ocean aboard the NOAA ships 
MrArthur and David Sturr Jurdun 28 July-9 December 1999. NOAA Technical Memorandum 
NOAA-TM-NMFS-SWFSC-293. 89 pp. 

end freq <= 6.4 kHz 

False Killer Whale 
species t+fi%stles 

1 1 
2 3  
3 63 
5 2  
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dolphins, Grampus grisem; killer whales, Orcinus orca; pygmy killer whales, Feresa 
attenuata; dusky dolphins, Lagenorbynchzls obscurus; Pacific white-sided dolphins, 
L. obliquidens; Fraser’s dolphins, L. hosei; and melon-headed whales, Peponocepbala 
electra) will make the system complete and ensure that every whistle has a chance 
of being correctly classified. It is important to note, however, that adding species 
is likely to decrease correct classification because the structure of the DFA and 
classification tree will change as variable space becomes more crowded. 

Not every school encountered is a single species school. During the 1998 and 
1999 surveys, 11% and 12% of all sightings were mixed species schools.’,2 
Mixed species schools present a challenge because it is difficult to determine 
whether whistles have been classified as multiple species due to classification 
errors or due to the actual presence of multiple species in the group being 
recorded. Knowledge of which species commonly associate with each other will 
help with these decisions. For example, mixed schools composed of spinner and 
spotted dolphins were the most commonly sighted mixed species schools during 
both the 1998 and 1999 surveys (30% and 43% of the mixed species schools, re- 
spectively).” * If whistles are being classified as spinner dolphins and spotted 
dolphins consistently during a sighting, it is likely to be a mixed school. Whis- 
tles from known mixed species schools should be run through the classification 
system and confusion matrices for these schools compared to confusion matrices 
for single species schools. Perhaps patterns exist that would aid in discerning ac- 
tual mixed species schools from classification errors. 

There are two additional issues that must be addressed when developing a 
classification system based on whistles recorded at sea. The first is the statistical 
assumption of independent data. Using a towed array, it is currently not possible 
to precisely locate individual animals that are being recorded. Therefore, it is not 
possible to ensure that each whistle included in the analysis is produced by a dif- 
ferent individual. We attempted to avoid over-sampling groups or individuals by 
randomly selecting a small subsample of whistles from each recording session, 
and by analyzing as many different recording sessions as possible for each species. 

The second obstacle inherent to recording animals at sea is ensuring that each 
recording session included in the analysis contains only whistles produced by a 
single species. If a group is detected both acoustically and visually, it can usually 
be identified as a single species school by experienced marine mammal observers, 
but whistles of other species present in the area may also be detected by the 
array. Recent observations suggest that whistles can be heard at distances much 
greater than 3 km (1.6 nmi) Uanik 20001, and hence, it is possible that the 
recordings used in our analysis may include vocalizations produced by species 
other than those seen by the visual observers. 

The ability to localize dolphins detected using a towed hydrophone array 
could aid in the resolution of both issues. Differences in the arrival times of 
sperm whale clicks at two hydrophones in a towed array have been used to esti- 
mate bearing angles to vocalizing animals in order to track them during dives 
(Leaper et al. 1992). Miller and Tyack (1998) used frequency domain beamform- 
ing techniques to localize individual killer whales detected using a small towed 
array. Thode et al. (2000) obtained bearing angles to whistling dolphins using a 
three-element towed array and frequency domain beamforming techniques. These 
bearings were not precise enough to allow the identification of individual ani- 
mals. Beamforming techniques may, however, be used to reduce over-sampling 
individuals. Whistles originating from widely spaced bearing angles at similar 
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times are likely to  have been produced by different individuals. Including such 
whistles i n  the analysis would ensure that  a wider cross-section of the school is 
sampled. Similarly, determining the location of vocalizing dolphins makes i t  pos- 
sible to discern whether whistles are being produced by the school seen and 
identified by visual observers or by some other school in the  area. This will re- 
duce the chance of mislabeling recordings and should result in  a more accurate 
classification system. Localization techniques are currently being developed and 
tested for use during future acoustic surveys. 
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