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The response of fish larvae to decadal changes in
environmental forcing factors off the Oregon coast

TOBY D. AUTH,1,* RICHARD D. BRODEUR,2

HEATHER L. SOULEN,1 LORENZO
CIANNELLI3 AND WILLIAM T. PETERSON2

1Cooperative Institute for Marine Resources Studies, Oregon
State University, Hatfield Marine Science Center, 2030 Marine
Science Drive, Newport, OR 97365, USA
2Northwest Fisheries Science Center, NOAA Fisheries, Hatfield
Marine Science Center, 2030 Marine Science Drive, Newport,
OR 97365, USA
3College of Oceanic and Atmospheric Sciences, Oregon State
University, 104 COAS Administration Building, Corvallis, OR
97331, USA

ABSTRACT

We conducted a statistical analysis to characterize
the influence of large-scale and local environmental
factors on presence-absence, concentration, and
assemblage structure of larval fish within the northern
California Current (NCC) ecosystem, based on sam-
ples collected at two nearshore stations along the
Newport Hydrographic line off the central Oregon
coast. Data from 1996 to 2005 were compared with
historical data from the 1970s and 1980s to evaluate
pseudo-decadal, annual, and seasonal variability. Our
results indicate that the most abundant taxa from 1996
to 2005 differ from those of earlier decades. Concen-
trations of the dominant taxa and total larvae were
generally greater in the winter ⁄ spring than sum-
mer ⁄ fall season. Using generalized additive modeling,
variations in presence-absence and concentration of
taxa were compared to climate indices such as the
Pacific Decadal Oscillation, Northern Oscillation
Index, and the multivariate ENSO index and local
environmental factors, such as upwelling, Ekman
transport, and wind stress curl. Significant relation-
ships were found for various combinations of envi-
ronmental variables with lag periods ranging from 0 to
7 months. We found that the large-scale climate
indices explained more of the variance in larval fish

concentration and diversity than did the more local
factors. Our results indicate that readily available
oceanographic and climate indices can explain varia-
tions in the dominant ichthyoplankton taxa in the
NCC. However, variation in response among taxa to
the environmental metrics suggests additional unknown
factors not included in the analysis likely contributed
to the observed distribution patterns and larval fish
community structure in the NCC.

Key words: assemblage, California Current, distri-
bution, environment, fish larvae, ichthyoplankton,
North Pacific Ocean, Oregon, time series

INTRODUCTION

Variability in survival through the larval stage is
believed to play an important role in determining
subsequent recruitment success of marine fishes
(Bradford, 1992; Houde, 1997, 2008). Larval-stage
dynamics can be influenced by both regional and
basin-wide environmental fluctuations (Hsieh et al.,
2005; Boeing and Duffy-Anderson, 2008; Doyle et al.,
2009). Fishery independent larval surveys can poten-
tially enhance fishery management decisions through
timely information on year-class survival and recruit-
ment success (Fuiman and Werner, 2002).

Studies using long time series of survey data to
document the response of ichthyoplankton to envi-
ronmental changes are rare, primarily because long
data sets are largely unavailable. Beaugrand et al.
(2003) analyzed monthly data collected during 1958–
1999 to show that Gadus morhua (Atlantic cod)
recruitment in the North Sea was related to temper-
ature-dependent larval survival. The National Marine
Fisheries Service (NMFS) Southwest Fisheries Cen-
ter’s (SWFC) California Cooperative Oceanic Fish-
eries Investigation (CalCOFI) program has collected
ichthyoplankton samples continuously from 1950 to
the present in the southern California Current (SCC)
region. These samples have been the basis for multiple
studies relating ichthyoplankton distribution and
community structure to environmental variables
since Ahlstrom (1966) first documented the cyclical
fluctuations in Sardinops sagax (Pacific sardine) and
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Engraulis mordax (northern anchovy) larval abun-
dances in the SCC. More recently, Hsieh et al. (2005)
examined long-term changes in the CalCOFI larval
fish communities in relation to climate change and
found that most oceanic but few coastal and coastal-
oceanic taxa were significantly related to environ-
mental variables.

Several relatively short-term studies conducted in
the northern California Current (NCC) have sug-
gested that ichthyoplankton distribution and com-
munity structure vary in relation to changes in
temperature and salinity (Auth and Brodeur, 2006;
Parnel et al., 2008), timing and intensity of upwelling
(Brodeur et al., 2006), pseudo-decadal (5–10-yr)
environmental oscillations (e.g., El Niño, La Niña)
(Brodeur et al., 1985; Doyle, 1995), and combinations
of multiple environmental factors (Auth, 2008; Bro-
deur et al., 2008).

Insights into the factors that may influence ich-
thyoplankton community structure were derived from
studies of copepod species composition in the NCC,
another member of the plankton community. Analysis
of the copepod species composition from the same
samples we discuss in this manuscript has shown that
copepod biomass is strongly correlated with both the
Pacific Decadal Oscillation (PDO) and Multivariate
ENSO Index (MEI). In addition, copepod species
richness has increased by approximately 50% since the
1970s and 1980s (Hooff and Peterson, 2006), with the
increased species richness due to greater numbers of
warm-water subtropical species in both summer and
winter. However, there have been no differences in
copepod biomass over the period 1969–1973 as com-
pared to the recent time series of 1996–2007, sug-
gesting that the effects of local upwelling are not
different between the 1970s and more recent years.
Thus, the observations of increased biodiversity but
constant copepod biomass lead us to suggest that there
have been fundamental changes in the source waters
that feed the NCC which have led to subtle changes
in food chain structure in the region. Because of this
result, we embarked upon the study presented here, to
determine whether there were similar changes in the
ichthyoplankton and, if so, the degree to which
changes could be attributed to local versus large-scale
environmental forcing.

The present study is the first in the NCC to use a
long time series of data to examine the relationship
between the concentration and community structure
of larval fishes, and both regional and basin-wide
environmental variables. We synthesized ichthyo-
plankton data from four studies collected from the
same two nearshore stations off the central Oregon

coast during 1971–2005, and examined seasonal and
pseudo-decadal changes in larval concentration,
community structure, diversity, and evenness. In
addition, we incorporated environmental data col-
lected from readily available sources into generalized
additive models (GAMs) to determine the most
important environmental factors relating to the trends
in larval fish data. The purpose of this study is to
support informing fisheries management of the influ-
ence of climate on stock structure by affecting
recruitment success of larval life-history stages.

METHODS

Sampling procedures

Larval fish were collected from two stations (NH05:
124.17�W; NH10: 124.29�W) located 9 and 18 km off
the central Oregon coast along the historically sam-
pled Newport Hydrographic (NH) line (44.65�N) in
62 and 82 m of water, respectively (Fig. 1). A total of
350 biweekly-monthly samples were collected during
four separate studies: 61 in January 1971 to August
1972 (Richardson and Pearcy, 1977), ten in November
1977 to June 1978 (NH05 only) (Laroche et al., 1982),
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Figure 1. Map showing the location of the two stations
sampled in the studies incorporated in this comparative
study. Also shown are 200- and 500-m isobaths.

Larval fish response to environmental change 315

� 2011 Blackwell Publishing Ltd, Fish. Oceanogr., 20:4, 314–328.



21 in April to September 1983 (Brodeur et al., 1985),
and 258 in December 1996 to December 2005 (Bro-
deur et al., 2008). Collection methods varied slightly
(Table 1) but generally consisted of 60–70-cm bongos
with 200–571-lm mesh nets and either TSK or
General Oceanics flowmeters, fished obliquely from
either 20 m depth or within 5 m of the bottom to the
surface. Ichthyoplankton samples were preserved in a
10% buffered-formalin seawater solution at sea. Pre-
served samples were taken to the laboratory, where all
fish larvae from each sample were sorted, enumerated,
and identified to the lowest taxonomic level possible
using a dissecting microscope. Most larval Osmerids
(smelts), Sebastes spp. (rockfishes), Citharichthys spp.
(sanddabs), and Liparis spp. (snailfishes) collected were
not identifiable to species based on meristics and
pigmentation patterns, so these taxa were analyzed at
the family or generic level. In the northeast Pacific
Ocean, seven species of Osmerids, two species of
Citharichthys, 17 species of Liparis, and 65 species of
Sebastes are known to occur (Matarese et al., 1989;
Love et al., 2002).

Data analyses

Larval fish concentrations for each sample were
expressed as the number of individuals per 1000 m3.
Taxon diversity and evenness were calculated for each
sample based on all identifiable larval fish taxa
(n = 94). The Shannon–Wiener diversity index (H’)
was used to measure larval diversity, where higher H’
values denote greater diversity. Taxa evenness was
assessed using Pielou’s evenness index (J’), which
ranges from 0 to 1, with the maximum J’ value indi-
cating that all taxa are represented in the same relative
concentrations. Both H’ and J’ were calculated
according to the formulas of Shannon and Weaver
(1949) and Krebs (1989). Samples with n £ 1 taxon
present were not included in the analyses because
H’ = 0 and J’ could not be calculated. All diversity and
evenness analyses were performed using PRIMER v. 5.2.9
statistical software (PRIMER-E, Plymouth, UK).

Previous studies (Richardson and Pearcy, 1977;
Auth and Brodeur, 2006) had shown that ichthyo-
plankton from the two inshore stations on the NH line
examined in this study were part of the nearshore fish
assemblage, and statistical analyses revealed no sig-
nificant differences in the dominant taxa between
these stations (Brodeur et al., 2008). Thus, fish larvae
were averaged from the two stations for subsequent
analyses. Because samples were not always collected at
the same intervals (e.g., weekly, biweekly, monthly) or
at both stations on a given cruise, mean larval con-
centration, diversity, and evenness values from both T
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stations during each cruise were averaged for all cruises
within each month. All data analyses were based on
these monthly averaged data. To facilitate seasonal
analyses, months were classified as either win-
ter ⁄ spring (January to May) or summer ⁄ fall (June to
December) based on results from the seasonal analysis
of Brodeur et al. (2008). ANOVA and Tukey’s mul-
tiple range test were applied to the loge (n + 0.1)-
transformed monthly larval concentration, diversity,
and evenness values to test for significant differences
between seasons. Only five dominant larval taxa had
sufficient frequencies of occurrence and concentra-
tions to allow for meaningful statistical analysis. Sta-
tistical significance was determined at a = 0.05. All
ANOVA analyses were performed using JMP v. 5.1
statistical software (SAS Institute, Cary, NC, USA).

We used GAM analysis to explore the relationships
between larval concentration and diversity metrics
and basin- and regional-scale environmental variables.
GAM is a nonlinear regression technique, where the
relationships between the response variable and the
forcing variables (covariates) are modeled with non-
parametric smooth functions (Hastie and Tibshirani,
1990; Wood, 2004, 2006). When using GAM, it is
unnecessary to specify the type of relationships
between the forcing and response variables a priori
because these are determined from the data. Specifi-
cally, given a response variable y and a set of m forcing
variables x (covariates), the relationship between the
two is established by:

yi ¼ aþ
Xm

j¼1

gjðxjiÞ þ ei ð1Þ

The gj are smooth non-parametric functions, typi-
cally natural cubic splines (Green and Silverman,
1994). ‘Smooth’ means that the function gj (xji) is
continuous (no jumps), and it has continuous first and
second derivatives (no abrupt change of the slope). In
recent GAM applications, the degree of freedom
(controlling smoothness versus roughness) for each
smooth term can be simultaneously and objectively
estimated by minimizing the generalized cross-valida-
tion (GCV), a measure of the ‘leave-one-out’ mean
predictive square error (Green and Silverman, 1994).
In this study the maximum number of degrees of
freedom was set to be £ 4. Depending on the nature of
the data, GAMs are generalized to different distribu-
tion families, including normal and binomial. We
applied GAM to the following dependent variables:
concentration of dominant taxa, total larval concen-
tration, and total larval diversity. Concentration of
both total and dominant taxa was modeled assuming a
normally distributed error (Gaussian family and iden-

tity link) on loge (n + 1)-transformed data exclud-
ing the zero catches, and using a binomial family
(logit link) on presence-absence data. This two-step
approach is commonly applied when the data set is
characterized by an excess of zero catches, as was the
case in the present study (Fox et al., 2000).

Prior to inclusion in the GAMs, potential inde-
pendent environmental variables that may influence
the distribution, abundance, and transport of coastal
fish larvae were examined using nonparametric
Spearman’s rho correlations to eliminate variables that
were significantly correlated with more than half of all
the variables at the a = 0.01 level. As a result of the
correlation analysis, Columbia River flow (m3 s)1),
sea-surface temperature (�C), and northward Ekman
transport (kg m)1) were excluded from the list of
covariates included in the GAMs (Table 2).

Larval concentrations and presence-absences were
compared to large-scale environmental variables (i.e.,
MEI, NOI, PDO; Table 2) with lags of 1, 2, 3, 5, and
7 months to account for delayed effects of changes in
basin-wide water masses on larval concentrations.
Regional variables (i.e., CWS, EET, UPW; Table 2)
were not lagged as they were assumed to affect larval
dynamics in real time (same month). To decide which
covariates to retain in the final concentration models,
we applied a backward strategy based on the minimi-
zation of the GCV, a measure of the model prediction
error (Wood and Augustin, 2002; Wood, 2004). For
presence-absence data, the selection was instead based
on the unbiased risk estimator (UBRE) – an error index
penalized for excessive nonlinear smoothers, analogous
to the GCV. Specifically, covariates were all included
in the model and eliminated one at a time until the
GCV reached a minimum. The order in which cova-
riates were excluded was based on the significance of
their smooth-term effect (expressed by the P-value).
Least-significant variables (i.e., those with the highest
P-values) were eliminated first. This model selection
strategy sometimes retains variables with P-values
within the >0.05–0.1 range. This is normal, as the
P-value of each smooth term is approximated (Wood,
2004, 2006). All GAMs were constructed in the R 2.3.1
programming environment using the gam function of
the mgcv package (The R Foundation for Statistical
Computing, http://www.r-project.org).

RESULTS

Environmental factors

Basin-scale (i.e., MEI, NOI, PDO) and regional (i.e.,
CWS, EET, UPW) environmental indices and vari-
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ables varied seasonally, annually, and pseudodecadally
throughout the study (Fig. 2a–c). From 1970 through
2005, the NCC experienced fluctuating cool and warm
periods, marked by warm, strong El Niño events in
winter 1972–1973, 1983, 1987, 1992, 1997–1998, and
weak El Niño conditions in 2003–2005 (Fig. 2a). For
the collection periods in this study, 1971–1972 were
relatively cool years, 1977–1978 warm, 1983 warm,
1996–1998 warm, 1999–2002 cool, and 2003–2005
warm.

Larval concentrations and assemblages

A total of 19 912 fish larvae comprising 102 taxa from
29 families were collected between 1971 and 2005.
Six families accounted for 87.1% of the total larval
concentration: Osmeridae (34.7%), Pleuronectidae
(28.9%), Ammodytidae (8.5%), Scorpaenidae (6.5%),
Cottidae (4.4%), and Paralichthyidae (4.1%). Within
these families, five taxa had the greatest numerical
abundance: Osmeridae, Parophrys vetulus, Ammodytes
hexapterus, Sebastes spp., and Isopsetta isolepis (Tables 3
and 4). Although P. vetulus larvae were consistently
among the dominant taxa throughout the study period,
the remaining larval assemblage varied (Fig. 3). The
larval assemblage was dominated by Osmerids and
I. isolepis in 1971–1972, Osmerids, Sebastes spp., Pset-
tichthys melanostictus, and I. isolepis in 1977–1978,
E. mordax and Sebastes spp. during the spring and
summer sampling in 1983, Citharichthys spp. and
A. hexapterus in 1996–1998, A. hexapterus, Citharich-
thys spp., I. isolepis, and Osmerids in 1999–2002, and
E. mordax, Sebastes spp., and Citharichthys spp. in 2003–
2005.

Larval concentration varied annually and season-
ally throughout the study periods. Concentrations of
total larvae increased steadily from low in 1971–
1972, to moderate in 1977–1978, to high in 1983,
and increased dramatically from low in 1996–1999 to
high in 2000–2005 (Fig. 2d). Seasonal concentrations
of all five dominant taxa and total larvae were higher
in the winter ⁄ spring than in the summer ⁄ fall (Ta-
ble 5).

Diversity and evenness

Larval diversity and evenness varied annually and
seasonally throughout the study (Fig. 2e). Diversity
was highest in 1971–1973, moderate in 1977–1978,
1983, and 1997–1999, and decreased from 2000 to
2005. Evenness was moderate in the early years of the
study, and showed a generally increasing trend from
1996 to 2005. Seasonal diversity was significantly
higher in winter ⁄ spring than summer ⁄ fall (P < 0.05).
Seasonal evenness varied interannually, but no
significant differences were found between winter ⁄
spring and summer ⁄ fall values for the entire study
(P > 0.05).

GAM analyses

General additive modeling revealed best-fit models
and significant (P < 0.05) environmental variables
with various time lags for the five most abundant and
total larval fish for both the concentration (Table 6,
Fig. 4) and presence-absence (Table 7, Fig. 5) analy-
ses, except in the case of the presence-absence model
for total larval concentration. In general, the large-
scale climate indices explained more of the variance in

Table 2. Abbreviations, descriptions, and sources of the basin- and regional-scale environmental variables used in the general
additive modeling (GAM).

Abbreviation Description and source

Basin scale
MEI Multivariate El Nino-Southern Oscillation Index. From the NOAA Earth System Research Laboratory

website: http://www.cdc.noaa.gov/ENSO/enso.mei_index.html.
NOI Northern Oscillation Index. From the NOAA Environmental Research Division website: http://www.

pfeg.noaa.gov:16080/products/PFEL/modeled/indices/NOIx/noix.html.
PDO Pacific Decadal Oscillation. From the University of Washington (Nathan Mantua administrator) website:

http://jisao.washington.edu/pdo/.
Regional scale

CWS Curl of the wind stress (106 m)2 kg s)2) from a 1 · 1� square area centered at 44.5�N, 124.5�W. From
the NOAA Southwest Fisheries Science Center Environmental Research Division live access server
website: http://www.pfeg.noaa.gov/products/las.html.

EET Eastward Ekman transport (kg m)1) from a 1 · 1� square area centered at 44.5�N, 124.5�W. From the
NOAA Southwest Fisheries Science Center Environmental Research Division live access server
website: http://www.pfeg.noaa.gov/products/las.html.

UPW Upwelling Index for 45�N, 125�W. From the NOAA Southwest Fisheries Science Center Environmental
Research Division live access server website: http://www.pfeg.noaa.gov/products/las.html.
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overall larval fish concentration and diversity, as well
as that of the dominant taxa, than did the more local
environmental factors.

The GAM analysis suggested that larval diversity
was greatest when it lagged the NOI by 2 months and

the NOI was either highly positive or negative and
CWS was near zero. Total larval concentration
decreased when it lagged the NOI by 5 months and
the NOI increased, and was lowest when UPW was
marginally positive (UPW = 60).
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Figure 2. Time series of nine environmental and biological variables analyzed in this study. Shown are the seasonally-averaged
(winter ⁄ spring [on tick marks]: January to May; summer ⁄ fall [between tick marks]: June-December) values for the (a) Multi-
variate El Niño-Southern Oscillation Index (MEI) and Pacific Decadal Oscillation (PDO), (b) Northern Oscillation Index
(NOI) and Upwelling Index (UPW) for 45�N, 125�W, (c) eastward Ekman transport (EET) (kg m)1) and curl of the wind stress
(CWS) (106 m)2 kg s)2) both from a 1 · 1� square area centered at 44.5�N, 124.5�W, (d) total mean larval concentration (no.
1000 m)3), and (e) mean larval Shannon–Wiener diversity (H¢) and Pielou’s evenness indices (J¢). In panels d and e, time
periods without bars or data points indicate periods when no data was collected.
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Concentration of A. hexapterus larvae decreased as
UPW increased, and was lowest when it lagged the
PDO by 5 months and the PDO was near zero. Pres-
ence of A. hexapterus larvae in the ichthyoplankton
decreased as CWS increased and EET decreased, and
was greatest when presence lagged the PDO by
1 month and when the PDO was highly negative
(PDO < )1), but otherwise presence-absence was
mostly unaffected by changes in the PDO.

Concentration of I. isolepis was significantly influ-
enced by the NOI when concentrations were lagged by
2 months reaching local maxima when the NOI was
either highly negative (NOI < )5) or intermediately
positive (3 < NOI < 6), while presence of I. isolepis
larvae decreased when values were lagged by 3 months
against the PDO and the PDO increased. There were
no significant relationships with UPW, CWS or EET.

Osmerid presence in the ichthyoplankton, when
lagged by 2 months, was similarly inversely related to

the PDO. Concentration of osmerid larvae was posi-
tively and linearly related to the NOI when lagged by
3 months, and nonlinearly related to the MEI when
lagged by 3 months, with highest concentrations at
either highly negative (MEI < )1.5) or intermediately
positive (MEI = 1) values.

Larval P. vetulus presence and concentration were
significantly influenced by the greatest number of
environmental indices and factors. Presence of
P. vetulus larvae in the ichthyoplankton was greatest
as EET increased, when it lagged the PDO by
7 months and the PDO was approximately even
(PDO = 0), when it lagged the MEI by 7 months and
the MEI was either highly negative (MEI < )1) or
highly positive (MEI > 2), and when it lagged the
NOI by 7 months and the NOI was either
even (NOI = 0) or highly positive (NOI > 10).
Concentration of P. vetulus larvae was least at low
values of CWS, intermediate values of UPW

Table 3. Life history information for the five dominant larval fish taxa collected off the Oregon coast during this study and
incorporated into the GAMs (Auth, 2009; Doyle et al., 2009; Houde, 1989; Laidig et al., 2004; Laroche et al., 1982; Matarese
et al., 1989; Richardson et al., 1980). ? = no data or incomplete information.

Taxon

Peak larval
abundance
(season)

Spawning
location

Larval
habitat

Length at
hatching
(mm)

Length at
transformation
(mm)

Larval stage
durration
(day)

Ammodytes hexapterus March–May Intertidal Coastal ⁄ shelf 6–7 16–31 46–550*
Isopsetta isolepis February–May Coastal Coastal ⁄ shelf 2.7–2.9 21 50–120
Osmeridae January–June Gravel beaches Coastal ⁄ shelf 3–7 50–80 �150
Parophrys vetulus January–March Coastal ⁄ shelf Coastal ⁄ shelf 2.7–2.9 18–22 50–120
Sebastes spp. April (?)–

November (?)
Upper slope (?) Coastal ⁄ shelf ⁄

offshore
3.8–7.5� 15–20 �80�

*Larval stage duration reported for A. americanus.
�Length at which Sebastes spp. larvae are extruded.
�Larval stage duration reported for Sebastes wilsoni.

Table 4. Composition, number, percent of total number, and monthly-averaged frequency of occurrence and mean concen-
tration for the eight dominant larval fish taxa collected off the Oregon coast during this study.

Taxon Common name
Overall
total no.

% of
total

Frequency
occurrence

Mean
concentration
(no. 1000 m)3)

Osmeridae Smelts 6905 35.13 0.33 20.65
Parophrys vetulus English sole 3199 16.27 0.42 58.94
Ammodytes hexapterus Pacific sand lance 1696 8.63 0.19 27.12
Sebastes spp. Rockfishes 1291 6.57 0.50 18.25
Isopsetta isolepis Butter sole 976 4.97 0.30 11.03
Psettichthys melanostictus Sand sole 822 4.18 0.47 8.45
Citharichthys sordidus or
stigmaeus

Pacific or speckled
sanddab

820 4.17 0.32 26.86

Engraulis mordax Northern anchovy 592 3.01 0.19 20.13
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(25 < UPW < 125), and when it lagged the MEI by
5 months and the MEI was low (MEI < )1).

Concentration of Sebastes spp. larvae increased as
EET increased, when it lagged the MEI by 7 months
and the MEI increased, and when it lagged the PDO
by 7 months and the PDO was even (PDO = 0).
Presence of Sebastes spp. larvae in the ichthyoplankton
was least at low values of EET and when it lagged both
the PDO and NOI by 2 months and both indices were
approximately zero. These results suggest that each

taxon responds differently to environmental forcing, as
no single variable appeared in all of the GAM models.

DISCUSSION

Most variability in the NCC system is manifested in
the form of interannual events and multidecadal cli-
mate regimes shifting between high and low produc-
tion states (Peterson and Schwing, 2003; Schwing
et al., 2009). Major processes affecting regional vari-
ability include: (i) changes in local wind forcing,
resulting in variations in coastal upwelling and off-
shore Ekman pumping, (ii) changes in the transport of
the California Current and California Undercurrent,
(iii) changes in source water properties, (iv) volume
and timing of freshwater input, (v) remote forcing via
atmospheric and oceanic teleconnections, often asso-
ciated with El Niño events or changes in the PDO,
and (vi) heating of the upper ocean by global warming
(Schwing et al., 2009).

The NCC ecosystem has undergone dramatic
changes in the period encompassed by this study,
including at least two regime shifts (1976, 1999), two
of the strongest El Niños ever recorded (1982–1983
and 1997–1998), a strong La Niña (1999), a year with
pronounced subarctic water influence (2002), anom-
alous upwelling conditions (2005), and the advent of a
major hypoxic zone in coastal waters (2002 and other

Year

R
el

at
iv

e 
fr

eq
ue

nc
y

0%

20%

40%

60%

80%

100%

1971–1972 1977–1978 1983 1996–1998 1999–2002 2003–2005

Other

Osmeridae

Parophrys vetulus

Ammodytes hexapterus

Sebastes spp.

Isopsetta isolepis

Psettichthys melanostictus

Citharichthys spp.

Engraulis mordax

Figure 3. Proportional contributions of the mean concentrations (no. 1000 m)3) of the eight most dominant and remaining
(‘other’) larval fish taxa to the total mean larval concentrations found during six time periods examined in this study.

Table 5. Seasonal (winter ⁄ spring: January to May; sum-
mer ⁄ fall: June to December) mean concentrations (no.
1000 m)3) of dominant and total larval fish taxa collected
off the Oregon coast during this study (1 SE in parentheses).
For between-season comparisons of each taxon and total
larvae, different superscripts indicate significant differences
(ANOVA P < 0.05).

Taxon

Mean concentration

Winter ⁄ spring Summer ⁄ fall

Ammodytes hexapterus 65.40 (45.33)a 0.08 (0.08)b

Isopsetta isolepis 25.16 (16.32)a 1.05 (0.50)b

Osmeridae 25.65 (11.13) 17.11 (14.73)
Parophrys vetulus 111.11 (33.23)a 22.06 (12.23)b

Sebastes spp. 37.72 (21.56)a 4.50 (2.52)b

Total larvae 369.76 (76.78)a 133.68 (36.11)b
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years) (Pearcy and Schoener, 1987; Peterson and
Schwing, 2003; Wheeler et al., 2003; Barth et al.,
2007; Huyer et al., 2007; Chan et al., 2008). These
conditions led to major changes in adult (Pearcy and
Schoener, 1987; Pearcy, 2002; Brodeur et al., 2005,
2006; Keller et al., 2010) and larval fish communities
in the NCC region (Brodeur et al., 1985, 2006; Doyle,
1995). Differences in larval fish concentrations
between years at a particular location may also be due
to changes in spawning stock biomass and spawning
location, reproductive output, differential egg and
larval survival, and changes in cross- or along-shelf
currents that may advect larvae to different areas.

Variability in sampling strategy between the dif-
ferent studies incorporated into the present study
could also contribute to observed differences in larval
concentrations. For instance, the mesh size of the nets
used to collect samples in 1971–1972 (571 lm) was
slightly larger than that used in 1977–1978 (505 lm)
and approximately twice as large as that used in 1983
and 1996–2005 (200–333 lm). This may have
resulted in greater extrusion of small, slender larvae in
the 1971–1972 collections, which could have con-
tributed to the reduced concentrations of larvae found
during this period relative to later years. However,
Boeing and Duffy-Anderson (2008) found no signi-
ficant differences in ichthyoplankton catch rates
between paired 333- and 505-lm meshed nets
deployed on the same bongo frame. In addition, the
proportion of samples collected during the day versus
night varied between the sampling periods. Concen-
trations of fish larvae collected in day samples have
been found to be less than those reported from night
samples from the same location, possibly due to net
avoidance by larvae during the day (Auth et al.,
2007). In the present study, higher concentrations of
larvae were found in 1977–1978 and 2000–2005,
where 53 and 54%, respectively, of the samples were
collected during the day, than in 1971–1972 and
1996–1999, where 73 and 95%, respectively, of the
samples were collected during the day. However, all of
the samples in 1983 were collected during the day,
and relatively high concentrations of larvae were still
found. In addition, as different larval taxa exhibit
different (or a lack of) diel vertical migration strate-
gies (Auth et al., 2007) and no documented correction
factors exist in the published literature for day-versus-
night ichthyoplankton abundance estimates for each
of the dominant taxa, we believe that there would
have been undue bias associated with implementing
an unproven diel correction factor per taxa prior to
analyzing the data. Also, there was a concern that the
variability in sampling depths (whole water column inT
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January 1971 to August 1972, November 1977 to June
1978, and April to September 1983; 20 m to surface
in December 1996 to December 2005) may have
biased comparative larval abundance estimates be-
tween study periods. However, Auth and Brodeur
(2006) found that 92% of total fish larvae along the
NH line in 2000 and 2002 were concentrated in the
upper 20 m of the water column, so we believe that
the majority of the larvae in the water column were
collected in the shallower tows. Despite the myriad
sources of variability inherent in sampling and life
history characteristics, it has been shown that many of
the dominant larval taxa off Oregon are indicators of
the prevailing ocean conditions occurring in this re-
gion (Brodeur et al., 2008).

The situation where the different ichthyoplankton
taxa showed differing responses to the environmental
variables examined or were affected by different suites
of variables may be explained by the varied repro-

ductive strategies represented. Most fish species spawn
in the California Current in winter and spring, pre-
sumably to reduce offshore transport (Parrish et al.,
1981), as is the case with A. hexapterus, some Sebastes
spp., P. melanostictus, and I. isolepis in this study
(Matarese et al., 1989). However, E. mordax spawn
almost exclusively during the summer, while taxa such
as Osmerids, other Sebastes spp., Citharichthys spp., and
P. vetulus may have multiple spawning periods and are
present in the plankton over much of the year, par-
ticularly from fall to spring (Brodeur et al., 2008;
Parnel et al., 2008). This may be a factor affecting our
results as the sampling during 1977–1978 occurred
primarily during the winter and the sampling during
1983 occurred mainly in the summer (April to Sep-
tember), so many important larvae could have been
missed due to timing of our sampling. Moreover, some
species lay demersal adhesive eggs (Osmerids and
A. hexapterus) and others have no external egg stage
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(Sebastes spp.), resulting in a shorter period for factors
such as transport and predation to have an effect on
survival.

In our study, we showed that when larval data
lagged the large-scale climate indices by several
months, the large-scale indicators, particularly the

PDO, explained more of the variance in larval abun-
dance patterns than the regional or local indices. The
primacy of large-scale over local forcing factors has
been elucidated in a number of climate-ecological
studies (see review by Stenseth et al., 2003). In a study
similar to ours in the Gulf of Alaska, Doyle et al.

Table 7. Best-fit GAM models and unbiased risk estimators (UBRE) for the presence-absence analysis of larval fish taxa and
total larval concentration (no. 1000 m)3). Time lags refer only to larval fish presence in relation to basin-scale environmental
variables (i.e., MEI, NOI, PDO). Significant variables are in bold (P < 0.05). The type of effect from each of the model variables
on lagged larval fish presence is in parentheses (i.e., 0 = no slope, + = positive linear, ) = negative linear, ) ⁄ + = negative then
positive nonlinear, + ⁄ ) = positive then negative nonlinear, etc.).

Taxon ⁄ group

Time
lag
(months) Best-fit model variables R2 UBRE

Ammodytes hexapterus 1 PDO () ⁄ 0) NOI (0 ⁄ ) ⁄ +) CWS ()) EET (+) 0.39 0.124
Isopsetta isolepis 3 PDO ()) CWS (+ ⁄ )) 0.20 0.184
Osmerids 2 PDO () MEI (+) NOI () ⁄ +) CWS (0 ⁄ )) EET ()) UPW

(0 ⁄ ) ⁄ +)
0.25 0.269

Parophrys vetulus 7 PDO (+ ⁄ )) MEI () ⁄ +) NOI (+ ⁄ ) ⁄ +) EET (+) UPW ()) 0.41 0.066
Sebastes spp. 2 PDO () ⁄ +) NOI () ⁄ +) EET (+) 0.29 0.086
Total larval
concentration

3 NOI () ⁄ +) EET (0) 0.22 )0.493

A
dd

iti
ve

 e
ffe

ct
 o

n 
la

rv
al

 p
re

se
nc

e 

15
20
25

–10
–5

0
5

10

CWS
–0.5 0.0 0.5 1.0

Ammodytes hexapterus (1-month lagged)

15
20
25

–10
–5

0
5

10

PDO
–2 –1 0 1 2

5
10
15
20
25

EET

–10
–5

0

–500 0 500 1000 1500 2000

Isopsetta isolepis (3-month lagged)

2

–10
–8
–6
–4
–2

0

PDO
–2 –1 0 1 2

Osmeridae (2-month lagged)

20

–5

0

5

10

15

PDO
–2 –1 0 1 2

Figure 5. Fitted lines (solid) and 95% confidence intervals (dotted) for the additive effects of significant environmental
variables on larval fish presence from the best-fit GAM models. Time lags refer only to larval fish concentrations in relation to
basin-scale environmental variables (i.e., MEI, NOI, PDO).

Larval fish response to environmental change 325

� 2011 Blackwell Publishing Ltd, Fish. Oceanogr., 20:4, 314–328.



(2009) found both large-scale atmospheric forcing
such as the East Pacific–North Pacific teleconnection
index and PDO can be important for some larval fish
species, whereas others are affected by more local
factors such as alongshore transport, freshwater input,
and sea surface temperature. Doyle et al. (2009) also
used GAMs to determine which factors are most
important but, in contrast to their methodology, we
included both regional and local variables in the same
models to elucidate the relative importance of the
forcing factors similar to that done by Hooff and
Peterson (2006). The relationships between larval
abundance and the environment can be complex, with
variability in larval abundance attributed to spatial
variation, seasonality, non-stationarity through time,
and likely non-linearity in physical forcing (Stenseth
et al., 2003).

Our result that each fish taxon responds differently
to environmental forcing and with different time lags
is in contrast to results of a similar analysis of the
copepod species abundance data from the same cruises
discussed here. Hooff and Peterson (2006) found that
the copepod community and some representative
species responded to changes in the sign of the PDO in
a predictable manner. That is, when the PDO was
in negative phase, the copepod community sampled in
shelf waters was composed of northern or ‘cold water’
species that are resident in the Bering Sea and coastal
Gulf of Alaska: Calanus marshallae, Pseudocalanus
mimus, and Acartia longiremis. When the PDO was in
positive phase, the copepod community was composed
of southern or ‘warm-water’ species such as Calanus
pacificus, Paracalanus parvus, Ctenocalanus vanus, and
several species of Clausocalanus. Changes in the
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copepod community lagged changes in the PDO by
3–5 months. They concluded that changes in source
waters which feed the California Current, driven by
remote basin scale forcing, and not local environ-
mental events caused interannual-to-decadal varia-
tions in copepod community species composition in
waters off Oregon. Therefore, the copepod communi-
ties which occur off Oregon, being wholly planktonic,
reflect the origin of the water masses which feed the
California Current. The observation that the most
abundant fish larvae did not respond in such a clear
manner as the copepods should not be surprising given
that the adults are not planktonic, and the most
common taxa in our study are largely non-migratory.
Compared to the copepods, the fish taxa we sampled
exhibit a broader range of spawning times, egg and
larval duration, and spawning habitats, and thus are
subject to a greater range of variability in ocean con-
ditions during the critical recruitment periods for each
species. Thus, the presence-absence or abundance of
their larvae in the water column is likely to be influ-
enced by local productivity or local predation events
in addition to the different origins of the source waters
which feed the NCC.

Although we were able to show that at least one of
our examined variables was significantly related to each
of the dominant larval taxa, in some cases the
explanatory power was quite low, indicating that other,
perhaps more complex, factor(s) not directly measured
may be responsible for the abundance patterns we ob-
served. As our sampling occurred at two fixed stations,
we could not examine whether alongshore shifts in the
centers of distribution of our species have occurred, as
seen for larvae of oceanic fishes off California (Hsieh
et al., 2009), which may appear in our data as seasonal
or interannual variability and obscure any simple
relationships with environmental variables. We also
were not specifically able to examine biological
mechanisms such as starvation and predation (Bakun
and Broad, 2003; Agostini et al., 2007) that may be
directly related to survival, although some of the
physical variables may serve as a proxy for these bio-
logical effects. However, our results have shown that
several routinely measured and easily available climate
and oceanographic indices are coherent with variations
in larval abundance and diversity, and that they may
ultimately allow prediction of future trends in fish
recruitment and production.
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