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Investigation of state retention in
metal–ferroelectric–insulator–semiconductor structures
based on Langmuir–Blodgett copolymer films
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1Department of Physics and Astronomy, Nebraska Center for Materials and Nanoscience,
University of Nebraska, Lincoln, Nebraska 68588-0299, USA
2Institut für Festkörperforschung, Forschungszentrum Jülich, 52425 Jülich, Germany

�Received 14 October 2009; accepted 15 May 2010; published online 22 July 2010�

Among the ferroelectric thin films considered for use in nonvolatile memory devices, the
ferroelectric copolymer of polyvinylidene fluoride, PVDF �C2H2F2�, with trifluoroethylene, TrFE
�C2HF3�, has distinct advantages, including low dielectric constant, low processing temperature,
relative low cost compared with epitaxial ferroelectric oxides, and compatibility with organic
semiconductors. We report the operation and polarization retention properties of a metal–
ferroelectric–insulator–semiconductor bistable capacitor memory element consisting of an
aluminum gate, a P�VDF-TrFE� Langmuir–Blodgett film, a 30 nm cerium oxide buffer layer, and a
moderately doped silicon wafer. The device exhibited a 1.9 V wide hysteresis window obtained with
a �7 V operating range with a state retention time of 10 min. The mechanisms contributing to loss
of state retention are discussed. © 2010 American Institute of Physics. �doi:10.1063/1.3452331�

I. INTRODUCTION

Demand for nonvolatile memory devices has been grow-
ing as many electronic products become more portable and
yet more connected by wireless communications.1 Ferroelec-
tric thin films are promising for nonvolatile memory appli-
cations, such as one transistor-one capacitor ferroelectric ran-
dom access memory �FRAM� �Refs. 2 and 3� and
ferroelectric field effect transistors �Fe-FETs�.4–7 Memory el-
ements based on these ferroelectric films have attracted much
attention recently because of their lower operating voltages
and faster switching speeds than those of flash memory.8,9

The FET type memory has a number of specific advantages
over flash and FRAM, including nondestructive readout and
a scalable single device structure.10 It has been noted that the
Fe-FET structure is more promising for applications to high
density �gigabit� nonvolatile RAM.11

A promising material class for use in nonvolatile memo-
ries is ferroelectric polymers, such as polyvinylidene fluoride
�PVDF, consisting of C2H2F2 monomers� and its copolymers
with trifluoroethylene �TrFE, C2HF3�.12,13 The VDF copoly-
mers have a large spontaneous polarization, approximately
0.1 C /m2, excellent polarization stability, and switching
times as short as 20 ns.14 The high resistivity of PVDF and
its copolymers, up to 10 � cm �Ref. 15�, means low leak-
age, making them suitable for nondestructive readout de-
vices. Further, they require relatively low processing tem-
peratures, less than 200 °C, have outstanding chemical
stability, are amenable to low-cost fabrication methods, and
are chemically inert and nontoxic.15 Memory devices based
on copolymers of P�VDF-TrFE� provide different opportuni-
ties, and face different challenges than those based on ferro-

electric perovskites. There have been encouraging demon-
strations of nonvolatile memory elements made by adding
PVDF copolymer spun films to both silicon16–18 and organic
based devices.19–22 These copolymer films can be annealed at
much lower temperatures and have lower dielectric con-
stants, but their coercive fields can be several orders of mag-
nitude higher than those of the perovskite ferroelectrics. This
means that ferroelectric polymer films must be even thinner
to enable switching at moderate voltage. We have had much
success making high quality ferroelectric films as thin as 1
nm by Langmuir–Blodgett �LB� deposition.23–26 As the
thickness of the ferroelectric layer of the copolymer is re-
duced in order to decrease operating voltage, careful atten-
tion should be applied to the leakage current, which may
limit retention times. This study addresses the retention char-
acteristics of silicon based metal–ferroelectric–insulator–
semiconductor �MFIS� memory structures5,16 that incorpo-
rate ultrathin ferroelectric copolymer films made by the LB
technique.31

One proposed form of ferroelectric memory structure is
the Fe-FET,5 which is based on a metal-oxide-semiconductor
FET �or MOSFET�, with the gate dielectric replaced by a
ferroelectric layer �and possibly also a dielectric buffer layer
to limit interdiffusion and leakage�.32 The application of a
voltage pulse to the gate electrode sets �writes� the direction
of the ferroelectric polarization. The surface charge of the
ferroelectric film connected with remnant polarization con-
trols the electrical conductance of the semiconductor channel
in the same way as the charge on the gate electrode in an
ordinary MOSFET. The key difference is that the switchabil-
ity of the ferroelectric polarization makes the Fe-FET a
bistable device with two logic states that are programmable
by a voltage pulse of the appropriate sign, while the device
state can be sensed �read� without disturbing the ferroelectric
polarization, i.e., the readout is nondestructive.
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Albrechts-Universität Kiel, Kiel 24143, Germany.
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The main challenge in realizing an Fe-FET memory is to
obtain a reliable interface between the ferroelectric and semi-
conductor layers to limit atomic diffusion through the inter-
face, which can increase the number of interface traps, and
consequently degrade device performance.33 An additional
insulating layer can reduce leakage and prevent interdiffu-
sion or reaction of the ferroelectric layer with the semicon-
ductor, but this extra layer should have a large dielectric
constant so that its capacitance remains high and it does not
drop much of the gate voltage.10 Although the Fe-FET con-
cept was first introduced over 50 years ago4 it has not proven
suitable for use in nonvolatile memories mainly because the
state retention times of prototype devices are generally re-
ported at a few days at best, much less than the 10 year
requirement for nonvolatile memory. The 2002 paper by Ma
and Han27 summarizes the challenges and attributes short
retention times to two main causes: �1� the tendency of the
ferroelectric film to depolarize by breaking up into opposing
domains and �2� charge leakage and trapping that tends to
screen the polarization charge. The tendency of a ferroelec-
tric film to depolarize is because of the large internal electric
field generated by uncompensated polarization.28–30 In a ca-
pacitor the electrodes can provide enough charge to compen-
sate the polarization and thus stabilize it. If one side of the
film is bounded by an insulator or semiconductor, then there
may be insufficient compensation.35 It is expected, however,
that the self depolarization is not a significant limitation as
long as the depolarization field is less than the coercive field,
and so relatively little compensation charge may be
necessary.36

A potentially more serious limitation on state retention is
leakage or injection followed by trapping of charges in the
gate dielectric or the ferroelectric film. Although the trapped
charges can help stabilize the remanent polarization, they
screen the semiconductor, which diminishes the effect of the
ferroelectric polarization on the FET channel conductance,
thus reducing state contrast.10,27 The leakage time t for a
device that has a remanent polarization Pr, leakage current I
and trapping probability �, may be estimated from the fol-
lowing relation:27

t =
Pr

I�
. �1�

This relation suggests that the leakage current should be
made very low ��1 nA /cm2�, so that typical polarization
values in the range from 5 to 50 �C /cm2 would lead to
retention times of many years. It has been proposed that a
suitable insulating layer placed between the ferroelectric and
gate electrode �as in a metal-insulator-ferroelectric-insulator-
semiconductor capacitor� can prevent charge injection from
the gate electrode and greatly improve retention
characteristics36 but this will further exacerbate the tendency
of the ferroelectric film to depolarize and will also increase
the operating voltage.

II. EXPERIMENTAL METHODS

The MFIS samples used in this study each consisted of,
in order of preparation, a doped silicon substrate, an oxide

insulating layer, a ferroelectric copolymer film, and an alu-
minum gate electrode. The substrates consisted of moder-
ately doped ��1 � cm� silicon wafers, on which was grown
either a 100 nm thick silicon oxide insulating layer �on
n-type Si� or a 12 nm thick cerium oxide layer grown by
reactive rf-sputtering on p-type Si. The ferroelectric Lang-
muir layer was formed on an ultrapure water subphase using
a 0.05% concentration of P�VDF-TrFE� �70:30� in dimethyl
sulfoxide. The ferroelectric layer was then compressed to a
surface pressure of 5 mN/m at a temperature of 25 °C and
deposited onto the substrate using the horizontal �Schaefer
variation� in LB deposition, with the film thickness deter-
mined by the number of transfers, or nominal monolayers
�ML�, ranging from 0 to 100 ML for the present study. The
LB deposition procedure was described in greater detail
previously.31 Last of all, an aluminum gate electrode was
deposited by vacuum thermal evaporation at a chamber pres-
sure of 5�10−5 mbar using a Bal-Tec MED 020 coating
system. The gate electrodes, which are 0.24 cm2 in area,
were deposited at a rate between 1 and 2 Å/s to a thickness
of 100 nm, as determined using a Sycon quartz thickness
monitor. The complete MFIS samples were annealed at
120 °C for 1 h in order to improve crystallinity.31 Electrical
contact was made to the silicon substrates with a gallium–
indium eutectic applied to a fresh scratch on the back of the
wafer.32 The gate bias voltage cycled in 0.1 V steps at a rate
of 0.05 V/s. Sample capacitance was measured with an im-
pedance analyzer �HP 4192A� operating at 1 kHz with am-
plitude 0.1 V rms. All measurements were made at 25 °C.

III. RESULTS

The total charge trapped in the ferroelectric and insulat-
ing layers was determined from the flat-band voltage Vfb, the
gate bias voltage at which the semiconductor crosses over
from depletion to accumulation, using the following expres-
sion:

Vfb = 	ms + qt/Ci , �2�

where 	ms=−0.35 V is the work function difference be-
tween the aluminum gate and silicon semiconductor, qt is the
trapped charge, and Ci is the combined capacitance of the
ferroelectric and oxide layers and is equal to the capacitance
in accumulation. The flat-band voltages for the MFIS
samples made with SiO2 were obtained from the
capacitance-voltage �C-V� data like shown in Fig. 1 by lo-
cating the elbow of the capacitance curve, where the sloped
portion and the accumulation portion tend to meet.33 The
flat-band voltages are summarized in Table I. For example,
the 0 ML sample �basically an MOS device� has a shift Vfb

=−4.0 V, and an accumulation capacitance Ci=6.36 nF,
corresponding to a positive charge with density of
0.10 �C /cm2 trapped by the oxide layer, most likely caused
by dangling bonds at the silicon surface, which is common
with unpassivated Si /SiO2 substrates.34 The MFIS with 30,
50, and 100 ML LB films had slightly more trapped charge
than the 0 ML sample, with the exception of the 50 ML
sample, which had less trapped charge. The predominately
negative net charge contribution from injection through the
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ferroelectric layer agrees with previous reported values in the
literature.17,31

The capacitance of the MFIS device should exhibit
counterclockwise hysteresis as the gate bias voltage is
cycled, provided that the electric field in the ferroelectric
layers is large enough to switch the polarization.5,16 This hys-
teresis is evident in the MFIS samples made with silicon
oxide insulating layers, as shown in Fig. 1. The 0 ML
sample, which lacks a ferroelectric layer and is therefore a
conventional MOS structure, has the highest capacitance be-
cause it is thinner, and also exhibits no hysteresis. The MFIS
structures containing ferroelectric LB films exhibit a memory
window on cycling the gate bias with a sufficiently large
amplitude to switch the remanent polarization, since the op-
posite surface charges of the two polarization states cause the
threshold voltage to shift in opposite directions. This hyster-
esis was not observed with the 0 ML MOS sample, indicat-
ing that the window is truly due to the spontaneous polariza-
tion of the ferroelectric layer. The bias voltage was cycled
twice for each sample to demonstrate repeatability.

To better understand the mechanisms limiting state re-
tention, we next focus on the modes of operation of an MFIS
device consisting of a second 100 ML LB 70:30 film �ap-
proximately 180 nm thick�35 made on a 100 nm SiO2 insu-
lating layer and n-doped silicon wafer. The hysteresis loop
for a bipolar gate bias voltage sweep amplitude of 35 V is

shown in Fig. 2. �The plot shows the region where the deple-
tion layer thickness changes significantly as the semiconduc-
tor surface changes from accumulation to depletion and vise
versa. Outside this region, on either side, the capacitance is
nearly constant, high in full accumulation at positive gate
bias voltage and low strong inversion at negative voltage.
Although the dc device capacitance should be high in either
accumulation or strong inversion, the minority carrier re-
sponse is too slow to respond to the 1 kHz measurement
frequency, so the measured capacitance remains low even in
strong inversion, for gate bias voltage below 
10 V.� A suf-
ficiently large positive gate bias voltage switches the ferro-
electric film to a polarization state that induces majority car-
rier �negative for n-type doping� charge accumulation at the
silicon surface. Therefore, this polarization state favors the
accumulation mode and a larger negative gate voltage is re-
quired to reach the threshold Vth, the voltage at which the
depletion layer reaches maximum thickness and the device
capacitance is at a minimum. Conversely, when the large
negative gate voltage is applied to the sample, the ferroelec-
tric polarization switches to the state that induces minority
carrier charge at the interface �inversion�, and threshold oc-
curs at a less negative gate voltage. The counterclockwise
sense of the hysteresis loop in Fig. 2 is, therefore, consistent
with ferroelectric switching. If the hysteresis was due to
charge injection from the gate, it would have a clockwise

FIG. 1. �Color online� C-V data for MFIS devices containing a 100 nm SiO2

insulating layer on an n-type silicon wafer and a ferroelectric layers with
thickness 0 ML, 30 ML, 50 ML, and 100 ML.

TABLE I. Device characteristics used to determine the trapped charge density for the SiO2 MFIS samples.

Polymer
film

thickness
�ML�

Capacitance
in accumulation

Ci

�nF�

Flat band
capacitance Cfb

�nF�

Flat band
voltage Vfb

��0.05 V�

Total trapped
charge density qt /A

��C /cm2�

Net trapped
charge density

vs 0 ML sample
��C /cm2�

0 6.4 5.78 
4.0 +0.10
30 5.9 5.42 
3.5 +0.08 
0.020
50 5.0 4.60 
5.5 +0.11 +0.010
100 4.5 4.19 
4.1 +0.08 
0.023

FIG. 2. C-V data for an MFIS device containing a 100 nm SiO2 insulating
layer on an n-type silicon wafer and a 100 ML ferroelectric layer. The
amplitude of the gate voltage cycle was �35 V.
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sense �for an n-type semiconductor�.34 As noted above, the
MFIS devices with SiO2 had a fixed positive trapped charge
density. As further test, we heated the sample above the
ferroelectric–paraelectric phase transition temperature where
the hysteresis vanished as it should in the nonpolar paraelec-
tric phase.33

A convenient way by which to determine the width of
the memory window is to measure the voltage separation
between intersecting points in the slope dC /dV of the capaci-
tance curve.33 In this case, the measured width of the
memory window width was 4.2 V. The maximum width of
the memory window should be twice the coercive voltage of
the ferroelectric layer,36 or about 21 V for a 100-ML LB film
of this polymer,37 much larger than that shown in Fig. 3. This
suggests that the polarization of the ferroelectric layer was
not saturated and that significantly larger operating voltage is
required. Increasing the range of the operating voltage did
indeed increase the width of the memory window, as shown
in Fig. 3 but even cycling between �35 V did not appear to
achieve saturation. The device capacitance data described in
Sec. II demonstrated that the two different polarization states
of the ferroelectric produced a large change in the surface
potential and flat band voltage of the n-type semiconductor
even when the polarization states were not saturated. The
stability of those states, however, needs to be addressed es-
pecially because of the lack of saturation. The method for
investigating state retention in 100 ML MFIS devices was
accomplished in the following manner. First, a +35 V dc
gate bias voltage was applied to the MFIS for 15 s to set the
arbitrarily designated “OFF” device state. Then, after the
gate was set to a suitable holding voltage, the capacitance
was monitored over time for approximately an hour. Then
the process was repeated with a 
35 V bias voltage for 15 s
to set the complementary “ON” state. In the figure, the
higher capacitance �accumulation� state induced after apply-
ing +35 V is referred to as the OFF state, because within the
Fe-FET structure, this state would induce higher resistance in

the channel than the lower capacitance �strong inversion� ON
state obtained after application of 
35 V would. In the case
of the 
3 V holding voltage, the states quickly converge at
the accumulation capacitance, the OFF state.

For truly nonvolatile memory, retention studies should
be made at zero gate bias voltage. But, because of the large
negative shift in the flat-band voltage due to charge trapping
�see also Fig. 1 and Table I�, for state retention studies the
capacitance was monitored at negative holding voltages,
where the hysteresis was significant. Figure 4 shows the re-
tention data for a 100 ML film for different values of the
holding voltage: �a� 
3 V, �b� 
6 V, and �c� 
9 V. The small
holding voltage of 
3 V is to the right of the flat band
voltage and does not completely compensate for the trapped
charge and the external field across the ferroelectric is posi-
tive, which maintains the OFF state and switches to the ON
state over time. The opposite situation occurs at the 
9 V
holding voltage, which overcompensates for the trapped
charge and leaves a negative field in the ferroelectric film.
Both states quickly converge to the ON state in this case.
Since the 
6 V holding voltage is closer to the center of the
hysteresis loop and therefore to exact compensation to the
trapped charge, the two capacitance states are discernible for
the longest amount of time at this holding voltage—the re-
tention is best. In this case, the capacitance difference be-
tween the two states drops to 56% of its initial value after
approximately 1 h. Therefore, the device has a state retention
time of approximately 1 h, but only at a holding voltage of

6 V.

The MFIS leakage current density �Fig. 5� was low
throughout the operating range, less than 10 nA /cm2, which
is comparable to the leakage of the MFIS structures based on
perovskite ferroelectrics.38 We can estimate a lower limit on
the time it takes to compensate the polarization charge, and,
therefore, the minimum retention time if leakage alone is
responsible for loss of state contrast. This minimum retention
time due to leakage would be equal to the remanent polar-
ization ��1 �C /m2� divided by the product of the leakage
current ��2 nA /cm2 at 
10 V� and the trapping probability.
The retention time would range from more than 500 s for
unity trapping probability to over 50 days for a more reason-
able probability of 10−4. The measured retention of approxi-
mately 1 h is closer to the lower end of this range, where
trapping probability is close to one, an unlikely situation,
which suggests leakage is not the limiting factor. Therefore,
either the trapping probability in the LB film is large or the
remanent polarization is much lower than estimated, or both.

Since it is more difficult to saturate the polarization of
the thick LB films, which have larger coercive voltages,39 on
a thick silicon oxide layer, which will drop a large proportion
of the gate bias voltage, the next logical step is to reduce the
thicknesses of both layers while increasing the dielectric con-
stant of the insulating layer. This should ensure that the op-
erating voltage is reduced while supplying a larger percent-
age voltage drop across the ferroelectric layer and provide a
better blocking barrier to charge injection from the silicon.
For this reason, we made MFIS structures on moderately
doped p-type silicon wafers �1–10 � cm� and high-k insu-
lating layers, cerium oxide ��ins�26�. In general, high-k

FIG. 3. Dependence of memory window voltage shift on gate voltage am-
plitude for an MFIS device containing a 100 nm SiO2 insulating layer on an
n-type silicon wafer and a 100 ML ferroelectric layer.
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MFIS structures fabricated under the same conditions as the
thick silicon oxide structures using these substrates resulted
in large capacitance memory windows even at gate voltages
lower than 5 V and lower shifts in the flat band voltage due

to reduced effective trapped charge in the insulating layer.
The leakage current densities measured through these capaci-
tors were, however, considerably higher ��10−6 A /cm2�
than for silicon oxide barriers and significant charge injection
occurred before gate voltages large enough to saturate the
ferroelectric could be reached.

Figure 6 shows the capacitance hysteresis for two cycles
of a 15 ML 65:35 LB copolymer film deposited on 30 nm of
cerium oxide and a p-type silicon wafer. The bistability of
the ferroelectric layer now causes clockwise hysteresis and
shows accumulation at negative gate bias. Further, there is
little horizontal offset as indicated by the centered hysteresis
loop, indicating the low density of dangling bonds for trap-
ping sites. The gate bias voltage sweep range in this case was
only �5 V, yet the memory window was 1.1 V, already 1/3
of the expected value of 3.9 V �twice the coercive voltage of
a reference 15 ML metal-ferroelectric-metal structure37�. Fig-

FIG. 4. �Color online� Retention measurements at holding voltages of 
3 V
�top�, 
6 V �middle�, and 
9 V �bottom� for an MFIS device containing a
100 nm SiO2 insulating layer on an n-type silicon wafer and a 100 ML
ferroelectric layer.

FIG. 5. Current density characteristics through an MFIS device containing a
100 nm SiO2 insulating layer on an n-type silicon wafer and a 100 ML
ferroelectric layer.

FIG. 6. C-V loop for an MFIS device containing a 30 nm CeO2 insulating
layer on a p-type silicon wafer and a 15 ML ferroelectric layer.
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ure 7 shows, however, that when the gate amplitude was
increased, the hysteresis window achieved its maximum
value of 1.9 V �more than half of the theoretical saturated
value� at a gate amplitude of �7 V, while after cycling to
higher gate voltages, the size of the window began to de-
crease. Furthermore, both of the threshold voltages show a
trend of shifting toward positive gate bias, an indication that
negative charge is being trapped in the oxide layer during
cycling.

The stability of the polarization states was monitored in
the same manner described above. Since the ON/OFF ratio
was large at zero bias, in this case the capacitance was moni-
tored over time with the gate under short circuit boundary
conditions, a more appropriate condition for nonvolatile
memories. Figure 8 shows the OFF or accumulation capaci-

tance state and its dependence on time after two applications
of 
6 V pulses with different time durations. The process
was also performed for the ON state, but for simplicity that
data is not shown since in this case the ON state was stable
for at least 3 h, due to the small offset at zero gate voltage.
Although the large memory window of the capacitance loop
shown in Fig. 6 indicates that the ferroelectric film was
brought closer to saturation when compared to the earlier
studies on thick MFIS structures, there is little improvement
in the retention time compared to the devices with an SiO2

insulating layer. Even so, there is evidence that incompletely
polarized ferroelectric polymer LB films continue to relax on
a logarithmic time scale.40 This means that there is much yet
to learn about polarization relaxation processes.

In order to test the insignificance of the depolarization
field, a comparison study was made between two different
ferroelectric capacitors, both with aluminum electrodes and a
40 ML �72 nm� thick copolymer LB film. One of the samples
had, in addition, a 5 ML thick �12 nm� stearic acid LB film
deposited on top of the copolymer layer. The stearic acid
layer was included to produce a nonzero depolarization field,
comparable to that produced by the oxide layer in the MFIS.
The pyroelectric signals of both samples were monitored af-
ter a 10 s saturation pulse at 1.5 times the coercive voltage
was applied. 8 h after the pulse application, both samples
retained high polarization, the sample with a stearic acid
layer had reduced to 92% of its initial value and the other
sample was at 95% of its initial value. Other studies have
also observed that the depolarization field is not an important
factor for polarization retention of devices based on the
ferroelectric copolymer.41

These results demonstrate that in order to reduce operat-
ing voltages and to better saturate the ferroelectric, much
thinner LB films were deposited on silicon substrates that
had thin buffer layers with high dielectric constants. These
structures resulted in repeatable hysteresis at lower voltages
and better ON/OFF ratios at zero bias, which is necessary for
a nonvolatile memory. State retention, however, was limited
by the relatively large leakage currents produced in these
configurations. In order to decrease operating voltages and
maintain acceptable current densities, it may be necessary to
deposit a second high-k buffer layer between the ferroelectric
and gate metal while investigating methods to improve over-
all crystallinity in the LB polymer films.

IV. CONCLUSIONS

The device characteristics of MFIS structures incorporat-
ing thick LB copolymer films on thick silicon oxide show
that the polarization of the thick ferroelectric MFIS was not
well saturated, even when operating voltages as high as �35
V were applied. The limited retention time of the copolymer
based devices suggested that the trapping probability is high
but it remains to be seen if retention is limited by leakage or
if it is caused by an unsaturated state of the ferroelectric.

ACKNOWLEDGMENTS

Work at the University of Nebraska was supported by
the USA National Science Foundation �Grant No. ECS-

FIG. 7. Threshold voltages and memory window for an MFIS device con-
taining a 30 nm CeO2 insulating layer on a p-type silicon wafer and a 15 ML
ferroelectric layer.

FIG. 8. �Color online� Retention of the accumulation state at zero gate bias
voltage following 
6 V poling pulses of 10 and 100 s duration for an MFIS
device containing a 30 nm CeO2 insulating layer on a p-type silicon wafer
and a 15 ML ferroelectric layer.

024109-6 Reece et al. J. Appl. Phys. 108, 024109 �2010�



0600130�. Work at the Institute of Solid State Research �IFF�
was supported by Volkswagen-Stiftung �www.volkswagen-
stiftung.de� within the program “Complex Materials: Coop-
erative Projects of the Natural, Engineering, and Bio-
sciences” under the title: “Nanosized ferroelectric Hybrids”
under Project No. I/77 737.

1P. Juan, Y. Hu, F. Chiu, and J. Y. Lee, J. Appl. Phys. 98, 044103 �2005�.
2J. C. Crawford, IEEE Trans. Electron Devices 18, 951 �1971�.
3T. D. Hadnagy, Integr. Ferroelectr. 18, 1 �1997�.
4I. M. Ross, “Semiconductor translating device,” U.S. Patent No. 2791760
�7 May 1957�.

5J. L. Moll and Y. Tarui, IEEE Trans. Electron Devices 10, 338 �1963�.
6K. Sugibuchi, Y. Kurogi, and N. Endo, J. Appl. Phys. 46, 2877 �1975�.
7J. L. Sun, X. J. Meng, J. H. Ma, T. Lin, J. Chen, N. Dai, and J. H. Chu,
Appl. Phys. A: Mater. Sci. Process. 81, 389 �2005�.

8Y. Fujisaki, T. Kijima, and H. Ishiwara, Appl. Phys. Lett. 78, 1285 �2001�.
9C.-L. Sun, S.-Y. Chen, S.-B. Chen, and A. Chin, Appl. Phys. Lett. 80,
1984 �2002�.

10C.-Y. Chang, T. P.-C. Juan, and J. Y.-M. Lee, Appl. Phys. Lett. 88, 072917
�2006�.

11S.-B. Xiong and S. Sakai, Appl. Phys. Lett. 75, 1613 �1999�.
12T. Furukawa, Phase Transitions 18, 143 �1989�.
13H. S. Nalwa, Ferroelectric Polymers �Dekker, New York, 1995�, p. 895.
14T. Furukawa, T. Nakajima, and Y. Takahashi, IEEE Trans. Dielectr. Electr.

Insul. 13, 1120 �2006�.
15T. T. Wang, J. M. Herbert, and A. M. Glass, The Applications of Ferro-

electric Polymers �Blackie/Chapman and Hall, Glasgow, 1988�.
16N. Yamauchi, Jpn. J. Appl. Phys., Part 1 25, 590 �1986�.
17S. H. Lim, A. C. Rastogi, and S. B. Desu, J. Appl. Phys. 96, 5673 �2004�.
18R. Schroeder, A. Majewski, M. Voight, and M. Grell, IEEE Electron De-

vice Lett. 26, 69 �2005�.
19R. C. G. Naber, C. Tanase, P. W. M. Blom, G. H. Gelinck, A. W. Mars-

man, F. J. Touwslager, S. Setayesh, and D. M. de Leeuw, Nature Mater. 4,
243 �2005�.

20B. Stadlober, M. Zirkl, M. Beutl, G. Leising, S. Bauer-Gogonea, and S.
Bauer, Appl. Phys. Lett. 86, 242902 �2005�.

21R. C. G. Naber, J. Massolt, M. Spijkman, K. Asadi, P. W. M. Blom, and D.
M. de Leeuw, Appl. Phys. Lett. 90, 113509 �2007�.

22K. Asadi, D. M. de Leeuw, B. de Boer, and P. W. M. Blom, Nature Mater.

7, 547 �2008�.
23A. V. Bune, V. M. Fridkin, S. Ducharme, L. M. Blinov, S. P. Palto, A. V.

Sorokin, S. G. Yudin, and A. Zlatkin, Nature �London� 391, 874 �1998�.
24S. Ducharme, S. P. Palto, and V. M. Fridkin, in Ferroelectric and Dielec-

tric Thin Films, edited by H. S. Nalwa �Academic, San Diego, 2002�, Vol.
3, pp. 545–591.

25Y. T. Kim, C. W. Lee, D. S. Shin, and H. N. Lee, Proceedings of the
Eleventh IEEE International Symposium on Applications of Ferroelectrics,
24–27 Aug., Montreaux, Switzerland �IEEE, Piscataway, NJ, 1998�, pp.
35–38.

26A. D. Li, Y. J. Wang, Q. Y. Shao, J. B. Cheng, D. Wu, H. Q. Ling, Y. J.
Bao, M. Wang, Z. G. Liu, and N. B. Ming, Appl. Phys. A: Mater. Sci.
Process. 81, 1273 �2005�.

27T. P. Ma and J.-P. Han, IEEE Electron Device Lett. 23, 386 �2002�.
28M. E. Lines and A. M. Glass, Principles and Applications of Ferroelec-

trics and Related Materials �Clarendon, Oxford, 1977�.
29I. P. Batra and B. D. Silverman, Solid State Commun. 11, 291 �1972�.
30M. Takahashi, H. Sugiyama, T. Nakaiso, K. Kodama, M. Noda, and M.

Okuyama, Jpn. J. Appl. Phys., Part 1 40, 2923 �2001�.
31J. Choi, C. N. Borca, P. A. Dowben, A. Bune, M. Poulsen, S. Pebley, S.

Adenwalla, S. Ducharme, L. Robertson, V. M. Fridkin, S. P. Palto, N. N.
Petukhova, and S. G. Yudin, Phys. Rev. B 61, 5760 �2000�.

32Y. Tokuda and T. Seki, Semicond. Sci. Technol. 15, 126 �2000�.
33T. J. Reece, S. Ducharme, A. V. Sorokin, and M. Poulsen, Appl. Phys.

Lett. 82, 142 �2003�.
34S. M. Sze, Physics of Semiconductor Devices �Wiley, New York, 1981�.
35M. Bai, A. V. Sorokin, D. W. Thompson, M. Poulsen, S. Ducharme, C. M.

Herzinger, S. Palto, V. M. Fridkin, S. G. Yudin, V. E. Savchenko, and L.
K. Gribova, J. Appl. Phys. 95, 3372 �2004�.

36S. L. Miller and P. J. McWhorter, J. Appl. Phys. 72, 5999 �1992�.
37T. J. Reece, A. V. Sorokin, and S. Ducharme, Nonvolatile Bistable Elec-

tronic Memory Based on Ferroelectric Polymer Langmuir-Blodgett Films,
USA �2003�.

38L. V. Hai, T. Kanashima, and M. Okuyama, Integr. Ferroelectr. 84, 179
�2006�.

39S. Ducharme, V. M. Fridkin, A. Bune, L. M. Blinov, S. P. Palto, and S. G.
Yudin, Phys. Rev. Lett. 84, 175 �2000�.

40A. V. Sorokin, S. Ducharme, and V. M. Fridkin, J. Appl. Phys. 98, 044107
�2005�.

41L. Malin, I. Stolichnov, and N. Setter, J. Appl. Phys. 102, 114101 �2007�.

024109-7 Reece et al. J. Appl. Phys. 108, 024109 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp

http://dx.doi.org/10.1063/1.2014935
http://dx.doi.org/10.1109/T-ED.1971.17309
http://dx.doi.org/10.1080/10584589708221681
http://dx.doi.org/10.1109/T-ED.1963.15245
http://dx.doi.org/10.1063/1.322014
http://dx.doi.org/10.1007/s00339-004-2564-7
http://dx.doi.org/10.1063/1.1351535
http://dx.doi.org/10.1063/1.1459115
http://dx.doi.org/10.1063/1.2177549
http://dx.doi.org/10.1063/1.124771
http://dx.doi.org/10.1080/01411598908206863
http://dx.doi.org/10.1143/JJAP.25.590
http://dx.doi.org/10.1063/1.1785836
http://dx.doi.org/10.1109/LED.2004.841186
http://dx.doi.org/10.1109/LED.2004.841186
http://dx.doi.org/10.1038/nmat1329
http://dx.doi.org/10.1063/1.1946190
http://dx.doi.org/10.1063/1.2713856
http://dx.doi.org/10.1038/nmat2207
http://dx.doi.org/10.1038/36069
http://dx.doi.org/10.1007/s00339-004-3021-3
http://dx.doi.org/10.1007/s00339-004-3021-3
http://dx.doi.org/10.1109/LED.2002.1015207
http://dx.doi.org/10.1016/0038-1098(72)91180-5
http://dx.doi.org/10.1143/JJAP.40.2923
http://dx.doi.org/10.1103/PhysRevB.61.5760
http://dx.doi.org/10.1088/0268-1242/15/2/308
http://dx.doi.org/10.1063/1.1533844
http://dx.doi.org/10.1063/1.1533844
http://dx.doi.org/10.1063/1.1649464
http://dx.doi.org/10.1063/1.351910
http://dx.doi.org/10.1080/10584580601085784
http://dx.doi.org/10.1103/PhysRevLett.84.175
http://dx.doi.org/10.1063/1.2006228
http://dx.doi.org/10.1063/1.2817646

	Investigation of state retention in metal–ferroelectric–insulator–semiconductor structures based on Langmuir–Blodgett copolymer films
	

	tmp.1319037967.pdf.UXnVz

