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ABSTRACT: Metal reduction assays are traditionally used to
select and characterize electrochemically active bacteria
(EAB) for use in microbial fuel cells (MFCs). However,
correlating the ability of a microbe to generate current from
an MFC to the reduction of metal oxides has not been
definitively established in the literature. As these metal
reduction assays may not be generally reliable, here we
describe a four- to nine-well prototype high throughput
voltage-based screening assay (VBSA) designed using MFC
engineering principles and a universal cathode. Bacterial
growth curves for Shewanella oneidensis strains DSP10 and
MR-1 were generated directly from changes in open circuit
voltage and current with five percent deviation calculated
between each well. These growth curves exhibited a strong
correlation with literature doubling times for Shewanella
indicating that the VBSA can be used to monitor distinct
fundamental properties of EAB life cycles. In addition, eight
different organic electron donors (acetate, lactate, citrate,
fructose, glucose, sucrose, soluble starch, and agar) were
tested with S. oneidensis MR-1 in anode chambers exposed to
air. Under oxygen exposure, we found that current was
generated in direct response to additions of acetate, lactate,
and glucose.
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� 2008 Wiley Periodicals, Inc.

KEYWORDS: microbial fuel cell; high-throughput screen-
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Introduction

The discovery of microbes that couple metal reduction to
produce energy for anaerobic growth (DiChristina et al.,
1988; Lovley and Phillips, 1988; Myers and Nealson, 1988)
has generated a significant amount of research on the
identification and manipulation of metal reducing microbes
for applications ranging from bioremediation of heavy
metals (Lovley and Coates, 1997) to harvesting electricity
from biomass (Logan and Regan, 2006). Microbes capable of
metal reduction within environmental samples are com-
monly isolated and identified based on their ability to reduce
certain transition metal or actinide electron acceptors (iron
and manganese oxides, technetium, uranium) by either
colorimetric assays (Lovley and Phillips, 1987) or plating on
agar indicator supports (Ganesh et al., 1997; Payne and
DiChristina, 2006; Taratus et al., 2000). For example, metal
reduction assays were used to identify electrochemically
active bacteria (EAB) obtained from the anode of a micro-
bial fuel cell (MFC) submerged in sediment from Boston
Harbor, MA. (Bond et al., 2002). Reduction of solid metal
oxides by EAB is generally considered to be concomitant
with electricity production from MFCs. However, the
mechanisms of extracellular electron transfer from bacteria
to carbon electrodes and insoluble metal oxides are still ill-
defined (Chang et al., 2006; Stams et al., 2006). Specifically,
Shewanella (one of the two families of bacteria frequently
used in pure culture MFCs) express multiple pathways for
electron transfer to graphite electrodes and manganese/iron
oxides (Bretschger et al., 2007).

In contrast to past results, recent experiments suggest that
the connection between current output from MFCs and
metal oxide reduction for unidentified EAB in the environ-
ment is tenuous. The first significant disconnect between
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metal reduction and electricity output from MFCs was
recently observed with Pelobacter carbinolicus (Richter et al.,
2007). Pelobacter are of interest for MFCs because of their
phylogenetic relationship to the other major bacterial family
used in MFC research, Geobacteracae (Lovley et al., 1997). It
was observed that Pelobacter was capable of reducing Fe(III)
oxides but did not generate current in a MFC. Thus, the ex-
pression of multiple pathways for electron transfer to differ-
ent electron donors and the lack of current generation from
a MFC by P. carbinolicus brings into question how many
other species of EAB can reduce metal oxides yet may not be
able to deliver electrons to a carbon electrode or vice versa.

To date, little has been published on rapidly screening
electrochemically active biological species for use as energy
harvesters or biosensors. Routinely, multiple MFC experi-
ments are performed in serial (slow due to time between
experiments) or in parallel by running multiple larger scale
MFCs at the same time. Since running a single full scale MFC
requires significant space and materials, then a single device
with multiple wells would be more efficient. Rapid screening
methods are desirable, as the best candidates for a given
MFC application need to be identified quickly and accu-
rately. High-throughput screening (HTS) continues to be
primarily focused on the automation, detection, and minia-
turization of assay technology (Burbaum and Sigal, 1997;
Sundberg, 2000). Bacterial metabolism can be significantly
influenced by environmental stressors (Storz and Hengge-
Aronis, 2000), and correlating all of the potential variables
and mutations with current output would require a
standardization between research groups in the MFC field
for every bacterial sample with a defined power output.

Several strategies have been used for HTS of both whole
cell or catalytic activity from enzymes and function (Diaz-
Mochon et al., 2007). After the introduction of the 96-well
microtiter plate and spectrophotometric plate readers, a
clear distinction arose between HTS and traditional
laboratory assays. Some of these differences are provided
in Table I and were described in detail within a review by
Inglese et al. (2007). A noteworthy difference between
laboratory assays and HTS are a significantly reduced sample
size for HTS and a simple protocol. There are no HTS assays
in the literature that monitor biological function as it relates
directly to current generating ability or power output.

There has been some interesting work on assay technology
to identify and manipulate bacteria for bioremediation
research. DiChristina and coworkers have published a rapid
screening routine for identifying Mn(IV) (Burnes et al.,

1998), Tc(VII) (Payne and DiChristina, 2006), and Se(IV)
(Taratus et al., 2000) reduction by Shewanella mutants using
indicator plate assays. However, changes in thermal growth
conditions cannot be varied across plate assays and only 10–
12 colonies can be analyzed at one time by digitally imaging
each plate separately. Miniature biological reactors have
been developed as a way to increase the number of growth
and metabolic variables within a single device (Harms et al.,
2005; Maharbiz et al., 2004). For Shewanella specifically, a
high-throughput mini-bioreactor was fabricated for the
rapid screening of growth conditions (Tang et al., 2006).
Their multi-component mini-bioreactor (10 mL volume)
generated 24 different growth conditions for S. oneidensis by
changing the pH, O2/CO2 content, and temperature in each
well but relied on external analysis of growth rates and metal
reduction.

Researchers studying hydrogen/oxygen fuel cell catalysts
have developed HTS methods for screening potential
catalysts for increased activity (current output) and stability
(Smotkin et al., 2006). Unlike hydrogen/oxygen fuel cells,
biological fuel cells do not require stringent catalyst
preparation; thus making it possible to create a biological
reactor with a common cathode and catholyte directly from
a basic batch reactor design. A HTS assay for EAB will need
to account for the bacterial conditioning of the anode
surface and gradual bacterial biofilm formation (Kim et al.,
1999, 2002); a process that can take several weeks.

The device described in this work is an operational
prototype of an HTS assay that uses real time voltage
detection instead of metal reduction as an indicator for
potential microbial power output from MFCs. The design is
based on general MFC principles using a ferricyanide
catholyte for each assay. Shewanella oneidensis strains MR-1
or DSP10 were used for bacterial growth studies as well as
power output from various carbon fuels. The data collected
in this platform resulted in the efficient determination of
energy harvesting potential compared to using large scale
individual MFCs and enabled multiple nutrients to be
screened simultaneously for current and power output from
Shewanella.

Materials and Methods

Stock solutions of D-glucose (1.0 M), D-fructose (0.5 M)
were filter sterilized (0.2 mm cellulose nitrate filter). Stock
solutions of sodium lactate (1.95 M adjusted to pH 7),
sodium acetate (1.95 M), 1% agar, sucrose, 2% starch,

Table I. Parameters for distinguishing between laboratory assays and HTS assays.

Parameter Laboratory HTS

Protocol Can be complexed with numerous steps Less than 10 steps, simple, addition only

Assay volume 0.1–1 mL <1–400 mL

Reagents Quantity often limited, different batches Single batch, stable over long time

Variables Time, substrate, compound Compound (mg quantity), compound concentration

Assay container Tube, slide, microtiter plate, Petri dish, cuvette, animal Microtiter plate

Time Milliseconds–months Minutes–hours

Output Plate reader, size separation, radioactivity Plate reader (fluorescence, luminescence, absorbance)
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sodium citrate (0.5 M) were sterilized by autoclave (13 min,
1218C). All VBSA experiments were performed a minimum
of three times and conclusions were drawn from similar
trends in each experiment.

Cell Culture Conditions

The DSP10 and MR-1 strains of S. oneidensis were obtained
from the Nealson lab strain collection. Both strains were
inoculated from �808C frozen stock cultures, and grown in
50 mL of Luria-Bertani (LB) broth with gentle shaking (100
rpm) at 258C in 125 mL flasks aerobically.

Dimensions and Fabrication of Pipet Microbial
Fuel Cell

Graphite felt (GF, Electrosynthesis Company, Lancaster,
NY, 15 mg) woven with a titanium wire was pressed
into the bottom half of a separated 1 mL pipetter tip
(Fisher Scientific, Pittsburgh, PA). This chamber was then
attached to a pre-treated Nafion-117 membrane with 5 min
epoxy (Devcon, Danvers, MA). The upper (anode) chamber
was attached to the opposite side of the membrane with
5 min epoxy and 25 mg of graphite felt (woven with a
titanium wire) was pressed inside. The two chambers were
attached permanently with marine epoxy (Loctite, Avon,
OH) on the outside of the device (Fig. 1). A stationary phase
culture (500 mL) of S. oneidensis DSP10 (1� 108 CFU/mL)
was added to the anode chamber serving as the anolyte.
Three pipet MFCs were placed in a stirred 50 mM potassium
ferricyanide dissolved in 100 mM pH 7 sodium phosphate
buffer as a standard catholyte. The cathodes from each
independent fuel cell were connected in parallel with
titanium wire.

Dimensions and Fabrication of the Four- to Nine-Well
Voltage-Based Screening Assays (VBSAs)

VBSAs containing four to nine wells (Fig. 3) were cons-
tructed for these experiments. The upper 4.3 cm� 4.3 cm
VBSA frame was formed from a 1.3 cm thick polysulfone
polymer sheet (Trident Engineering Plastics, Bristol, PA).
The frame was fabricated from polysulfone because of its
resistance to typical sterilization temperatures (121–1258C)
and machinability. The diameter of each well was 0.8 cm. A
second 0.5 cm thick polysulfone polymer sheet was cut to
the same size frame as above with mirroring 0.5 cm diameter
holes to aid in supporting the separator to the main array.
The separator between the polysulfone sheets was a pre-
treated Nafion1-117 membrane (deionized (DI) water, 3%
hydrogen peroxide solution, 1 M sulfuric acid, and DI water
at 708C for 1 h each). The Nafion-117 membrane was then
hot pressed (5 min, 100 psi, 1508C) with Toray Carbon
Paper (E-TEK, TGPH-090) connected with a titanium wire.
The anodes were fabricated from a titanium metal sheet
(active electrode area, 0.3 cm� 0.3 cm) coated with a
conductive carbon ink. The carbon ink contained 30 mg

carbon black, 300 mL 2-propanol, 300 mL 5% Nafion
Solution in water, and 2 mL of de-ionized water. The ink was
sonicated for 30 min prior to application (drop-cast
method) to the bottom half of one side of etched (1 M
HCl, 808C, 5 min) titanium foil (Goodfellow Cambridge
Limited, Huntingdon, England) cut into an ‘‘L’’ shape. Each
titanium anode was placed in a chamber. The entire device
was then assembled immediately with zinc plated screws and
sterilized in an autoclave at 1218C for 13 min. The fully
assembled VBSA was autoclaved as one piece including the
titanium electrodes in each anode chamber to limit bacterial
contamination. A conditioning period (<24 h) was required
for the wetting of the membrane electrode assembly in the
VBSA device because it was hot pressed to carbon paper and
autoclaved prior to use which resulted in the membrane
drying.

The catholyte for each experiment was a filter sterilized
50 mM potassium ferricyanide solution in 100 mM
phosphate buffer (pH 7.0). Due to the well-defined electro-
chemical properties of potassium ferricyanide and its pre-
sence in excess concentration, changes in overall cell voltage
and current output will be dictated by each anode. There was
no detectible cross-over of the ferricyanide into the anode
chamber throughout the duration of the experiment.
Marine epoxy (Loctite) was coated around the junction
between the polysulfone sheets and Nafion-117 to protect
the chambers from ferricyanide seepage and over the zinc
plated screws exposed to the ferricyanide catholyte. The
container for the VBSA (Fig. 3C) was sterilized with 10%
bleach and UV irradiation in the biosafety hood prior to
use. The VBSA was placed into the catholyte solution to com-
plete the device. The potential of the cathode was monitored
versus Ag/AgCl (Analytical Sensors, Inc., Sugarland, TX)
using an ORION 330 electrochemical apparatus (Thermo
Electron Corp., Waltham, MA). All sterile manipulations
were performed in a biosafety flow hood.

Data Acquisition

The voltages at open circuit or across a 100 kV resistor (in a
custom nine-resistor bank made for simultaneous measure-
ments) were recorded with a personal data acquisition
device (I/O tech, personal daq/54) every 2 min. Ohm’s law
was used to convert voltage to current and to generate
polarization curves. The polarization curves for each pipet
fuel cell were recorded by changing the external resistance of
each fuel cell independently.

Monitoring the Growth of S. oneidensis With Voltage
and Current

In a five-well VBSA, 300 mL of sterile LB was inoculated with
100 mL of a culture containing 1� 108 CFU/mL S. oneidensis
MR-1 or DSP10 in LB. The growth of the cells was
monitored with time using the voltage output from each
well versus the ferricyanide cathode system. A 100 kV
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resistor was used during experiments for the determination
of current output for either growth or carbon source
utilization. Growth experiments following current output
contained the redox mediator 9,10-anthraquinone-2,6
disulfonic acid (AQDS, 5 mM) to eliminate changes in
current derived from differential mediator secretion and
biofilm formation.

Results and Discussion

Pipet Microbial Fuel Cells

To date, a multi-anode/common cathode MFC has not been
reported in the literature. The initial design concept for the
VBSA was brought to practice by simply modifying 1 mL
pipetter tips (Fig. 1). Three pipet MFCs were placed in a
standard potassium ferricyanide catholyte. The ferricyanide
concentration was in excess so that large changes in localized
concentration would not affect the working potential of the
cathode. Sodium lactate was added periodically to the anode
chambers containing S. oneidensis DSP10 to concentrations
of 20–30 mM over the period of 4–6 days during the
experiment.

The voltages across an external resistor (8,600 or 4,700 V)
or at open circuit (OCV) were recorded with time from
three pipet MFCs (Fig. 2A). There was a negligible difference
in voltage output between MFCs 1 and 3 under identical
conditions, while MFC 2 exhibited a slight variation from
the other two. In general, the use of GF in these designs is
limited because the connection between the titanium wire
and GF deteriorates upon wetting. Therefore, titanium–
titanium connections were used for the anodes in the
subsequent VBSA design, resulting in a substantial decrease
in variability for the VBSA (below). The difference between
MFCs 1/3 and MFC 2 was also observed when polarization
curves were calculated from each pipet MFC (Fig. 2B). The
average open circuit voltages and short circuit currents were
0.65� 0.05 V and 0.021� 0.003 mA (Fig. 2B inset) from
each MFC, respectively. The average power density from
S. oneidensis DSP10 in all three MFCs was 4,400� 500 W/m3

(per volume) and 0.20� 0.02 mW/m2 (per cross-sectional
electrode surface area).

The power density (per surface area) of the pipet MFCs
are considerably less than previously published MFCs. The
best comparison of power density is with a miniature MFC
(mini-MFC) (Ringeisen et al. 2006) because it was designed
to maximize the surface area of the electrode to volume of
the chamber similar to the pipet MFC. Due to small anode
volume (500 mL) and the minimization of void volume (GF
filled fuel cell chambers), these pipet MFCs were able to be
operated with air exposed anodes. Power from aerobic
cultures was also observed using the mini-MFC (Ringeisen
et al., 2007). The pipet MFC (as well as any MFC utilizing
ferricyanide catholytes) could also be operated under
anaerobic atmospheres because the redox couple for ferri-
cyanide is not oxygen dependent. The percent deviation of
all three pipet MFCs was 8% from the mean voltage
recorded. This initial pipet design highlights the concept
that power generation can be monitored in multiple
biological air exposed anodes using a single cathode with
a well-defined redox active catholyte.

General VBSA Design and Properties

The experimental design of pipet MFCs was used to fabricate
an improved single frame batch reactor with a common

Figure 2. A: Time–voltage curves of three pipet MFCs containing S. oneidensis

MR-1 with connected cathodes and (B) power and voltage (inset) versus current for

individual pipet MFCs.

Figure 1. Images of the pipet MFC: (A) Schematic, (B) operating pipet MFC with

titanium wires.
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cathode (Fig. 3). The total Ohmic resistance of an MFC can
be quite pronounced considering the optimal operating
conditions (pH 1, 608C) for Nafion membranes (Harnisch
et al., 2008; Rozendal et al., 2006; Zhao et al., 2006) are not
used in these systems. Voltage data collected from a four-
well VBSA containing S. oneidensis DSP10 inoculated with
lactate was used to calculate the total Ohmic resistance (RV,
Eq. 1) of the system via the current-interrupt method
(Cooper and Smith, 2006). The initial change in voltage
(DE) (0.0112, Fig. 4 inset) after operating the VBSA at 4 mA
(I) resulted in a RV of 2,800� 100 V. This high resistance
was most likely due to the low power output and the high
resistive state of the

RV ¼ DE

I
(1)

Nafion MEA initially. However, the total Ohmic resistance
decreased considerably after 25 h of operation (1,100� 50
V). This was a common property with this prototype and
resulted in a mandatory 10–25 h conditioning period for
consistent results to be obtained from the VBSA.
Conditioning the VBSA was accomplished by soaking each

anode chamber with either sterile water or the medium of
interest. Variation derived from the VBSA itself are
mitigated by recording data against a control experiment
run in parallel with the experiments of interest. The percent
deviation between each of the wells (5%) was determined
from deviations in the mean voltage recorded throughout
triplicate current-interrupt data sets (Fig. 4).

Growth of S. oneidensis MR-1 and DSP10
Using the VBSA

A variety of analytical methods (bioluminescence, immu-
nology, microscopy, flow cytometry, electrochemical) are
currently being employed to monitor the safety and quality
of food and agricultural products from bacterial contami-
nants. There are few rapid and sensitive methods to monitor
bacterial load and activity with most direct assays relying on
oxygen respiration activity which is often inaccurate for
anaerobic bacteria (Kuznetsov et al., 2004). A recently
published assay for the rapid analysis of bacterial growth and
metabolic activity used external mediators with integrated
electrochemical methods for Mycobacterium smegmatis
(Kuznetsov et al., 2006). Their system consisted of a
standard three-electrode cell with working, reference, and
platinum counter electrodes. The VBSA could also be used
to monitor bacterial activity similar to the three electrode
electrochemical systems by utilizing voltage changes with or
without external mediators depending on the bacterial
species. Standard three electrode systems will eventually be
susceptible to biofouling of the reference and counter
electrode considering they are both placed in the bacterial
culture. The VBSA is designed with a universal ferricyanide
cathode system separated from the bacterial culture by a
Nafion1-117 membrane making any changes in the cathode
potential capable of being monitored independently by an
additional reference electrode (example: Ag/AgCl), if
necessary, and isolated from the bacteria of interest.

The growth of S. oneidensis MR-1 and DSP10 was
examined with the VBSA using both open circuit voltage
(OCV) (Fig. 5A) and current (Fig. 5B) at pH 7. A six-well
VBSA was assembled with 300 mL cell-free LB media in each
anode chamber. After the initial conditioning period (25 h),

Figure 4. Parallel current-interrupt data for a 4-well VBSA containing

S. oneidensis MR-1. Inset: Linear fit of voltage versus time data for total Ohmic

resistance calculation.

Figure 3. Images of the nine-well VBSA: (A) Schematic, (B) operating VSBA, and (C) device container with electrical connections.
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100 mL inocula from 1� 108 CFU/mL MR-1 and DSP10
cultures were added to each well. The voltage data collected
from each chamber was substracted from a control
experiment containing acellular LB. This data correction
was necessary considering the presence of background
voltage changes due to LB and carbon electrodes.

The data obtained at OCV would be the most rapid way to
analyze the growth of Shewanella considering once the
maximum potential difference is obtained, general activity
could be monitored by a change in the OCV. There
were large differences observed between the growth rates
calculated using the VBSA with OCV and standard growth
experiments (e.g., serial dilution or optical density). Typical
OCVs reported in the literature for MFCs using a
ferricyanide catholyte and Shewanella (500–800 mV) were
observed approximately 1 h after the MR-1 culture was
added and (after a 1.2 h lag period) 1 h after the addition of
DSP10 (Fig. 5A). Typical doubling times (calculated during
exponential growth) for S. oneidensis range from 35 to
45 min under comparable conditions to those used for the
VBSA (Abboud et al., 2005; Biffinger et al., 2008b). Doubling
times calculated from the OCV data are 12 min for DSP10
and 18 min for MR-1. These data suggest OCV is a poor
indicator for bacterial growth. The growth curves generated
using OCV are more likely showing the bacterial con-
ditioning (biofilm formation, biosynthesis of redox med-
iators) of the electrode considering OCV is a measure of the
maximum working potentials between the anode and
cathode. Since there are no literature precedents for the rate
bacteria condition an electrode, this metric should be useful
in screening new electrode materials and coatings.

Large changes in OCV can be useful for qualitative
measurements of the bacterial culture properties and
electrode interactions, but OCV does not correlate to actual
bacterial growth. If an external resistor is placed in series
with each anode in the VBSA and connected to the universal
cathode then each well will behave as individual MFCs. A
second set of experiments were designed to relate current
output directly with S. oneidensis growth in the presence of
AQDS. An external mediator was added to eliminate current
responses due to biofilm formation and bacterial con-
ditioning of the electrode surface. The doubling times

calculated for DSP10 and MR-1 during the first 10 h of data
in Figure 5B are 34 and 42 min, respectively. These doubling
times were calculated using the initial slope from the current
increase after the addition of bacteria to each anode well and
are consistent with literature values (above). The data
collected after the rise in current shows a gradual decrease in
current to a steady state 10 h after the initial addition. Since
current is being collected from these fuel cells, the gradual
decrease in current is in response to a decrease in viable
carbon sources for Shewanella. This gradual drop in current
after 10 h is nothing like the OCV data (Fig. 5A) that showed
no decrease in voltage until 25 h after the addition of
bacteria (data not shown). The actual currents that were
generated by MR-1 and DSP10 can be deceiving considering
that both strains utilize LB in dissimilar ways for current
output. However, both strains utilize lactate the same and
this was reflected in the identical maximum current output
observed from DSP10 and MR-1 in Figure 5B when lactate
was used as the sole carbon source.

Several properties of EAB can be observed by using the
VBSA with OCV or current detection. These data suggest
that OCV is a better metric for bacterial conditioning of
electrodes and surfaces and not for bacterial growth.
Conversely, current appears to be the best detection metric
for bacterial growth rates. The use of external mediators is
optional for screening EAB, but should be used when the
effects of bacterial conditioning and biofilm formation are
to be negated.

Screening for Carbon Substrate Utilization by Air
Exposed S. oneidensis MR-1

The VBSA will be useful for both applied and basic research
applications involving biological electrochemically active
species. Our interest in MFCs and Shewanella led us to
screen a variety of potential electron donors for current
output. Until recently, only a small number of organic
electron donors (lactate, formate, pyruvate, amino acids,
hydrogen) have supported metal reduction and power
output from MFCs using S. oneidensis MR-1 under
anaerobic atmospheres (Nealson et al., 2002). However,

Figure 5. Time versus (A) open circuit voltage or (B) current curves generated from the growth of S. oneidensis DSP10 and MR-1 using the VBSA.
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electron donors (such as glucose) that were thought to be
unusable for power output by Shewanella have generated
substantial power under an air exposed atmosphere using a
miniature MFC (Biffinger et al., 2008a). Therefore, the
effects of oxygen exposure on S. oneidensis MR-1 were tested

with the VBSA prototype with various electron donors of
interest (agar, sucrose, starch, glucose, fructose, lactate,
acetate, citrate) using current detection. A 100 kV resistor
was put in series with each anode well and connected to the
universal cathode to generate a current. The use of an

Figure 6. Current generated from air exposed anodes containing S. oneidensis MR-1 with selected electron donors in a nine-well VBSA. Sections A–D indicate when electron

donor was added.

442 Biotechnology and Bioengineering, Vol. 102, No. 2, February 1, 2009



unusually high resistor will allow for comparisons to be
made between EAB that produce both low and high
currents, but will not optimize power output.

There were four distinct time periods defined during the
operation of the VBSA (Fig. 6). Each period was defined by
the addition of the carbon source to a concentration of
8 mM in each well. Each anode well contained sterile water
plus the electron donor for the first 10 h to condition
the VBSA. At the beginning of time period A (Fig. 6),
1� 108 CFU/mL S. oneidensis MR-1 cultures in pH 7 LB
replaced the sterile water with 1 mM electron donor. The
control experiment contained the original S. oneidensis
MR-1 culture in LB and these data were used to standardize
results between chambers. The largest current output was
generated by lactate (45 mA) over the next 35 h during time
period (C and D). Lactate produced comparable current
after all additions following time period B. This suggests that
bacterial conditioning of the electrode was completed after
100 h of operation.

Of the remaining electron donors, only glucose and
acetate generated consistent current responses from MR-1.
These currents were significantly less than the 45 mA
generated by lactate (�10 mA) but definite positive current
output was observed upon addition of glucose and acetate.
Starch, agar, citrate, sucrose, and fructose did not show any
significant response upon addition of each electron donor.
The minor decreases in current at the beginning of each time
period are from exposure to oxygen at the electrode during
the mixing of the electron donor and the anolyte. During
time period B, MR-1 exposed to starch, agar, sucrose,
fructose, and citrate show significant increases in current
but no comparable response from subsequent additions.
These isolated responses suggest that all of the usable
electron donors were exhausted resulting in either increased
biofilm formation on the electrode (due to nutrient limited
conditions) or a cell death response with the residual release
of mediators and potential electron donors from cellular
debris. Experiments are being performed currently to deter-
mine the factors that generate current spikes under carbon
source limited conditions.

The results from this electron donor VBSA experiment
show the complexity of bacterial metabolism and highlight
the positive attributes of this prototype. Not only was a
unique starvation behavior observed with respect to current
output from starch, agar, citrate, sucrose, and fructose
(response at the end of time period (B)), but lactate and
acetate were confirmed as electron donors that could be
utilized by MR-1 under oxygen exposure for current output
from a MFC. In addition, glucose was identified as a
potential electron donor, but only after acclimation of the
air exposed anodes over several hours.

Conclusions

The VBSA is the first high throughput prototype using
voltage and current output to monitor fundamental EAB

properties as well as screen for potential electron donors in
parallel for MFCs applications. The straightforward design
for the VBSA makes it applicable for both microbial
and enzymatic fuel cell engineering research. The use of a
universal cathode and a well-defined catholyte (potassium
ferricyanide) allows for small changes in voltage (and
current) to be analyzed between each chamber with excellent
reproducibility.
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