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Abstract

Cells expressing class II major histocompatibility complex (MHC) molecules are found within the corpus luteum (CL) of several

species. Expression and localization of class II MHC molecules in the bovine CL were examined in the present study.

Immunohistochemical evaluation revealed class II MHC molecules on single cells in early CL (days 4 and 5 post-estrus). Two class

II MHC-expressing cell types were observed in midcycle CL (days 10–12 post-estrus), single cells similar to those observed in the

early CL, and endothelial cells. Not all endothelial cells expressed class II MHC, and further investigation revealed expression of

only one type of class II MHC molecule, DR, on endothelial cells. Class II MHC was also localized to endothelial cells in late CL

(day 18 post-estrus). Steroidogenic luteal cells were negative for class II MHC throughout the estrous cycle. Quantitative RT-PCR

revealed higher (P!0.05) concentrations of mRNA encoding the a-subunit of DR (DRA) in late CL when compared with those in

the early CL. DRA mRNA abundance was also measured in cultures of mixed luteal and luteal endothelial (CLENDO) cells, in the

presence or absence of tumor necrosis factor-a (TNF). No differences were found in the DRA mRNA concentration between

mixed luteal and CLENDO cell cultures, and TNF had no effect on DRA mRNA concentration in both cell types. Expression of DR

by endothelial cells of the midcycle CL may induce anergy of T lymphocytes, or stimulate them to secrete products that enhance

normal luteal function.

Reproduction (2007) 133 991–1003

Introduction

Evidence supporting the role of immune cells in the
regulation of luteal function is accumulating. Macro-
phages and T lymphocytes have been detected in the
corpus luteum (CL) of several species in numbers that vary
with stage or functional state of the CL (Bagavandoss et al.
1990, Bränström et al. 1994, Lawler et al. 1999, Penny
et al. 1999, Krusche et al. 2002, Nagaosa et al. 2002,
Townson et al. 2002, Komatsu et al. 2003, Neuvians et al.
2004).The presenceofmRNAs encoding variouscytokines
and the corresponding proteins has also been demon-
strated in luteal tissue (Telleria et al. 1998, Penny et al.
1999, Petroff et al. 1999, Sakumoto et al. 2000, 2006,
Krusche et al. 2002, Townson et al. 2002, Komatsu et al.
2003, Neuvians et al. 2004, Nishimura et al. 2004) T-cell

cytokines such as interleukin-1b (IL1B), IL6, tumor necrosis
factor-a (TNF), and interferon-g (IFNG) modulate the
synthesis of progesterones and prostaglandins by
granulosal, thecal, and luteal cells in vitro (Nothnick &
Pate 1990, Fairchild & Pate 1991, Benyo & Pate 1992,
Gorospe et al. 1992, Alpizar & Spicer 1994, Townson &
Pate 1994, 1996, Del Vecchio & Sutherland 1997, Young
et al. 1997, Breard et al. 1998). Collectively, these
observations suggest the potential for infiltrating immune
cells to be activated within luteal tissue, and the cytokines
they produce to modulate luteal function.

The activation of T lymphocytes occurs via a receptor–
ligand type interaction between the T-cell receptor for
antigen and major histocompatibility complex (MHC)
molecules on the surface of cells stimulating T-cell
activation (Altman et al. 1990). Two distinct types of
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MHC molecules, class I and class II MHC molecules,
are involved in the activation of T lymphocytes. Class I
MHC molecules are found on all nucleated cell types,
with several notable exceptions. These molecules bind
with intracellularly generated peptide fragments, and
the presence of complexes of peptide–class I MHC at
the cell surface allows cells to interact with CD8C

(cytotoxic) T lymphocytes (Groothuis et al. 2005). This
interaction forms the basis for immune system surveil-
lance of somatic cells for the presence of viral proteins
or aberrantly synthesized endogenous proteins (Fruh
et al. 1997, Cresswell et al. 2005, Rock & Shen 2005).
Class II MHC molecules also bind with peptide
fragments, but expression of class II MHC molecules
is more restricted. Class II MHC molecules allow
interaction of cells with CD4C (helper) T cells, and,
classically, class II MHC expression by the so-called
professional antigen-presenting cells of the immune
system (macrophages, dendritic cells, and B lympho-
cytes) has been regarded to be of greatest significance,
due to the necessity of these molecules for proper
immune system function (Scholl & Geha 1994, Grusby
& Glimcher 1995, Rohn et al. 1996). However, class II
MHC expression is not limited to these cells, and it has
become apparent that expression under normal physio-
logical as well as pathological conditions significantly
impacts the function of various tissues (Knolle &
Limmer 2001, Pober et al. 2001, Kelly et al. 2003).
Finally, three types of class II MHC molecules, referred
to as DP, DQ, and DR, are expressed on professional
antigen-presenting cells.

Expression of class II MHC molecules by the cells of
the CL has been demonstrated in several studies (Khoury
& Marshall 1990, Benyo et al. 1991, Kenny et al. 1991,
Bukovský et al. 1995, Bowen & Keyes 1999, 2000,
Lawler et al. 1999, Penny et al. 1999, Lehman et al.
2000, Hoffmann et al. 2004). Macrophages would
certainly account for a percentage of the class II-positive
cells in the CL, but expression of class II MHC by cells
other than macrophages has been convincingly demon-
strated (Khoury & Marshall 1990, Benyo et al. 1991,
Kenny et al. 1991, Bukovský et al. 1995, Lehman et al.
2000, Hoffmann et al. 2004). In the bovine CL,
expression of class II MHC has been demonstrated in
several studies (Benyo et al. 1991, Penny et al. 1999,
Lehman et al. 2000), but data are lacking on the
convincing demonstration of the identity of class II
MHC-expressing cells in the bovine CL. The present
study was undertaken to identify the cell type(s) in the
bovine CL that expresses class II MHC, since identifi-
cation of these cells is crucial to understanding the role
of the immune system in the regulation of luteal
function. The overall hypothesis is that cells in addition
to macrophages express class II MHC in the bovine CL,
and that expression of class II MHC on these cells
changes with the functional status of the CL.

Materials and Methods

Reagents

Powdered Hams F-12 culture medium, gentamicin, fetal
bovine serum, SuperScript II Reverse Transcriptase, and
TRIzol reagent were purchased from Invitrogen. Recom-
binant RNasin and dNTPs were purchased from
Promega. Random hexamer primers were acquired
from Amersham Pharmacia Biotech. Oligonucleotide
primers were obtained from Operon (Huntsville, AL,
USA). DyNAmo HS SYBR Green qPCR kits were
purchased from MJ Research (Waltham, MA, USA).
Fluorescein-labeled Griffonia (Bandeiraea) simplicifolia
lectin-1 (FITC-BS-1), non-specific mouse IgG, normal
horse serum, and histological grade BSA were purchased
from Vector Laboratories (Burlingame, CA, USA). Non-
immune rabbit serum, 4 0,6-diamidino-2-phenylindole
(DAPI), BSA (fraction V), and HEPES were acquired from
Sigma Chemical Company. Type I collagenase was
purchased from Worthington Biochemical Corp. (Free-
hold, NJ, USA). Bovine luteinizing hormone (LH; AFP II
743B) was provided by the National Hormone and
Peptide Program and AF Parlow (Torrence, CA, MD,
USA). Insulin–transferrin–selenium (ITS) premix was
obtained from Collaborative Research Products. Anti-
bovine class II MHC monoclonal antibodies (mAbs) and
anti-bovine CD172a mAb were purchased from VMRD,
Inc. (Pullman, WA, USA). Rabbit anti-rat P450 side-
chain cleavage enzyme (CYP11A1) polyclonal anti-
serum was obtained from Research Diagnostics, Inc.
(Concord, MA, USA). Mouse anti-human CD68 mAb
was purchased from Dako (Carpinteria, CA, USA). Alexa
Fluor 546-conjugated goat anti-mouse F(ab 0)2 fragment
and Alexa Fluor 488-conjugated goat anti-rabbit F(ab 0)2
fragments were purchased from Invitrogen. Agarose was
acquired from Amresco (Solon, OH, USA). Tissue culture
flasks were from Corning (Corning, NY, USA). Unless
otherwise specified, all other chemicals, reagents, and
supplies were purchased from Sigma Chemical Co. or
VWR Scientific Products (West Chester, PA, USA).

Animals and tissue collection

For all experiments except those involving CL endo-
thelial (CLENDO) cells, corpora lutea were collected
from normally cycling, multiparous, lactating dairy cows
between 3 and 6 years of age. Corpora lutea were
removed by transvaginal lutectomy on days 4, 5, 10–12,
or 18 post-estrus (day 0, day of estrus), and were cut into
four equal pieces. Two pieces were snap-frozen in liquid
nitrogen and stored at K80 8C until RNA was extracted.
The remaining pieces were embedded in Tissue-Tek
optimal cutting temperature (OCT) medium, frozen in
liquid isopentane chilled in liquid nitrogen, and stored at
K80 8C until frozen sections for immunohistochemistry
were prepared. Handling of animals and surgical
procedures were carried out in accordance with
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procedures approved by the Institutional Laboratory
Animal Care and Use Committee of The Ohio State
University.

Immunohistochemistry

Luteal tissues embedded in OCT were sectioned at a
thickness of 7 mm on a Leica CM 1850 cryostat (Leica
Microsystems, Bannockburn, IL, USA). Tissue sections
were mounted on Superfrost Plus slides (Fisher Scientific,
Fair Lawn, NJ, USA) and stored at K20 8C until use. Prior
to use in immunohistochemical procedures, unfixed
tissue sections were air dried for 10 min at 27 8C, then
fixed in ice-cold 95% ethanol for 10 min. After fixation,
sections were washed (3!5 min in ice-cold PBS
(137 mM NaCl, 8.1 mM Na2HPO4, 1.47 mM KH2PO4,
2.68 mM KCl, 0.5 mM MgCL2

.6H2O, pH 7.4)) and used
in immunohistochemical procedures. Immunohisto-
chemical procedures were performed on sections
from a minimum of four CL removed at each time
point listed above.

Primary antibodies, their specificity, commercial
source, and the working dilutions used in immuno-
histochemical procedures are listed in Table 1. In the
first procedure, steroidogenic luteal cells were
identified using rabbit anti-CYP11A1 antiserum in
conjunction with Alexa Fluor 488-conjugated goat
anti-rabbit F(ab 0)2 fragment as a 28 Ab (steroidogenic
cells display green fluorescence), and cells expres-
sing class II MHC cell surface antigens were
identified using a cocktail of three monoclonal anti-
bovine class II MHC antibodies in conjunction with
Alexa Fluor 546-conjugated goat anti-mouse F(ab 0)2
fragment as a 28 Ab (labeled cells display red
fluorescence). Following fixation and wash steps,
sections were incubated for 30 min at 27 8C in PBS
containing 1% histological grade BSA (PBS/BSA) with
10% normal horse serum. Sections were rinsed (1!
3 min with ice-cold PBS) and incubated at 27 8C for
2 h with anti-CYP11A1 antiserum diluted in PBS/BSA
containing 10% normal horse serum and 2% normal
bovine serum (18 Ab diluent). Slides were washed
and sections were incubated at 27 8C for 2 h with
mouse anti-bovine class II MHC mAbs. In parallel,
luteal tissue sections were incubated with a cocktail
of mouse anti-bovine CD172a and mouse

anti-human CD68 mAbs to identify monocytes and
macrophages, as described previously (Townson
et al. 2002). Slides were washed again and incubated
at 27 8C for 3 min with 28 Abs diluted 1:200 each in
PBS/BSA containing 2% normal bovine serum (28 Ab
diluent). Slides were washed again and counter-
stained with 3 mg/ml DAPI in PBS (nuclei display
blue fluorescence). Non-immune rabbit serum and
non-specific mouse IgG were substituted for the anti-
CYP11A1 antiserum (not shown) and mouse anti-
bovine class II MHC mAbs respectively as negative
controls to confirm primary antibody specificity.

In the second procedure, endothelial cells were
identified using FITC-BS-1 (labeled endothelial cells
display green fluorescence), as previously described
(Clark et al. 2004), and cells expressing class II MHC
cell surface antigens were identified using the same
antibodies and dilutions as in the first experiment.
Following fixation and wash steps, sections were
incubated for 30 min at 27 8C with FITC-BS-1 diluted
1:500 in PBS. Slides were then washed, and sections
were incubated for 30 min at 27 8C in PBS/BSA with
10% normal horse serum. Slides were then rinsed
and sections were incubated at 27 8C for 2 h with
mouse anti-bovine class II MHC antibodies. Slides
were washed again and incubated at 27 8C for
30 min with 28 Ab diluted 1:200 in 28 Ab diluent.
Slides were then washed and counterstained with
3 mg/ml DAPI in PBS. Non-specific mouse IgG was
used instead of mouse anti-bovine class II MHC
mAbs as a negative control to demonstrate specificity
of antibody binding.

Tissue sections were examined using an Olympus
BX51 microscope equipped with an Olympus
reflected fluorescence system (Olympus America,
Melville, NY, USA). Images were collected using an
Olympus MagnaFire digital camera. Fluorescence
micrographs were qualitatively assessed to determine
the identity of cells expressing class II MHC
molecules.

Isolation and culture of mixed luteal cells and luteal
endothelial cells

Cultures of mixed luteal cells were prepared from
bovine CL using procedures described previously (Pate

Table 1 Primary antibodies used in immunohistochemistry.

Antibody Specificity Source Working dilution

H42A Bovine class II MHC DP VMRD, Pullman, WA, USA 1:2000
TH81A5 Bovine class II MHC DQ VMRD, Pullman, WA, USA 1:2000
TH14B Bovine class II MHC DRa VMRD, Pullman, WA, USA 1:2000
RDI-P450 SCCabr Bovine CYP11A1 Research Diagnostics, Concord, MA, USA 1:1000
DH59B CD172a (bovine monocytes/granulocytes) VMRD, Pullman, WA, USA 1:200
EBM11 CD68 (bovine activated macrophages) Dako, Carpinteria, CA, USA 1:150

Class II MHC expression by luteal endothelial cells 993
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& Condon 1982). Cell culture was performed in a
humidified atmosphere of 5% CO2 in air at 37 8C.
Dispersed luteal cells (4!106 cells/flask) were cultured
in serum-coated 25 cm2 flasks in a total of 4 ml
Hams F-12 containing insulin (5 mg/ml), transferrin
(5 mg/ml), selenium (5 ng/ml), gentamicin (20 mg/ml),
and LH (1 ng/ml). The cells were allowed to adhere
overnight, medium was replaced, and the cultures were
exposed to either 0 or 50 ng/ml TNF for 48 h, the latter
concentration having been shown to affect function,
viability, and gene expression in cultures of mixed
bovine luteal cells (Townson & Pate 1994, Petroff et al.
2001, Cannon & Pate 2003). Total RNA was extracted
from the cells after 48 h of culture. Culture experiments
were repeated thrice.

Purified endothelial cells from bovine CL (CLENDO
cells) were purchased from Cambrex Bioscience (Bio-
Whittaker, Inc., Walkersville, MD, USA), as described
previously (Cavicchio et al. 2002, Pru et al. 2003, Liptak
et al. 2005). In the present study, endothelial cells from
frozen aliquots (passages 3–5; 5000 cells/cm2) were
cultured in a growth factor-containing medium (micro-
vascular endothelial cell medium-2 (EGM-2MV)), as
recommended by the supplier with 3% fetal bovine
serum in 60 mm dishes. Cultures were maintained at
37 8C in a humidified atmosphere of 5% CO2 and 95% air.
Culture medium was replaced every 48 h until cells were
80–90% confluent, at which point medium was changed
and cultures were maintained in a basal (serum- and
growth factor-free) endothelial cell basal medium
(EBM-2) medium for 24 h, as described (Pru et al.
2003). Prior to treatment, the medium was removed and
replaced with fresh EBM-2 for an equilibration period of
3 h before the administration of treatments. Cultured cells
were then treated with 0 or 50 ng/ml TNF for 48 h, the
latter concentration having been shown to induce signal
transduction pathways in bovine CLENDO cells (Pru et al.
2003). Total RNA was extracted from cells after 48 h of
culture. Culture experiments were repeated thrice.

RNA extraction and RT-quantitative PCR (RT-qPCR)

RNA was extracted from luteal tissue collected during
the estrous cycle using TRIzol reagent. Frozen luteal

tissue was homogenized in TRIzol using a Polytron tissue
homogenizer (Brinkman Instruments, Westbury, NY,
USA), and total cellular RNA was isolated according to
manufacturer’s specifications. For extraction of total
RNA from mixed luteal cell or CLENDO cultures, cells
were collected in RLT lysis buffer and RNA was isolated
using the RNeasy kit (Qiagen) according to the
procedures specified by the manufacturer.

Sequences, annealing conditions, GenBank
accession numbers for corresponding targets, and
references (Aida et al. 1994, Hartung et al. 1995,
Stewart et al. 1996) for primer sequences used in
RT-PCR are listed in Table 2. Steady-state concen-
trations of DRA and GAPDH mRNA were determined
in total RNA extracted from bovine luteal tissues
(nZ5 CL per time point). Concentrations of DRA and
GAPDH mRNA were also determined in total RNA
isolated from cultures of mixed luteal cells (nZ3) and
CLENDO cells (nZ3). In addition, the presence and
relative abundance of STAR and PECAM1 (a cell
adhesion molecule used as an endothelial cell marker;
Albelda et al. 1990, Levy et al. 2001) mRNAs were
assessed in mixed luteal and CLENDO cell culture
samples as a means of determining purity and
composition of cultures.

PCR procedures were performed using an MJ
Research Opticon 2 real-time PCR thermal cycler.
Prior to PCR, RT using random hexamer primers was
performed on 2 mg total RNA. PCR was then
performed on 200 ng reverse-transcribed cDNA,
using the DyNAmo HS SYBR Green qPCR kit
according to manufacturer’s instructions. Thermal
cycling was carried out using the following con-
ditions: denaturation at 94 8C for 30 s; annealing (see
Table 2 for temperatures) for 30 s; and extension at
72 8C for 60 s, for a total of 32 cycles. Fluorescence
values in each tube were measured at the end of each
cycle using single acquisition mode. Melting curve
analysis was performed after the end of the last cycle.
Melting curve analysis in conjunction with gel
electrophoresis of amplified products was used to
verify amplification of a single product in each
sample, and identification of amplified products was
confirmed by sequencing.

Table 2 Primer sequences used in real-time RT-PCR assays.

Target Primer sequence
Amplicon
size (bp)

Annealing
temperature (8C)

GenBank
accession no. Reference

DRA Forward: 5 0-GGAAGAAGGAGACGGTGT-30 305 54 X78308 Aida et al. (1994)
Reverse: 5 0-CAGGAAGACCGTCTGTGA-30

PECAM1 Forward: 5 0-GTTCAGCGAAGTTCTGCGAG-3 0 229 58 U35433 Stewart et al. (1996)
Reverse: 5 0-CTTGCTGGCTGTGGTCTTGT-3 0

GAPDH Forward: 5 0-AAGATTGTCAGCAATGCC-30 293 56 BC102589 –
Reverse: 5 0-ACAGACACGTTGGGAG-30

STAR Forward: 5 0-CCTCTCTACAGCGACCAA-30 311 58 Y17259 Hartung et al. (1995)
Reverse: 5 0-TCGTGAGTGATGACCGTG-30
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For RNA samples collected from luteal tissue during
the estrous cycle, all samples were assayed in duplicate
using DRA and GAPDH primers. Fluorescence values of
DRA from duplicate wells were standardized to the
corresponding GAPDH values. Standardized values
were then used to calculate steady-state concentrations
of DRA message in each sample, using a homologous
standard curve prepared from a purified DRA PCR
product. Similar procedures were performed on RNA
samples from mixed luteal and CLENDO cell cultures. In
addition, the presence and abundance of STAR and
PECAM1 mRNAs in samples isolated from these cultures
were assessed. Fluorescence values for STAR and
PECAM1 amplifications were standardized to corre-
sponding GAPDH values as described previously. Since
no standard curve was used to quantify the concen-
trations of these messages, comparisons were made
using mean fluorescence, as previously described
(Cannon et al. 2006).

Statistical analysis

One-way ANOVA was performed to determine whether
differences (P!0.05) existed between mean steady-state
DRA mRNA concentrations in luteal tissue samples
collected on different days of the estrous cycle. The
Student–Newman–Keuls procedure was used to
determine differences between specific means. Within
each culture type, the effect of TNF on amounts of DRA,
STAR, and PECAM1 mRNAs was determined using
Student’s t-test. Since TNF had no effect on the
concentrations of any of these messages, data from
untreated and TNF-treated cultures were pooled accor-
ding to the cell type (mixed luteal or CLENDO cells), and
differences in the amounts of DRA, STAR, and PECAM1
mRNAs between cell types were determined using
Student’s t-test.

Results

In order to determine whether steroidogenic cells of the
bovine CL express class II MHC molecules, polyclonal
anti-rat CYP11A1 was used to identify the steroidogenic
cells, while a cocktail of three anti-bovine class II MHC
mAbs was used to identify cells expressing class II MHC.
Steroidogenic luteal cells were negative for class II MHC
at all stages of the estrous cycle examined (Fig. 1). In days
4 and 5 CL, class II MHC mAbs labeled single cells
dispersed throughout the tissue, which was similar to the
staining pattern observed when luteal tissues were
stained with anti-monocyte and -macrophage mAbs
(Fig. 1a and d versus b, c, e and f). In days 10–12 CL,
class II MHC mAbs labeled single cells with an
appearance similar to cells labeled by anti-monocyte
and -macrophage mAbs (Fig. 1g versus h and i), and also

cells with a distribution and arrangement within the
tissue reminiscent of capillary endothelial cells (Fig. 1i,
arrows). In day 18 CL, anti-class II MHC staining was
similar to that observed in midcycle CL (Fig. 1g–i versus
j–l), although the luteal microvasculature was less
distinct at this time.

To determine whether endothelial cells expressed
class II MHC, FITC-BS-1 was used to identify endothelial
cells, while cells expressing class II MHC were identified
as in the previous experiment. Similar to results in days 4
and 5 CL from the previous experiment, class II MHC
expression was localized to single cells dispersed
throughout the tissue. Endothelial cells expressing class
II MHC were not present in early CL, as indicated by a
lack of colocalization of class II MHC and FITC-BS-1
staining (Fig. 2a, b, d and e). In days 10–12 CL, in
addition to single class II MHC-expressing cells similar to
those observed in the early CL, colocalization of FITC-
BS-1 and class II MHC staining revealed the presence of
class II MHC-expressing endothelial cells (Fig. 2g and h,
arrows), while other endothelial cells were negative for
class II MHC. In day 18 CL, class II MHC expression was
less distinct in endothelial cells, although some coloca-
lization of FITC-BS-1 and class II MHC staining was
apparent (Fig. 2j and k). Tissues in which primary
antibodies were replaced with non-immune rabbit
serum or non-specific mouse IgG were devoid of staining
throughout (Fig. 2c, f, i and l; data for non-immune rabbit
serum not shown). To determine whether luteal endo-
thelial cells express each of the three types of class II
MHC molecules (DP, DQ, and DR), the mAbs used as a
cocktail in the first and second immunohistochemical
studies were applied individually to stain midcycle luteal
tissue in a third study. Endothelial cells in the midcycle
CL expressed only DR (Fig. 3).

Steady-state concentrations of DRA mRNA were lower
in days 4 and 5 CL when compared with those in day 18
CL (Fig. 4; P!0.05; nZ5 CL per time point). The
variation in DRA mRNA concentration was highest in the
midcycle CL when compared with the other times
examined; therefore, although the concentration of
DRA mRNA appears higher in the midcycle CL when
compared with that in days 4 or 5 CL, this difference was
not significant (PO0.05).

To further confirm the expression of DRA by luteal
endothelial cells, the presence and steady-state
concentrations of DRA mRNA in cultures of mixed
luteal and CLENDO cell cultures were evaluated. The
purity of culture types was assessed using RT-qPCR to
measure amounts of STAR and PECAM1 mRNAs in
samples from each culture, and the PCR was allowed
to continue for a maximal number of cycles to amplify
even the slightest amount of these two mRNAs. After
45 cycles, electrophoretic analysis revealed a single
311 bp amplicon of STAR mRNA in some samples
from CLENDO cultures, while large amounts of
PECAM1 mRNA were present in all CLENDO cell
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cultures (Fig. 5a, upper panels). TNF had no effect on
the abundance of STAR or PECAM1 mRNA in
CLENDO cells (PO0.05, nZ3; data not shown).
In samples from mixed luteal cell cultures, STAR
mRNA was abundant, and a single 229 bp PECAM1
amplification product was also clearly visible (Fig. 5a,
lower panels). TNF did not affect amounts of STAR or
PECAM1 mRNA in mixed luteal cell cultures (PO0.05,
nZ3; data not shown). The concentration of STAR
mRNA was much higher (P!0.05) in mixed luteal cell
cultures when compared with that in CLENDO cultures
in which STAR mRNA was detectable, while the
concentration of PECAM1 mRNA was approximately
tenfold higher (P!0.05, nZ3) in CLENDO cells when
compared with that in mixed luteal cells (Fig. 5b). A
single 305 bp amplification product corresponding to
DRA mRNA was present in cultures of CLENDO cells
as well as in mixed luteal cells (Fig. 6, upper panel).
TNF had no effect on DRA mRNA concentrations in
both cultured cell types (PO0.05; Fig. 6, graphs), and
concentrations of DRA mRNA were not different
between cultures of mixed luteal and CLENDO cells
(PO0.05).

Discussion

In the present study, we have demonstrated the expression
of the class II MHC molecule DR by endothelial cells of the
bovine CL. In the early CL, we observed class II MHC
expression on single cells with a tissue distribution similar
to monocytes and macrophages (Penny et al. 1999,
Townson et al. 2002; and present study). Expression of
class II MHC on macrophages is not surprising and would
be expected. However, in midcycle (days 10–12) CL,
staining was also observed on cells, whose distribution and
architecture relative to the surrounding tissue were
reminiscent of endothelial cells (Farin et al. 1986,
O’Shea et al. 1989). In the second experiment, class II
MHC was colocalized with a subpopulation of endothelial
cells in the midcycleCL. Further investigation revealed that
these cells express only DR, while putative macrophages
express all the three types of class II MHC molecules, DP,
DQ, and DR. However, not all endothelial cells were
labeled with class II MHC mAbs, and expression of class II
MHC by endothelial cells was less distinct in late CL,
possibly due to the loss of a well-defined microvasculature
relative to the midcycle CL.

Figure 1 Fluorescent micrographs of bovine luteal
tissue sections (7 mm) collected on days 4, 5,
10–12, and 18 of the estrous cycle. Steroidogenic
cells were identified with anti-CYP11A1 antiserum
(green fluorescence) and cells expressing class II
MHC were identified using anti-class II MHC
mAbs (red fluorescence in b, c, e, f, h, i, k, and l).
Sections were also labeled with anti-monocyte
and -macrophage mAbs (red fluorescence in a, d,
g, and j). Cell nuclei were visualized with DAPI
(blue fluorescence). White arrows (i) indicate
putative endothelial cells labeled with class II
MHC mAbs. Magnifications are listed below
each column.
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Steady-state concentrations of DRA mRNA were
higher in the late CL relative to the early CL, but due to
a large amount of variation among animals, concen-
trations of DRA mRNA in the midcycle CL were not
significantly different from the early or late CL. This
increase in DRA expression is consistent with the
expression of DRA protein by both putative macro-
phages and a subpopulation of endothelial cells in the
midcycle and late CL, whereas only putative macro-
phages in the early CL express class II MHC. The
elevation in steady-state DRA mRNA concentrations as
the CL ages also agrees with the flow cytometric data of
Benyo et al. (1991), who observed an increase in the
number of class II MHC-expressing cells in the midcycle
CL when compared with that in the early CL using flow
cytometry.

Expression of class II MHC in the bovine CL has been
examined in previous studies, with varying results.
Fairchild & Pate (1989) initially demonstrated that IFNG
induces expression of class II MHC on cultured bovine
luteal cells, and the aforementioned flow cytometric
study (Benyo et al. 1991) subsequently evaluated the
expression of class II MHC on freshly isolated cells from

dispersed bovine CL. Flow cytometric evaluation of
dispersed bovine luteal cells in that study revealed three
cell populations in midcycle and late luteal tissue:
small cells (which presumably consist of small ster-
oidogenic cells and macrophages, since cell !10 mm
were excluded from analysis), large dense cells, and
large less dense cells. The small and large less dense
cells expressed class II MHC in the midcycle and late
CL. The existence of two populations of large luteal
cells, differing in amount of secretory granules and
intracellular lipid droplets, had been noted previously
(Hansel et al. 1987). However, when considering the
data from the present study, it seems plausible that
the large less dense cells expressing class II MHC in the
study by Benyo et al. (1991) may have been small
clusters of class II MHC-expressing endothelial cells,
rather than single large cells. In preliminary immuno-
fluorescent studies, we observed small clusters of
endothelial cells labeled with class II MHC mAbs in
dispersed luteal cell suspensions. These clusters were
composed typically of four to eight endothelial cells,
and were of similar size to large steroidogenic luteal
cells (Cannon & Pate unpublished observations).

Figure 2 Fluorescent micrographs of bovine luteal
tissue sections (7 mm) collected on days 4, 5,
10–12, and 18 of the estrous cycle. Endothelial
cells were identified with FITC-labeled BS-1 lectin
(green fluorescence) and cells expressing class II
MHC were identified using anti-class II MHC
mAbs (red fluorescence). Cell nuclei were visual-
ized with DAPI (blue fluorescence). Yellow
staining indicates colocalization of FITC-BS-1
lectin and class II MHC mAbs. White arrows
(g and h) indicate endothelial cells expressing
class II MHC. Sections in which anti-class II MHC
18 mAbs were substituted with non-specific IgG
(c, f, i, and l) are shown to demonstrate antibody
specificity. Magnifications are listed below
each column.
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Therefore, it is possible that the class II MHC-positive
large less dense cells originally observed (Benyo et al.
1991) consisted, at least in part, of small clusters of
DR-expressing luteal endothelial cells. The results of
that study agree with those of the present study, in that

large dense cells in that study (presumably steroido-
genic luteal cells) did not express class II MHC at any
time during the estrous cycle.

The presence of cells expressing DRAwas observed in a
more recent immunohistochemical study (Penny et al.
1999), but these authors did not identify the individual
cell type(s) expressing DRA. The methods employed differ
somewhat from those of the present study, in that we have
used immunofluorescent techniques to localize antibody
binding, whereas Penny et al. (1999) used enzymatically
based colorimetric detection. Additionally, acetone was
used as a fixative for frozen sections in that study, but we
have found that, at least in our hands, ethanol is superior
to acetone for maintaining cell morphology and tissue
architecture in frozen luteal tissue sections, thus allowing
for better resolution of cell types.

Our results appear to agree with those of Lehman et al.
(2000), who observed class II MHC expression on a
subpopulation of cultured endothelial cells derived from
bovine CL. Flow cytometry was used in that study to
evaluate class II MHC expression on various cultured
bovine luteal endothelial cell subtypes (Lehman et al.
2000), and therefore no information on expression of
class II MHC by endothelial cells in situ could be
derived. Ours is the first study, to the best of our
knowledge, in which the expression in situ of class II
MHC by bovine luteal endothelial cells has been
demonstrated.

Cultures of mixed luteal and CLENDO cells were used
to further confirm the observation that the class II MHC
molecule DR is expressed by luteal endothelial cells.
Analysis of STAR and PECAM1 mRNAs indicated that the
CLENDO cell cultures used in the present study were
highly enriched cultures of luteal endothelial cells,
whereas the mixed luteal cell cultures were composed
largely of steroidogenic cells, but were also likely to
contain some endothelial cells. DRA mRNA was found
in both mixed luteal and CLENDO cell cultures, with no

Figure 3 Fluorescent micrographs of midcycle (day 10) bovine luteal
tissue sections (7 mm) stained with mAbs H42A (DP), TH81A5 (DQ),
or TH14B (DRA) individually (red fluorescence). Endothelial cells were
identified with FITC-labeled BS-1 lectin (green fluorescence). Cell
nuclei were visualized with DAPI (blue fluorescence).Yellow staining
indicates colocalization of FITC-BS-1 and class II MHC mAbs.
Magnification, 200!.

Figure 4 Steady-state concentrations of DRA mRNA in bovine CL
collected during the estrous cycle. Bars represent mean concentrations
of DRA mRNA in total RNA samples extracted from luteal tissue
collected on days 4, 5, 10–12, or 18 of the estrous cycle (nZ5 CL per
time point). Different letters denote significant differences (P!0.05).
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differences in steady-state concentrations of DRA mRNA
between cultures. The presence of DRA mRNA in
CLENDO cultures confirms the immunohistochemical
results demonstrating the presence of DRA in endothelial
cells of the CL. The presence of relatively large amounts
of DRA mRNA in mixed luteal cell cultures seems
enigmatic, given the lack of expression of class II MHC
by steroidogenic cells observed throughout the first part
of this study. Macrophages, along with the minor
endothelial cell contaminant suspected to be present in
mixed luteal cell cultures, could account for the
presence of DRA mRNA in these cultures. Alternatively,

steroidogenic cells may contain DRA mRNA, but express
an aberrant form of the protein that is not recognized by
the antibody using immunohistochemical methods.
Finally, the possibility exists that a distinct cell type,
which is localized adjacent to endothelial cells in tissue
sections, but is not isolated with CLENDOS, is
responsible for DRA expression. Such non-professional
antigen-presenting cells (ITO cells) have been identified
in the liver (Winau et al. 2007), but no such cell has yet
been described in the CL.

It was of interest to note that TNF had no effect on
STAR, PECAM1, or DRA mRNA concentrations in both
mixed luteal and CLENDO cells. TNF has been shown to
reduce steady-state PECAM1 mRNA concentrations in
bovine endothelial cells (Stewart et al. 1996). However,
in the flow cytometric study by Lehman et al. (2000),
TNF had no effect on PECAM1 and class II MHC
expression in cultured bovine luteal endothelial cells,
which supports the present findings.

Endothelial cells make up an estimated 50% of the cells
in the CL (Farin et al. 1986, O’Shea et al. 1989), and a great
deal of attention has been focused on the role of
endothelial cells in luteal function. Prostaglandin F2a

enhanced the production of endothelin-1 (EDN1) by luteal
endothelial cells in vitro (Girsh et al. 1996a), and EDN1
inhibited progesterone production by cultured luteal-like
cells (Girsh et al. 1996b), presumably via a protein kinase
C-dependent pathway (Sen et al. 2006). TNF stimulated
the secretion of PGF2a, EDN1, and monocyte chemoat-
tractant protein1 (CCL2) by luteal endothelial cells (Okuda
et al. 1999, Cavicchio et al. 2002), and induced apoptosis
of luteal endothelial cells, possibly via a ceramide-
dependent mechanism that involved the production of
reactive oxygen species (Pru et al. 2003). In addition,
activated lymphocytes stimulated CCL2 secretion by
cultured luteal endothelial cells, and this stimulation was
contact dependent (Liptak et al. 2005). It is unknown
whether this contact-dependent stimulation was MHC
dependent. However, it is possible that within the
midcycle CL, endothelial cells interact with lymphocytes
in a class II MHC-dependent manner, resulting in the
production of CCL2 by endothelial cells. Class II MHC-
dependent activation of T lymphocytes by bovine luteal
cells has been demonstrated in vitro (Petroff et al. 1997).

Microvascular endothelial cells play an integral role in
the regulation of the immune system, since they regulate
recruitment of T cells into the tissue via chemokine and
cell surface adhesion molecule expression (Pober 1999).
Expression of class II MHC molecules by endothelial cells
is most often associated with either pathogenic auto-
immune disease or graft rejection (Denton et al. 1999,
Turesson 2004), although some types of endothelial cells
apparently express class II MHC molecules in the absence
of a pathological inflammatory condition (Pober 1999).
The common belief that class II MHC expression by
endothelial cells results in stimulation of T-cell activation
by endothelial cells is supported by numerous studies

Figure 5 (A) Agarose gels showing PCR amplification products using
STAR- and PECAM1-specific primers in samples extracted from cultures
of CLENDO cells (top panel) or mixed luteal cells (bottoms panel).
Cultures were treated with 0 or 50 ng/ml TNF (nZ3 cultures per
treatment) for 48 h. (B) Relative abundance of STAR and PECAM1
mRNA in cultures of CLENDO and mixed luteal cells. Bars represent
mean amounts of PECAM1 (gray bars) or STAR (black bars) mRNAs
(expressed in arbitrary fluorescence units) in samples extracted from
CLENDO or mixed luteal cell cultures. Different letters indicate a
difference in relative abundance of mRNA between CLENDO (a and b)
and mixed luteal cell (x and y) cultures (P!0.05, nZ3).
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(Choi et al. 2004). However, T-cell activation by class II
MHC-expressing endothelial cells should not be
considered the rule, since there are notable exceptions
in which endothelial cells do not induce T-cell activation
(Marelli-Berg et al. 1996, 1999, Katz et al.2004) and even
induce T-cell anergy, an induced state of inactivation
(Denton et al. 1999, Kawai et al. 2000, Khayyamian et al.
2002, Appleman & Boussiotis 2003, Tokita et al. 2006).
In addition to induction of anergy, microvascular
endothelial cells from other tissues can also promote
production of pro-inflammatory as well as anti-inflam-
matory cytokines by T lymphocytes, and these obser-
vations demonstrate the ability of endothelial cells to
regulate the activity of migrating T lymphocytes.

With regard to the CL, microvascular endothelial cells
are the first cells that will be encountered by T
lymphocytes circulating through and infiltrating the CL.
It is therefore likely that luteal endothelial cells, by
necessity, interact with infiltrating T lymphocytes, and in
doing so may regulate their effector functions. It is
noteworthy that several recent studies have observed
increases in immune cells, cytokines, and expression of
genes significant to immune function in the midcycle CL
(Townson et al. 2002, Cannon & Pate 2003, Cannon et al.
2006), while several reports demonstrate supportive
effects of secreted products of macrophages and T
lymphocytes on luteal cell function (Hughes et al. 1991,
Chen et al. 1992, Ness & Kasson 1995, Sugino et al. 1998,
Pate & Keyes 2001). Expression of the class II MHC
molecule DR by a subpopulation of luteal endothelial
cells may be a means by which regulation of infiltrating T
lymphocytes takes place. Thus, although it has been
suggested for some time that the immune system

facilitates the process of luteal regression (Pate 1995,
Davis & Rueda 2002), it may be possible that the immune
system also participates in maintenance of normal luteal
function. In this scenario, class II MHC-expressing luteal
endothelial cells could induce a state of anergy in T cells
infiltrating the CL during the luteal phase, thus preventing
potentially detrimental activation of T cells prior to the
time of luteal regression. In light of the present findings,
the role of the immune system in regulation of luteal
function may need to be reconsidered, in that the immune
system may not only facilitate luteal regression, but also
support development and normal function of the CL prior
to initiation of luteolysis.

In conclusion, we have presented the evidence that a
subpopulation of endothelial cells in the bovine CL
expresses the class II MHC molecule DR, with expression
absent in the early CL but present and readily detectable
at midcycle, and also in late CL. CLENDO cells were
shown to contain DRA mRNA, confirming the immuno-
histochemical observations from the first part of the study.
The precise role of DR expression on bovine luteal
endothelial cells remains to be determined, but it is
possible that DR expression on luteal endothelial cells
during midcycle modulates the response of T lympho-
cytes present in the luteal microvasculature in a way that
supports normal luteal function.
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