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MOLECULAR ENTOMOLOGY

Molecular Diagnostic for Boll Weevil (Coleoptera: Curculionidae)
Based on Amplification of Three Species-Specific Microsatellites

KYUNG SEOK KIM,1,2,3 ZSOFIA SZENDREI,3,4 CESAR RODRIGUEZ-SAONA,4

PHILLIP G. MULDER, JR.,5 AND THOMAS W. SAPPINGTON1,6

J. Econ. Entomol. 102(2): 759Ð766 (2009)

ABSTRACT The boll weevil,Anthonomus grandis grandisBoheman (Coleoptera: Curculionidae), is
a serious pest of cultivated cotton,Gossypium hirsutum L., in the Americas, and reinfestation of zones
from which they have been eradicated is of perpetual concern. Extensive arrays of pheromone traps
monitor for reintroductions, but occasionally the traps collect nontarget weevils that can be misi-
dentiÞed by scouts. For example, the congeneric pepper weevil, Anthonomus eugeniiCano, and other
superÞcially similar weevils are attracted to components of the boll weevil lure or trap color. Although
morphologically distinguishable by trained personnel, the potential for misidentiÞcation is com-
pounded when captured weevils are dismembered or partially consumed by ants or ground beetles
that sometimes feed on them in the traps. Because misidentiÞcation can have expensive consequences,
a molecular diagnostic tool would be of great value to eradication managers. We demonstrate that a
cocktail of three primer pairs in a single polymerase chain reaction (PCR) amplify species-speciÞc
microsatellites that unambiguously distinguish the boll weevil from three other weevil species tested,
including pepper weevil; cranberry weevil, Anthonomus eugenii musculus Say; and pecan weevil,
Curculio caryaeHorn. However, it does not distinguish the boll weevil from the subspeciÞc “thurberia”
weevil. A universal internal transcribed spacer primer pair included in the cocktail cross-ampliÞes
DNA from all species, serving as a positive control. Furthermore, the diagnostic primers ampliÞed the
target microsatellites from various boll weevil adult body parts, indicating that the PCR technology
using the primer cocktail is sensitive enough to positively identify a boll weevil even when the body
is partly degraded.

KEY WORDS Anthonomus grandis, boll weevil, molecular diagnostic, eradication, microsatellites

The boll weevil,Anthonomusgrandis grandisBoheman
(Coleoptera: Curculionidae), is one of the most de-
structive pests of cultivated cotton, Gossypium hirsu-
tum L., in the Americas. Since initiation of the Þrst
eradication program in 1978, the boll weevil has been
eliminated from several states in the southeastern and
southwestern United States (Smith 1998, Carter et al.
2001, El-Lissy and Grefenstette 2006), but eradication
is ongoing in parts of seven U.S. states and northern
Mexico. In Texas, the boll weevil eradication program
was initiated in 1995, and 17 zones are currently in

different stages. The boll weevil has been eradicated
from several zones in central and western Texas, but
seven others remain infested to varying degrees. After
eradication has been declared complete by authorities
for a particular zone, a posteradication maintenance
program is initiated whereby a systematic array of
pheromone traps is deployed and regularly monitored
for reintroductions.

The ability of boll weevil adults to disperse hun-
dreds of kilometers is well-documented (Guerra 1988;
Spurgeon et al. 1997; Kim and Sappington 2004a,b,
2006; Kim et al. 2006; Westbrook et al. 2007), and both
natural dispersal by ßight (Culin et al. 1990, West-
brook et al. 2007) and human-mediated transport
(Sappington et al. 2004, 2006; Kim et al. 2008) can
reintroduce boll weevils to an eradication zone. The
threat of reintroduction is a constant concern because
of the expense involved in eliminating a colonizing
population that successfully establishes (Kim et al.
2006, Westbrook et al. 2007, Kiser and Catanach 2008).
A population genetics approach using neutral molec-
ular DNA markers has provided important clues to the
origin of boll weevils captured unexpectedly in or near
eradication zones (Kim et al. 2006, 2008). In most cases
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the response is swift, massive, disruptive, and expen-
sive to the program and to the affected growers.

A cornerstone of the eradication and the posteradi-
cation maintenance program is the pheromone trap
(Smith 1998, Sappington and Spurgeon 2000, Spur-
geon 2003, Spurgeon and Raulston 2006), which is
baited with an aggregation pheromone that attracts
both sexes (Hardee et al. 1969, Tumlinson et al. 1971).
Although the lure is fairly speciÞc to the boll weevil,
it contains components attractive to a wide range of
other curculionids (Tóth et al. 2007), including the
pepper weevil, Anthonomus eugenii Cano (Eller et al.
1994), and the pecan weevil, Curculio caryae Horn
(Hedin et al. 1997). Pepper weevils are frequently
captured in boll weevil traps, perhaps through cross-
attraction of pheromone, but also probably through
attractiveness of trap color (Patrock et al. 1992). Other
Anthonomus spp. and more distantly related weevil
species may be attracted to unbaited boll weevil traps
as well (Clark 1988, Bloem et al. 2002).

The consequences of misidentifying a trapped in-
sect can be costly. A false positive, i.e., misidentifying
a nontarget as a boll weevil, could trigger unnecessary
and costly program responses such as multiple insec-
ticide treatments of cotton Þelds within a several-
kilometer radius of the trap. In most cases, nontarget
weevils in a trap can be easily distinguished from boll
weevils morphologically. However, pepper weevils
can be problematic and are the most likely to be
mistaken for boll weevils. They are about half the size
of a boll weevil, but the latter can be quite small, too,
if the larva matured on a poor quality diet (Reardon
and Spurgeon 2002, Greenberg et al. 2005). The num-
ber of spines on the femur of the foreleg is diagnostic
but requires magniÞcation and a trained eye to assess.
Because of the cost involved in a full-blown reaction
to a reintroduction, the public demands reassurance
that there was no mistake in a subjective visual iden-
tiÞcation, which puts pressure on the eradication pro-
gram to have a credible independent taxonomist make
the call.

A false negative, i.e., failing to recognize a boll
weevil, risks increased expense as well, because it
becomes more difÞcult to eliminate a population the
longer it goes undetected. This class of error can occur
if an unusually small boll weevil is mistaken for a
pepper weevil but is most likely to occur when mor-
phological features are compromised. The body of a
trapped weevil is sometimes dismembered and broken
up by ants or ground beetles that enter traps and feed

on the weevils. After expiring in the trap, a weevil can
become brittle by baking in the sun for several days
before collection and thus can easily break into un-
recognizable pieces during removal from the trap or
during transfer to the lab. A disintegrated boll weevil
may still be identiÞed by the morphology of its parts,
but the level of uncertainty increases substantially.

For all of these reasons, a less subjective but rapid
diagnostic method is needed to positively identify a
boll weevil when it is captured, and to deÞnitively
exclude any nontarget weevils that may be captured
accidentally. Molecular DNA makers have enjoyed
wide use for diagnostic purposes within and between
species in insects (Collins and Paskewitz 1996,
Hoogendoorn and Heimpel 2001). Polymerase chain
reaction (PCR)-based analysis allows assays of small
amounts of DNA from individual insects as well as
permitting high throughput of large numbers of sam-
ples. Here, we present a PCR-based molecular diag-
nostic method for determining whether an insect col-
lected in a boll weevil trap is truly a boll weevil. It
relies on multiplex ampliÞcation of three microsatel-
lite loci developed speciÞcally for boll weevil (Kim
and Sappington 2004b). Our reasoning for testing mi-
crosatellites as diagnostic for boll weevil is based on
the unique characteristics of this class of marker. Mi-
crosatellites are short tandem repeats of simple nu-
cleotide sequence, inherited in a Mendelian fashion,
and evenly distributed in the genome. Although we
cannot test every possible nontarget, our premise is
that because microsatellites are usually species spe-
ciÞc (Zane et al. 2002, Selkoe and Toonen 2006), it is
extremely unlikely that three different boll weevil loci
would all cross-amplify in a nontarget species. In par-
ticular, we hypothesized that although all three loci
would amplify in the boll weevil and the subspeciÞc
thurberia weevil, Anthonomus g. thurberiae Pierce,
none would amplify in three representative nontarget
weevils: the pecan weevil, and the more closely re-
lated pepper weevil and cranberry weevil, Anthono-
mus musculus Say. We also demonstrate that this
method can be used to assay weevil specimens that
have been damaged.

Materials and Methods

Weevil Specimens. Three representative weevil
species that overlap in geographic distribution with
the boll weevil were tested in this study (Table 1),
including the cranberry weevil, pepper weevil, and

Table 1. Collection details of weevil specimens assayed in this study

Common name Location Collection date Collector

Boll weevil Weslaco, TX 5 June 2000 T. Sappington, USDAÐARS
Tampico, Mexico 7 April 1999 S. Greenberg, USDAÐARS
Tlahualilo, Mexico 20 Oct. 2004 P. Cano-Rṍos, INIFAP
Laveen, AZ 2 Jan. 1989 R. Roehrdanz, USDAÐARS

Thurberia weevil Molins Basin, AZ 30 April 1996 R. Roehrdanz, USDAÐARS
Cranberry weevil Blueberry farms, central NJ 20 April 2008 Z. Szendrei, Rutgers University
Pepper weevil University of Florida colony 28 Feb. 2008 K. Addesso, University of Florida
Pecan weevil Stillwater, OK 6 Nov. 2007 P. Mulder, Oklahoma State University
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pecan weevil (Fig. 1). In addition, a subspecies of the
boll weevil called the thurberia weevil was tested as
well. Most of the boll weevils were collected from the
United States and northern Mexico in previous studies
(Kim and Sappington 2004a, Kim et al. 2006), but one
tested individual was collected nearly 20 yr ago from
a population in southern Arizona, which has since
been eradicated. Samples from the other weevil spe-
cies were collected speciÞcally for this study (Table
1). Pepper weevil specimens were obtained from a
laboratory colony maintained at the University of
Florida (Gainesville, FL), and cranberry weevils were
collected from commercial blueberry Þelds in central
New Jersey in 2008.
DNA Extraction. Boll weevil and pecan weevil

DNA extraction was conducted at the USDAÐARS
Corn Insects and Crop Genetics Research Unit
(USDAÐARS, Ames, IA) and that of cranberry and
pepper weevils was conducted at the P. E. Marucci
Center for Blueberry and Cranberry Research and
Extension (Rutgers, The State University of New Jer-
sey, Chatsworth, NJ). Genomic DNA from all weevil
species was extracted using the Puregene Core kit
(QIAGEN, Valencia, CA) according to the manufac-
turerÕs protocol. In addition to individual whole body
extractions, DNA was extracted from boll weevil body
parts including head, pairs of elytra, pairs of hind
wings, all legs combined, thorax, and abdomen.

Diagnostic Markers. We used the primer pairs for
microsatellite markers AG-D7, AG-D10, and AG-D12,
which were developed previously for A. g. grandis
(Kim and Sappington 2004b). These loci were se-
lected because they are compatible in multiplex PCR
and are sufÞciently different in size to be clearly sepa-
rated on an agarose gel. In addition to the microsatellite
primers, universal primers were included in the multi-
plex reaction to amplify the internal transcribed spacer
(ITS) locus. These included a combination of ITS4 (TC-
CTCCGCTTATTGATATGC) and ITS5 (GGAAGTA-
AAAGTCGTAACAAGG) primers (White et al. 1990).
Because it should amplify in all insect species, ITS serves
asapositivecontrol fortheintegrityofthegenomicDNA
template and reaction conditions.
Polymerase Chain Reaction and Electrophoresis.

We performed various PCR experiments to verify that
the three selected A. grandis microsatellite markers
are indeed speciÞc for A. grandis, and that the ITS
marker is ampliÞed by universal ITS4 � 5 primers in
all four weevil species tested. In addition, DNA was
ampliÞed from each of six body parts dissected from
a boll weevil adult to determine whether this diag-
nostic molecular tool is sensitive enough to assay dis-
membered pieces of the adult body.

Multiplex PCR ampliÞcations were carried out with
the cocktail of four primer sets using the Multilocus
AmpliÞcation kit (QIAGEN) in a 10-�l volume con-

Fig. 1. Photographs of the four weevil species (Coleoptera: Curculionidae) tested with boll weevil diagnostic markers.
Reduced images in center are shown to scale to illustrate relative size differences. Approximate body length indicated next
to central images. Photographs taken with Leica MZ16 Stereomicroscope and imaged by Image-Pro Plus software (Media
Cybernetics, Inc., Bethesda, MD). Photographs courtesy of Rutgers University Entomological Museum. (Online Þgure in
color.)
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taining 1� QIAGEN multiplex PCR Master Mix (pro-
viding a Þnal concentration of 3 mM MgCl2), 0.2 �M
each primer for multiplex, and 2 �l of genomic DNA
(15 ng DNA per reaction). Touchdown cycling con-
ditions were used as follows: an initial denaturing step
at 94�C for 15 min; seven touchdown cycles starting at
94�C for 30 s, 67�C for 90 s, 72�C for 60 s, with annealing
temperature decreasing by 2�C per cycle to a tem-
perature of 53�C; followed by a further 25 cycles at
94�C for 30 s, 53�C for 90 s, 72�C for 60 s; and a Þnal
extension at 60�C for 30 min. Conditions for ampliÞ-
cation of single markers was the same as the multiplex
PCR conditions except that each primer was present
at 0.4 �M.

AmpliÞcation products were visualized by electro-
phoresis of 7 �l of the reaction solution loaded onto 2%
agarose gels in 1� Tris borate-EDTA buffer in the
presence of 0.1 �g/ml ethidium bromide. Resulting
bands were sized by comparison with 100-bp DNA
ladder (Invitrogen, Carlsbad, CA) or MspI-digested
pGEM vector size standards run concomitantly on the
gel. Gels were photographed with a Chemi Doc Sys-
tem (Bio-Rad, Hercules, CA) or an AlphaImager (Al-
pha Innotech Corporation, San Leandro, CA).
Analysis of Results.We tested the following speciÞc

hypotheses: 1) The microsatellite loci AG-D7, AG-
D10, and AG-D12 will amplify only in boll weevil
(including both subspecies A. g. grandis and A. g.
thurberiae), and these loci are not present in pepper
weevil, cranberry weevil, and pecan weevil. 2) All
three microsatellite loci will amplify from separate
body parts of dismembered weevils. We know from
previous studies involving whole body samples of
�700 individualA. grandis grandis from 22 populations
in the United States and Mexico that these three loci
are present in this species and always amplify under
appropriate PCR conditions (Kim and Sappington
2004b, 2006; Kim et al. 2006, 2008). We had not pre-
viously tested these loci in A. g. thurberiae, but we
suspected that they would amplify because, as a sub-
species of A. g. grandis, they are evolutionarily closely
related.

The Þrst hypothesis can be accepted if the three
microsatellite loci, which are present in boll weevil
(Kim and Sappington 2004b, 2006; Kim et al. 2006,
2008), are not present in pepper weevil, cranberry
weevil, and pecan weevil. Acceptance of this hypoth-
esis would indicate that this set of markers can be used
to diagnose an individual as either a boll weevil, or not
a boll weevil. It cannot, and is not designed to, identify
an individual as a pepper weevil, cranberry weevil, or
pecan weevilÑwe simply tested these as representa-
tive closely related weevil species that might be en-
countered as nontargets in a boll weevil trap. Note that
presence or absence of a locus is a species-level char-
acter (Primmer et al. 1996, Baliraine et al. 2003) and
does not vary between populations or between indi-
viduals within a species. Allelic variation is irrelevant,
because there are no alleles for a locus that does not
exist. Thus, a single individual per nontarget species
from any location or population is sufÞcient to test this
hypothesis, and no statistical analysis is needed or

relevant. Nevertheless, we tested 17 cranberry wee-
vils, six pepper weevils, eight pecan weevils, and seven
thurberia weevils over the course of this study to go
along with the 700� boll weevils tested in previous
studies, and the results were invariable.

Presence or absence of a locus is easily determined
by whether the primers amplify a product through
PCR in the expected size range, the results of which
can be determined unambiguously by simple visual
examination of the stained gels for the expected pres-
ence/absence banding patterns. The ITS locus is
present in all insects, so it is expected to amplify a
�600-bp product in every reaction regardless of spe-
cies. If it does not, the absence of microsatellite prod-
ucts cannot be taken to indicate absence of those loci.
Instead, it indicates that there was something wrong
with some part of the PCR reaction conditions or that
the extracted DNA was too degraded to serve as tem-
plate. As long as the positive control, ITS, ampliÞes, an
absence of the three microsatellite bands indicates
those loci are not present in that individual, and there-
fore1) that individualbelongs toa specieswhere those
loci do not exist and 2) that individual is not a boll
weevil. The Þrst hypothesis is designed to test the
corollary that if the three microsatellite bands are
present, it is a boll weevil.

Results

PCR using individual marker primers and boll wee-
vil DNA template successfully produced a unique am-
pliÞcation product for each marker: 120 bp for AG-D7,
190 bp for AG-D10, 290 bp for AG-D12, and �600 bp
for ITS (Fig. 2). Each ampliÞcation product generated
with the microsatellite primers was consistent with its
expected size range as reported from a natural boll
weevil population (Kim and Sappington 2004b) and as
encountered in subsequent surveys involving 22 pop-
ulations over a large geographic area including eight
U.S. states, and northern Mexico (Kim and Sappington
2006; Kim et al. 2006, 2008). There was no apparent

Fig. 2. PCR ampliÞcation of boll weevil DNA using the
four genomic primer pairs alone: AG-D7 (2), AG-D10 (3),
AG-D12 (4), ITS4 � 5 (5); and the four primer pairs in a
multiplex cocktail with (6) and without (7) DNA template.
DNA size standard: pGEM-MspI ladder (1, 8).
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interference or cross-ampliÞcation among the four
primer sets. A multiplex cocktail of all four genomic
marker primer pairs simultaneously generated the
four expected PCR amplicons from boll weevil DNA
template (Fig. 2). The cocktail of primers also suc-
cessfully ampliÞed DNA from the subspeciÞc thurb-
eria weevil (Fig. 3). However, for the pecan weevil
(Fig. 3) and the congeneric pepper and cranberry
weevils (Fig. 4), no ampliÞcation product was ob-
served for any of the three boll weevil microsatellite
markers, demonstrating that these loci are not present
in these species. The ITS4 � 5 primers always gener-
ated a strong 600-bp ampliÞcation product for DNA
extracted from fresh weevil specimens, but only a
weak product was generated from the DNA of a boll
weevil collected in Tampico, Mexico, 6 yr previously
(Fig. 3, lane 6). Nevertheless, the boll weevil micro-
satellite marker primers generated the expected am-
pliÞcation products for this specimen, suggesting
these markers are relatively insensitive to partial DNA
degradation.

In theotherAnthonomus species, the ITS4�5primers
generated additional higher-molecular-weight ampliÞ-

cation products along with the expected 600-bp ITS
product (Fig. 4, lanes 2Ð8 and 20Ð26). One was a PCR
product of �750 bp that ampliÞed in some of the
cranberry weevils (e.g., lanes 3, 5, 21, and 23). Another
product of �900 bp consistently ampliÞed in all pep-
per weevils tested (e.g., lanes 6, 7, 24, and 25). When
the three sets of microsatellite primers were combined
in the absence of the ITS4 � 5 primers, they ampliÞed
only the three expected loci from boll weevil DNA
template, and no higher weight products were pro-
duced (lanes 11Ð17), demonstrating that all of the
observed bands �600 bp were generated by the ITS
primers, not the microsatellite primers. The pattern
produced for boll weevil by the full cocktail of four
genomic primers (lane 26) was the same as that ob-
tained combining results of the ITS4 � 5 primers alone
(lane 8) and the microsatellite primer cocktail alone
(lane 17).

All three microsatellite markers and the ITS positive
control were successfully ampliÞed from DNA ex-
tracted from each type of body part (Fig. 5). The
microsatellite amplicons from the hind wings were
relatively weak, but still clearly visible (Fig. 5, lane 5).

Fig. 3. PCR proÞle of weevils using a multiplex cocktail
of primers to amplify three diagnostic microsatellites (100Ð
300 bp) and an ITS4 � 5 positive control. DNA size standards:
pGEM-MspI ladder (1), pecan weevil (2, 3; Pc), thurberia
weevil (4; T), boll weevil (B): Laveen, AZ (5), Tampico,
Mexico (6), Weslaco, TX (7), Tlahualilo, Mexico (8); no
DNA template [9, (-)].

Fig. 4. PCR proÞles of three Anthonomus species using ITS4 � 5 primers alone (2Ð9), a cocktail of primers to amplify
three diagnostic boll weevil microsatellites (100Ð300 bp: AG-D7, AG-D10, AG-D12) (11Ð18), and a cocktail of both ITS4 �
5 and microsatellite primers (20Ð27). 100-bp ladder DNA size standards (1, 10, 19), cranberry weevil (C, 2Ð5, 11Ð14, 20Ð23),
pepper weevil (P, 6Ð7, 15Ð16, 24Ð25), boll weevil (B, 8, 17, 26), no DNA template [(-), 9, 18, 27].

Fig. 5. PCR ampliÞcation of body parts dissected from a
boll weevil adult using a cocktail of primers to amplify three
diagnostic microsatellites (100Ð300 bp) and an ITS4 � 5
positive control. Whole body (2; WB), head (3; H), elytra (4;
E), hind wings (5; HW), legs (6; L), thorax (7; T), abdomen
(8; A), no DNA template [9, (-)], DNA size standard: pGEM-
MspI ladder (1, 10).
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Discussion

The PCR and electrophoresis methods used in this
study are simple, rapid, and reproducible, and the
results were consistent between the ARS and Rutgers
University laboratories. The four ampliÞcation prod-
ucts generated from boll weevils with a cocktail of
diagnostic-marker primers were easily discernible on
an agarose gel such that the products can be scored
unambiguously based on their relative size. The ad-
ditional high weight ampliÞcation products for the
pepper and cranberry weevils (Fig. 4) are generated
by the ITS4 � 5 primers, perhaps through ampliÞca-
tion of multiple copies of the spacer differing in the
number of repeat units (Collins and Paskewitz 1996).
Inter- and intraspecies heterogeneity of ribosomal
DNA has been reported in insects (Collins and Paske-
witz 1996, Onyabe and Conn 1999). Nevertheless,
these additional ampliÞcation products did not intro-
duce any ambiguity in interpreting the PCR products
diagnostic for boll weevil and therefore can be ignored
for the purposes of this assay. Together, our Þndings
indicate that the three microsatellite markers are di-
agnostic for boll weevil, and readily distinguish this
species from the other Anthonomus and curculionid
species tested, and that the ITS4 � 5 primers can be
used as a positive control across species.

There are previous reports of microsatellite primers
cross-amplifying DNA from closely related species
(Grasela and McIntosh 2005, Kim and Sappington
2005), or even species from a different genus (Wilson
et al. 2004, Weng et al. 2007), but this was not observed
for any of the microsatellites in the Anthonomus spe-
cies tested or the more distantly related pecan weevil
(Figs. 3 and 4). The three microsatellites cross-ampli-
Þed in A. g. thurberiae, a morphologically indistin-
guishable subspecies of A. grandis. It differs behav-
iorally from A. g. grandis, feeding mainly on wild
cotton, Gossypium thurberi Todaro, in the southwest-
ern United States and northwestern Mexico (Burke et
al. 1986, Roehrdanz 2001) and is not considered a pest
of cultivated cotton. Although our assay will not dis-
tinguishA. g. grandis fromA. g. thurberiae,most of the
time this will not be an issue because of the restricted
geographic range of the latter. Furthermore, a molec-
ular diagnostic assay was developed by Roehrdanz
(2001), which can be used in parallel on the same
specimens if the presence of thurberia weevils is con-
sidered a possibility in a given sample.

Microsatellite markers are widely used to charac-
terize genetic variation within and between popula-
tions, in part because of their high polymorphism
deriving from differences in the number of short se-
quence repeats (Zhang 2004). Variation among alleles
is possible to detect using polyacrylamide gel electro-
phoresis. However, unless the size differences are
large, they are practically undetectable by agarose gel
electrophoresis because agarose gels are not sensitive
enough to discriminate DNA fragments differing by a
few base pairs. Therefore, even though there is sub-
stantial allelic variation among individual boll weevils
at the microsatellite loci used in this study (Kim and

Sappington 2004b, 2006; Kim et al. 2006), it has a
negligible effect on amplicon size determination on
the agarose gel used in our diagnostic assay, where a
single band is generated for each microsatellite locus
regardless of the allele(s) involved.

A potential impediment to using microsatellites as
diagnostic markers is the possible presence of null
alleles (Liewlaksaneeyanawin et al. 2002, Chapuis and
Estoup 2007). Null alleles arise when a mutation in the
primer binding site prevents PCR ampliÞcation. This
issue is important in population genetics studies where
accurate scoring of both alleles per individual is nec-
essary. However, null alleles are less of a concern in
our diagnostic assay because the lack of a band in a boll
weevil (false negative) will occur only if an individual
is homozygous null. Null alleles have not been de-
tected for the three microsatellite loci used in this
study in surveys of �700 boll weevils collected across
wide geographic locations from Mexico and the south-
eastern United States (Kim and Sappington 2004b,
2006; Kim et al. 2006, 2008), making the probability of
encountering a homozygous null individual extremely
low. Moreover, the use of three sets of microsatellite
primers together increases the chance for correctly
identifying a boll weevil. Thus, even if a rare homozy-
gous null allele genotype leads to no ampliÞcation at
one microsatellite locus, the other two loci will still
amplify and positively identify the specimen as a boll
weevil.

Molecular diagnostics are particularly important in
eradication contexts because of the costs of both false
positives and false negatives. For example, random
ampliÞed polymorphic DNA markers (Skoda et al.
2002) and PCR-restriction fragment length polymor-
phism (Taylor et al. 1996) have been applied as iden-
tiÞcation tools for discriminating the screwworm, Co-
chliomyia hominivorax (Coquerel), a serious pest of
livestock in the Western Hemisphere, from the sec-
ondary nonpest screwworm, Cochliomyia macellaria
(F.). The informed management decisions these di-
agnostic tools make possible have contributed to the
success of the New World screwworm eradication
program (Skoda et al. 2002).

In conclusion, our PCR-based assay provides a sim-
ple, straightforward, and cost-effective diagnostic tool
to correctly distinguish boll weevils from other weevil
species that could potentially be confused with boll
weevils and thus interfere with making appropriate
eradication program decisions. This molecular diag-
nostic tool will provide high-conÞdence identiÞcation
of boll weevils versus nontargets, enhancing accuracy
over morphological assessment alone. It will be espe-
cially valuable for identifying damaged specimens,
where identiÞcation by morphological characters be-
comes compromised. Although specimens should be
frozen or otherwise properly stored until processing,
the assay is quite robust even in the face of partially
degraded DNA. The assay can be completed easily
within 2 d, allowing eradication personnel or action
agencies to make timely decisions to eliminate new
infestations. Of equal importance, this tool will reduce
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the chances of implementing unnecessary and expen-
sive eradication efforts based on misidentiÞcations.
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