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Characterization of CD4-Induced Epitopes on the HIV Type 1
gp120 Envelope Glycoprotein Recognized by Neutralizing

Human Monoclonal Antibodies

SHI-HUA XIANG,1,2 NAJAH DOKA,1 RABEÉA K. CHOUDHARY,1 JOSEPH SODROSKI,1,2,3 and 
JAMES E. ROBINSON4

ABSTRACT

The entry of human immunodeficiency virus (HIV-1) into target cells typically requires the sequential bind-
ing of the viral exterior envelope glycoprotein, gp120, to CD4 and a chemokine receptor. CD4 binding ex-
poses gp120 epitopes recognized by CD4-induced (CD4i) antibodies, which can block virus binding to the
chemokine receptor. We identified three new CD4i antibodies from an HIV-1-infected individual and local-
ized their epitopes. These epitopes include a highly conserved gp120 b-strand encompassing residues 419–424,
which is also important for binding to the CCR5 chemokine receptor. All of the CD4i antibodies inhibited the
binding of gp120–CD4 complexes to CCR5. CD4i antibodies and CD4 reciprocally induced each other’s bind-
ing, suggesting that these ligands recognize a similar gp120 conformation. The CD4i antibodies neutralized
laboratory-adapted HIV-1 isolates; primary isolates were more resistant to neutralization by these antibod-
ies. Thus, all known CD4i antibodies recognize a common, conserved gp120 element overlapping the binding
site for the CCR5 chemokine receptor.

1207

INTRODUCTION

HUMAN IMMUNODEFICIENCY VIRUS (HIV-1) is the major cause
of acquired immunodeficiency syndrome (AIDS) in hu-

mans.1,2 AIDS results from a progressive loss of CD41 T-lym-
phocytes that accompanies chronic HIV-1 infection.3–8 The
CD41 T lymphocytes represent major target cells for HIV-1,
and this tropism is determined by specific interactions of the
viral envelope glycoproteins and host cell receptors, CD4 and
members of the chemokine receptor family.9–11 Receptor bind-
ing is mediated by the gp120 exterior envelope glycopro-
tein,9–11 which is organized into a trimeric complex along with
the gp41 transmembrane envelope glycoprotein.12,13 The bind-
ing of gp120 to CD4 induces conformational changes that al-
low gp120 to interact with the chemokine receptors, CCR5 or
CXCR4.10,14–18 One of these CD4-induced conformational
changes is a shift in the position of the large, surface-exposed
V1/V2 variable loops of gp120, which are thought to mask the
chemokine receptor-binding site on gp120.19–22 Chemokine re-

ceptor binding apparently involves a conserved structure on the
gp120 surface and sequences in the third variable (V3)
loop.9–11,23–27 The conserved gp120 structures involved in re-
ceptor binding have been defined by X-ray crystallographic
analysis of HIV-1 gp120 core elements, mutagenesis, and an-
tibody competition analyses.21,23,24,28–30 Receptor binding is
believed to trigger additional conformational changes in the
HIV-1 envelope glycoproteins that lead to exposure of the gp41
transmembrane envelope glycoprotein and to gp41-mediated
fusion of the viral and target cell membranes.31,32

The persistence of HIV-1 infection and eventual disease in-
duction in most infected hosts imply that the virus can evade
and, ultimately, eliminate the immune response.33,34 The HIV-
1 envelope glycoproteins possess surface-exposed loops that ex-
hibit considerable variation among strains. A high degree of
glycosylation and conformational flexibility are other features
that are thought to minimize the elicitation or effect of neu-
tralizing antibodies.21,35 Many antibodies elicited by the HIV-
1 envelope glycoproteins do not exhibit the ability to neutral-
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ize the virus. Neutralizing antibodies elicited relatively early in
the course of natural infection often inhibit the infection of a
limited number of viral strains, and typically are directed against
variable loops. Later-arising antibodies exhibit broader neu-
tralizing activity against HIV-1 strains. These antibodies in-
clude CD4-binding-site (CD4BS) antibodies, which block CD4
binding, and CD4-induced (CD4i) antibodies, which recognize
gp120 structures that are formed or exposed by CD4 binding.
The CD4i antibodies block the binding of HIV-1 gp120 to the
chemokine receptors. To date, only two HIV-1-specific CD4i
antibodies, designated 17b and 48d, have been identified and
studied.22,36–38 The binding of these antibodies to HIV-1 gp120
can be disrupted by changes in the bridging sheet, a highly con-
served gp120 element implicated in chemokine receptor bind-
ing. X-ray crystal structures of two HIV-1 gp120 cores com-
plexed with CD4 and Fab fragments of the 17b antibody have
been determined, allowing precise definition of the 17b epi-
tope.28,29 The epitopes for the 17b and 48d antibodies are
thought to be partially masked by the second variable (V2) loop
of gp120, and virus variants lacking the V1/V2 or V2 loops ex-
hibit greater sensitivity to neutralization by these antibod-
ies.20,22,39,40 The gp120 variable loop conformations on many
primary HIV-1 isolates apparently mask the 17b and 48d epi-
topes quite effectively, because these viruses are relatively re-
sistant to 17b and 48d neutralization.21,22,38,41–44 Steric factors
dictate that to neutralize HIV-1 effectively, these antibodies
must bind the viral envelope glycoproteins prior to the en-
gagement of the CD4 receptor on the target cell.20 Thus, al-
though the conservation of these antibody epitopes is an at-
tractive feature, HIV-1 has evolved mechanisms to diminish
their accessibility to antibodies.

To obtain further understanding of gp120 epitopes induced
by CD4 binding, we identified three new CD4i antibodies (23e,
21c, and 49e) from HIV-1-infected individuals. We character-
ized their binding to wild-type and mutant gp120 glycoproteins,
the influence of CD4 binding on their interaction with gp120,
and their neutralizing ability.

MATERIALS AND METHODS

Cells

293T cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) with 10% fetal bovine serum (FBS) and 
penicillin/streptomycin. CCR5 binding assays utilized Cf2Th-
synCCR5 cells.12 To study the entry of R5 viruses, Cf2Th cells
expressing CD4 and CCR5 were used. To study the entry of
X4 isolates, Ghost cells expressing CD4 and CXCR4 were used.

Mutant HIV-1 gp120 glycoproteins

Single amino acid changes were introduced into the wtD pro-
tein from the YU2 isolate, a primary R5 HIV-1 derived directly
from the brain of an infected individual. The wtD protein con-
tains deletions of gp120 residues 31–81 in the N-terminus and
128–194, removing the V1 and V2 variable loops but retaining
the conserved V1/V2 stem. (Numbering of gp120 amino acid
residues is based on the sequence of the prototypic HXBc2
strain of HIV-1, according to current convention.45)

Antibodies

The human monoclonal antibodies (HMAbs) 17b, 23e, 49e,
21c, and 48d were derived by Epstein–Barr virus (EBV) trans-
formation of B cells from cryopreserved peripheral blood
mononuclear cells (PBMC) obtained from HIV-1-infected indi-
viduals. The 23e, 49e, and 21c monoclonal antibody-producing
cell lines were obtained from an HIV-1 infected long-term non-
progressor (AD19) followed at the Aaron Diamond AIDS Re-
search Center. EBV-inoculated PBMC cultures were plated in
multiple 96-well culture plates containing irradiated, mature hu-
man macrophages as feeder cells, as previously described.46,47 Su-
pernatant fluids from transformed cultures were screened for an-
tibodies binding to HIV-1 envelope glycoproteins using a “reverse
capture” sandwich immunoassay, according to our published
method.46 Briefly, potential HMAbs in B cell culture fluids were
first captured in wells of ELISA plates coated with 2 mg/ml goat
anti-human IgG-Fc. Detergent-solubilized virus containing 10%
normal human serum (Irvine Scientific) was incubated in the wells
to allow binding of viral antigens to immobilized antibodies. De-
tection of bound viral envelope glycoproteins was accomplished
by addition of a mixture of several biotinylated HMAbs (17b,
A32, C11), also diluted in buffer containing 10% human serum,
which recognize nonoverlapping, well-conserved sites on HIV-1
gp120. In the present experiments we screened for antibodies
binding to a mixture of HIV-1 strains (IIIB and J62).47 Antigen
stocks consisted of supernatant fluids of cultures of MT4 cells
chronically infected with each virus. Culture fluids were collected
once weekly, clarified by centrifugation, and treated with 1% Tri-
ton-X100 to inactivate virus infectivity and solubilize the glyco-
proteins. We used several noncompeting, biotin-labeled HMAbs
to make sure that if the captured HMAb competed for the bind-
ing site of one labeled HMAb, one of the other labeled HMAbs
would still detect bound gp120. Normal human serum (10%) was
added to the dilution buffer in both the virus and biotin-HMAb
steps to saturate all anti-IgG-Fc binding sites, thus preventing
binding of the biotinylated antibodies, which otherwise would
cause unacceptably high background signals. Microwell cultures
that contained antibody-producing cells were subcultured at low
cell densities and rescreened for antibody production. Stable an-
tibody-producing cell lines were finally cloned at limiting dilu-
tions. To improve cell growth and antibody production, the cell
lines producing 23e and 21c HMAbs subsequently were converted
to hybridomas by fusion with HMMA cells, kindly provided by
Marshall Posner. HMAbs were purified from several liters of cul-
ture supernatant using protein A affinity chromatography. Protein
concentration was determined by the bicinchinonic acid (BCA)
method (Pierce Chemical Co.).

Antibody binding competition assays

To test the effect of soluble CD4 (sCD4) on HMAb binding,
the wild-type YU2 gp120 glycoprotein was captured on an
ELISA plate by the D7324 antibody (Aalto BioReagents,
Dublin, Ireland) which is directed against the HIV-1 gp120 C-
terminus.30 HMAbs were added to the wells for 1 hr in the ab-
sence or presence of 10 mg/ml sCD4. After washing, the bound
antibody was detected with horseradish peroxidase-conjugated
anti-human IgG antibody (Sigma).

To test the ability of the HMAbs to compete with the 17b
antibody for gp120 binding, the 17b HMAb was biotinylated
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using EZ-link sulfo-NHS-LC-biotin (Pierce) according to the
manufacturer’s instructions. Ninety-six-well ELISA plates were
coated with the sheep D7324 antibody (Aalto BioReagents,
Dublin, Ireland), which is directed against the extreme C-ter-
minus of HIV-1 gp120.30 The wtD gp120 protein of the YU2
HIV-1 strain was produced by transient expression of 293T cells
and added to the D7324 antibody-coated wells. A dose–re-
sponse curve was generated for 17b-biotin, and a concentration
of 0.5 mg/ml 17b-biotin was chosen because this concentration
was not saturating, yet yielded a robust signal in the assay. For
the competition assay, various concentrations of the competi-
tor antibody were first mixed with the 17b-biotin (0.5 mg/ml)
and then added to the wells containing the captured gp120 gly-
coproteins. The 17b antibody itself and the 2/11c antibody were
used as positive and negative competitor controls, respectively.
The bound 17b-biotin was detected with avidin-peroxidase con-
jugate (Sigma), and the assays were developed with the TMB
peroxidase EIA substrate (BioRad).
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FIG. 1. Effects of sCD4 on HMAb binding to HIV-1 gp120. The gp120 glycoprotein from the YU2 HIV-1 isolate was cap-
tured on ELISA plates by the D7324 antibody. The captured gp120 glycoprotein was incubated without sCD4 (open circles) or
with 10 mg/ml sCD4 (filled circles), together with the HMAbs 17b, 23e, 49e, 21c, and 48d. The bound antibody was detected as
described under Materials and Methods. The amount of antibody bound is expressed in optical density units.

FIG. 2. Ability of CD4i HMAbs to compete with 17b antibody
for gp120. The HIV-1 gp120 glycoprotein was captured on
ELISA plates with the D7324 antibody. The binding of biotinyl-
ated 17b antibody to the gp120 glycoprotein in the presence of
the indicated concentrations of competitor HMAbs was detected
by avidin-peroxidase as described under Materials and Methods.
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ture, the cells were pelleted (3000 rpm for 2 min), washed with
phosphate-buffered saline (PBS), and lysed in NP-40 buffer. The
lysates were centrifuged at 14,000 rpm at 4°C for 5 min to re-
move cell debris. The supernatants containing the bound enve-
lope glycoproteins were precipitated by a mixture of sera from
HIV-1-infected individuals and resolved by sodium dodecyl sul-
fate–polyacrylamide gel electrophoresis (SDS–PAGE).
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TABLE 1. RECOGNITION OF HIV-1 gp120 MUTANTS BY LIGANDSa

gp120 region Envelope protein sCD4 Serum 17b 23e 49e 21c 48d CCR5

YU2 wtD 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
C1 107 D/R 1.02 0.98 0.97 0.73 0.94 0.65 0.85 1.02

114 Q/L 0.79 0.60 0.73 1.08 1.34 0.79 0.97 1.22
117 K/D 0.74 0.75 0.40 (1) 0.29 (1) 0.02 (2) 0.30 (1) 0.00 (1) 0.15
121 K/D 0.73 1.15 0.00 (1) 0.17 (1) 0.00 (1) 0.10 (1) 0.00 (2) 0.07
122 L/S 0.84 1.80 1.07 1.08 0.97 0.94 0.08 (1) 0.98
123 T/D 0.99 0.70 1.06 0.89 0.56 1.06 0.00 (2) 0.08

C2 197 N/D 1.34 1.01 0.80 0.83 1.40 0.97 1.75 1.33
199 S/L 1.32 0.95 0.94 0.44 0.92 1.40 2.00 1.50
200 V/S 0.91 0.94 1.05 1.57 0.96 0.43 0.00 (1) 0.84
201 I/A 0.90 1.28 0.67 1.13 1.40 0.73 0.02 (1) 0.46
203 Q/L 0.85 1.18 0.88 0.97 0.73 0.73 0.01 (1) 0.68
207 K/D 0.85 1.03 0.10 (1) 1.20 0.00 (2) 0.68 0.01 (2) 0.00
209 S/L 1.11 0.87 0.85 0.89 0.67 0.81 0.92 1.00
210 F/S 0.81 1.36 0.81 0.81 1.45 1.24 1.22 0.65
211 E/K 1.13 1.44 1.03 1.07 1.37 1.52 0.79 0.73
257 T/D 0.00 0.38 0.80 (1) 0.18 (1) 0.01 (1) 0.05 (1) 0.00 (1) 0.05

V3 295 N/E 0.75 1.29 0.73 0.64 1.18 1.28 1.39 0.86
308 N/D 1.10 1.63 0.89 0.55 1.32 0.69 1.21 0.31
311 L/S 1.12 1.02 1.05 1.09 1.40 1.08 1.93 0.08
330 H/A 0.75 1.01 0.55 0.88 0.81 0.60 1.05 0.22
DV3 (D298-329) 0.80 1.45 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00

C3 370 E/Q 0.00 0.66 1.04 1.54 1.04 0.83 0.00 (1) 0.17
372 V/S 1.03 1.14 1.08 1.02 0.67 0.77 0.96 0.85
373 T/D 1.12 0.77 1.10 1.34 1.43 1.19 0.71 0.48
377 N/E 0.71 1.00 0.52 0.55 0.46 2.00 1.83 0.22
381 E/R 0.81 1.27 0.20 (1) 1.15 0.09 (2) 1.50 0.00 (2) 0.07
383 F/S 0.00 0.49 0.02 (1) 0.04 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.04
386 N/D 1.14 1.83 0.97 1.62 1.18 1.32 1.04 1.22

C4 419 R/D 0.86 1.12 0.00 (1) 1.48 0.98 1.60 0.00 (2) 0.19
420 I/R 0.59 0.92 0.00 (2) 0.00 (2) 0.00 (2) 0.10 (2) 0.00 (2) 0.06
421 K/D 0.86 0.56 0.00 (1) 1.41 0.86 1.00 0.00 (2) 0.07
422 Q/L 0.53 0.80 0.00 (2) 0.03 (1) 0.47 (1) 0.00 (2) 0.00 (2) 0.07
423 I/S 0.97 1.05 0.00 (2) 1.20 1.11 0.88 0.00 (2) 0.61
424 I/S 0.25 0.58 0.48 (1) 0.15 (1) 0.04 (1) 0.25 (1) 0.00 (1) 0.37
426 M/A 0.69 0.85 0.69 0.74 0.58 0.30 0.08 (1) 0.75
429 E/R 1.17 1.04 1.00 1.11 0.68 0.70 1.75 1.54
432 K/A 1.00 0.52 0.92 0.81 1.00 1.02 0.00 (1) 0.06
434 M/A 0.90 1.31 0.65 0.77 0.63 1.00 0.00 (2) 1.22
435 Y/S 0.33 0.85 0.00 (1) 0.13 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.21
436 A/S 1.05 0.97 0.91 1.03 1.09 0.93 1.73 0.98
437 P/A 0.80 1.42 0.68 0.59 0.79 0.53 0.00 (2) 1.79
438 P/A 1.18 0.74 1.00 1.08 0.79 0.89 0.10 (1) 0.06
439 I/A 0.68 1.04 0.76 0.92 1.00 1.33 1.28 0.45
440 R/D 1.03 0.99 1.05 0.94 1.04 1.45 0.02 (1) 0.09
441 G/V 0.67 1.10 0.70 0.96 0.77 1.43 0.02 (1) 0.00
442 Q/L 1.11 0.74 0.74 1.03 1.38 0.70 1.54 2.00
444 R/D 0.79 1.04 0.67 1.26 1.18 0.75 0.40 0.25

C5 474 D/R 0.59 1.02 0.81 1.09 1.34 0.72 0.52 1.03

aThe residue number of the mutants is based on sequence of the prototype strain HXBc2.45 The value for ligand binding was de-
termined by immunoprecipitation of radiolabeled protein and quantified by a Phosphorlmager. The values were normalized by the
formula as follows: (mutant protein/wt protein) ligand 3 (wt protein/mutant protein) serum mixture. Values for sCD4, CCR5, and
17b binding are from Rizzuto et al.24 1 indicates that ligand binding is restored to near-wild-type levels by incubation with sCD4.

CCR5 binding assay

To examine whether the HMAbs competed with the ability
of gp120 to bind CCR5, 100 ml of 35S-labeled gp120 was in-
cubated with approximately 5 3 106 Cf2ThsynCCR5 cells12 and
with various concentrations of HMAbs in the presence of solu-
ble CD4 (5 mg/ml). After 1.5 hr incubation at room tempera-



Transient expression of HIV-1 envelope glycoprotein
variants

293T cells grown to 70% confluency in 100-mm dishes were
transfected with 2 mg of a plasmid expressing the wtD protein
or mutant derivatives thereof, and 1 mg of a plasmid express-

ing the HIV-1 Tat protein, using the Effectene Transfection
Reagent (QIAGEN). Forty-eight hours later, the medium was
removed, the cells were washed once with 10 ml PBS, and la-
beling medium [4.5 ml DMEM, 0.5 ml heat-inactivated, dia-
lyzed FBS, 50 ml penicillin-streptomycin solution, and 20 ml
(,230 mCi) [35S]cysteine] was added. The cells were incubated

CD4-INDUCED EPITOPES ON THE HIV-1 ENVELOPE GLYCOPROTEIN 1211

FIG. 3. (A–F) HIV-1 gp120 structures implicated in CCR5 and CD4i-HMAb binding. A CPK model of the HIV-1 YU2 gp120,
derived from the ternary gp120–CD4-17b complex,28 is shown from the perspective of the target cell. Amino acid residues in
which changes reduce the binding of ligands by 70% or more are colored. The residues in green indicate that ligand binding was
restored by sCD4 binding. Changes in the residues colored red resulted in decreased ligand binding that was not restored by
sCD4. The red residues are labeled with the residue number corresponding to that of the prototypic HXBc2 sequence.45 The
residues important for CCR5 and 17b binding were previously defined by Rizzuto et al.23,24



at 37°C for 24 hr and the medium was collected. The medium
was cleared by centrifugation and stored at 4°C.

Immunoprecipitation of radiolabelled envelope
glycoproteins

For precipitation of radiolabeled HIV-1 envelope glycopro-
teins, 400 ml medium containing the labeled proteins was mixed
with 100 ml of 10% protein A-Sepharose (Pharmacia), 50 ml
4% bovine serum albumin, and either 1–2 mg HMAb or 4 ml
of a mixture of HIV-1–infected sera. PBS was added to bring
the total volume to 1 ml. The samples were rocked at 4°C
overnight or at room temperature for 2 hr. The Sepharose beads
were then washed twice with 1 ml 0.5 M NaCl in PBS and once
with 1 ml PBS. The beads were mixed with 23 gel loading
buffer and boiled for 3 min. Following the removal of the beads
by centrifugation, the supernatants were loaded on a 10%
SDS–polyacrylamide gel. The gel was enhanced with Autofluor
(National Diagnostic) for 45 min before drying at 80°C for 2
hr and exposure to film. The gel was also used for Phosphor-
Imager (Molecular Dynamics) analysis.

HIV-1 neutralization assay

The HIV-1-neutralizing ability of the HMAbs was tested us-
ing a single-round virus entry assay. Recombinant HIV-1 ex-

pressing the firefly luciferase gene was produced by transfect-
ing 293T cells with the pCMV Gag-Pol packaging construct
and the pHIV-luc vector, along with a pSVIIIenv plasmid ex-
pressing the envelope glycoproteins of different HIV-1
strains.20 Two days after transfection, the cell supernatants were
harvested and frozen in aliquots.

The target cells (either Cf2Th cells expressing CD4 and
CCR5 or Ghost cells expressing CD4 and CXCR4) were seeded
at a density of 105 cells/well in a 24-well plate and cultured
overnight at 37°C. From 10,000 to 30,00 reverse transciptase
units of virus was incubated with serial dilutions of antibody
for 1 hr at 37°C in a 500 ml volume. The target cells were
washed once with PBS and the virus–antibody mixture was
added to the cells. The cells were cultured for 3 days, washed
once with PBS, and lysed with 150 ml lysis buffer for the lu-
ciferase assay (Tuner 20, Promega).

RESULTS

Effects of CD4 binding on HMAb recognition of gp120

The effects of soluble CD4 (sCD4) binding on the recogni-
tion of the HIV-1 gp120 glycoprotein by the newly identified
HMAbs 23e, 49e, and 21c were examined. The wild-type gp120
glycoprotein derived from the YU2 R5 HIV-1 strain was cap-
tured on an ELISA plate with a polyclonal serum (D7324) di-
rected against the gp120 C-terminus. The captured gp120 was
incubated with the HMAbs in the absence or presence of sCD4.
Figure 1 shows that the recognition of the YU2 gp120 glyco-
protein by the 23e, 49e, and 21c antibodies was increased by
sCD4. Soluble CD4 also increased the binding of the previously
characterized 17b and 48d CD4i antibodies to gp120, as ex-
pected.30,38

Ability of CD4i HMAbs to compete with 17b antibody
for gp120

To examine whether the newly identified CD4i HMAbs
would compete with the previously characterized HMAb 17b
for binding to the HIV-1 gp120 glycoprotein, increasing con-
centrations of the CD4i HMAbs and a control antibody 2/11C
were mixed with biotinylated 17b antibody and incubated
with the gp120 glycoprotein captured on an ELISA plate with
the D7324 antibody.30 After washing, the bound biotinylated
17b antibody was detected. All of the CD4i HMAbs com-
peted with the 17b antibody for gp120 binding (Fig. 2). The
control antibody, 2/11C, which recognizes a gp120 epitope
that does not overlap with the CD4i epitopes,30 did not com-
pete with the 17b antibody (data not shown). This result sug-
gests that all of the CD4i HMAbs recognize related gp120
regions.

Mapping the gp120 epitopes of the CD4i HMAbs

To characterize the CD4i antibody epitopes, a panel of YU2
wtD gp120 mutants with single amino acid changes was used
for precipitation by the HMAbs, in the absence of sCD4. Mu-
tant gp120 wtD glycoproteins that were recognized signifi-
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FIG. 4. Ability of CD4i HMAbs to inhibit gp120-CCR5 bind-
ing. Radiolabeled gp120 was mixed with sCD4 and then incu-
bated with Cf2ThsynCCR5 cells in the presence of the indicated
concentrations of CD4i HMAbs. The cells were washed and the
bound gp120 was precipitated as described under Materials and
Methods. The gp120 glycoprotein bound to the cells is shown.



cantly less efficiently than the wild-type gp120 were also ex-
amined in the presence of sCD4. The wtD glycoprotein is iden-
tical to gp120 except for deletions of the N-terminus and
V1/V2 variable loops. These deletions were previously dem-
onstrated not to affect the binding of CD4 and CD4i antibod-
ies.24 The results are summarized in Table 1. Changes in
amino acids located in several discontinuous gp120 regions
(C1, C2, C3, and C4) resulted in decreased recognition by one
or more of the HMAbs. In some cases, sCD4 binding to the
mutant gp120 restored recognition by the HMAb. This subset
of gp120 mutants probably exhibits local conformational
changes that disrupt the particular HMAb epitope, and sCD4
binding restores the native conformation of the epitope. Some
gp120 mutants that were able to bind sCD4 were not precip-
itated by the HMAbs in either the absence or presence of
sCD4. These mutants are probably altered in amino acid
residues that play key roles in antibody binding. Figure 3 il-
lustrates the location of the amino acid changes that affected
HMAb recognition, using the structure of the YU2 gp120 core
complexed with two-domain CD4 and the Fab fragment of the
17b antibody.28 The results suggest that the CD4i HMAbs rec-
ognize different gp120 epitopes that share a common element
near isoleucine 420. This common element also appears to be
important for CCR5 binding.33,34 The 48d antibody most
closely resembles CCR5 with respect to its sensitivity to
gp120 changes. The binding of both 48d and CCR5 was dis-
rupted by more gp120 residue changes than was the binding
of the 17b, 23e, 49e, and 21c antibodies.

Ability of CD4i HMAbs to block CCR5 binding

The mapping studies described above suggest that the 
epitopes for all of the CD4i HMAbs are proximal to conserved

gp120 elements involved in CCR5 binding. To test the 
ability of the CD4i HMAbs to inhibit gp120–CCR5 binding,
radiolabeled gp120 complexed with sCD4 was added to
Cf2ThsynCCR5 cells, which express high levels of CCR5,12 in
the presence of different concentrations of HMAbs. Figure 4
shows that all of the CD4i HMAbs inhibited the binding of
gp120-sCD4 complexes to CCR5-expressing cells.

CD4 and CD4i HMAbs recognize related gp120
conformations

A few of the gp120 amino acid changes studied disrupted
the binding of CD4 and most of the CD4i HMAbs. Examples
of such mutants are 257 T/D, 383 F/S, and 435 Y/S. Previous
studies24 noted that the recognition of the 257 T/D and 383 F/S
mutants by a conformation-dependent CD4BS HMAb, F105,
was undetectable. The disruption of the binding of several con-
formation-dependent gp120 ligands and the low solvent acces-
sibility of these residues in the available gp120 crystal struc-
tures28,29 suggest that these changes significantly alter the
conformation of the free gp120 glycoprotein. Figure 5A shows
that although sCD4 and the 48d HMAb alone did not efficiently
precipitate these mutant gp120 glycoproteins, a combination of
sCD4 and 48d did recognize the gp120 mutants. A similar re-
sult was observed for the 257 T/D gp120 mutant with the other
CD4i HMAbs (Fig. 5B). These observations suggest that CD4
and the CD4i HMAbs recognize a similar gp120 conformation
and therefore can mutually cooperate to allow precipitation of
a conformationally disrupted gp120 variant.

HIV-1-neutralizing activity of CD4i HMAbs

To examine the ability of the CD4i HMAbs to inhibit HIV-
1 infection, we employed recombinant HIV-1 encoding fire-
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FIG. 5. Soluble CD4 and CD4i HMAbs exhibit positive cooperativity in precipitating HIV-1 gp120 glycoprotein mutants. (A)
HIV-1 YU2 gp120 mutants that exhibit evidence of conformational disruption were radiolabeled and precipitated by a mixture of
sera from HIV-1-infected individuals (Pt. Sera), sCD4, the 48d antibody, or a mixture of sCD4 and the 48d antibody. In the exper-
iments in which sCD4 was added, the anti-CD4 polyclonal antibody T45 was included to allow precipitation of the sCD4–gp120
complex. The precipitated protein was analyzed by SDS–PAGE and autoradiography. (B) The radiolabeled 257 T/D mutant was
precipitated by CD4-Ig, 17b, or a combination of sCD4 and 17b. The 257 T/D mutant was also precipitated by a mixture of sera
from HIV-1-infected individuals (Pt. sera). The precipitated protein was analyzed by SDS–PAGE and autoradiography.



fly luciferase pseudotyped with the envelope glycoproteins
of laboratory-adapted and primary HIV-1 isolates. Ghost cells
expressing CD4 and CXCR4 were used as target cells for
viruses with the X4 HXBc2 and MN envelope glycoproteins
and the X4/R5 89.6 envelope glycoproteins. Cf2Th cells ex-
pressing CD4 and CCR5 were used as target cells for viruses
with the R5 ADA, JR-FL and YU2 envelope glycoproteins.
Figure 6 shows that the viruses with the laboratory-adapted
HXBc2 and MN envelope glycoproteins were neutralized
comparably by all of the CD4i HMAbs. Of the viruses with
primary HIV-1 envelope glycoproteins, the ADA virus but
not JR-FL, 89.6, or YU2 was neutralized at the HMAb con-
centrations studied. Thus, primary HIV-1 isolates are more
resistant to neutralization by the CD4i HMAbs than labora-
tory-adapted isolates.

DISCUSSION

The CD4-binding site (CD4BS) antibodies and the CD4i an-
tibodies generated in HIV-1-infected humans are directed
against overlapping, conserved, and conformation-dependent
gp120 structures implicated in virus binding to CD4 and the
chemokine receptors.28 Numerous examples of CD4BS HMAbs
exist, allowing identification of the common elements of the
HMAb epitopes and an appreciation of the range of neutral-
ization potencies for primary HIV-1 isolates exhibited by this
group of antibodies. Until recently, CD4i antibodies were
thought to be rare, as only two such HMAbs, 17b and 48d, ex-
isted. The apparent rarity of these antibodies has been attrib-
uted to the relative inaccessibility of the CD4i epitope on
gp120.22,39 In this report, we have identified three additional
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FIG. 6. Neutralization of HIV-1 by CD4i HMAbs. Recombinant HIV-1 expressing luciferase and containng env deletions were
pseudotyped with HIV-1 envelope glycoproteins from the HXBc2, MN, ADA, JR-FL, and 89.6 isolates. The viruses were incu-
bated with the indicated concentration of HMAb for 1 hr at 37°C prior to exposure to the appropriate target cells. Luciferase ac-
tivity in the target cells was measured as described under Materials and Methods.
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CD4i HMAbs derived from an asymptomatic HIV-1-infected,
long-term nonprogressor individual (AD19). In addition, we de-
rived another two CD4i HMAbs from later samples of PBMC
of this same patient, and studies to further characterize these
HMAbs are in progress. We were unable to derive CD4i
HMAbs from six other long-term nonprogressor patients, sug-
gesting that patient AD19 exhibited an unusually high fre-
quency of circulating B cells capable of yielding such HMAbs.

The identification of the three new CD4i HMAbs allowed
generalizations to be made regarding the structural characteris-
tics of the epitope(s) that these antibodies recognize. The mu-
tagenic data support the notion that all of the CD4i HMAbs rec-
ognize similar structures on a conserved portion of the gp120
surface that is thought to face the target cell after CD4 binding
occurs. The epitopes for all of the CD4i HMAbs appear to be
centered around a sequence in the fourth conserved (C4) gp120
region at the junction of the b19 and b20 strands. The critical
residues 418–422 (CRIKQ) are highly conserved in primate im-
munodeficiency virus gp120 glycoproteins and have been im-
plicated in binding the N-terminus of the CCR5 receptor.48,49

Consistent with this, all of the CD4i HMAbs blocked the bind-
ing of gp120–CD4 complexes to CCR5. The importance of a
localized gp120 region for the binding of all of the CD4i
HMAbs examined suggests that only limited patches of con-
served sequence on the gp120 chemokine receptor-binding sur-
face are available to be accessed by antibodies. This limitation
is thought to be imposed by the V2 and V3 variable loops,
which project from the gp120 core and are thought to flank the
conserved chemokine receptor-binding region, partially mask-
ing it from the humoral immune response.22,24,29,39 The CD4i
HMAbs apparently have evolved to contact conserved gp120
epitopes in this region and bypass the adjacent variable loops.

Based on thermodynamic studies,50 CD4 binding has been
suggested to limit an unusually high degree of interdomain flex-
ibility present in the free HIV-1 gp120 glycoprotein. Because
the conserved CD4i epitope component (residues 418–422) is
located at the interface of the gp120 outer domain and bridg-
ing sheet,28,29 ligands like CD4 that modify the spatial rela-
tionships among the gp120 domains would be expected to in-
fluence the conformation of the CD4i epitopes. The ability of
CD4i antibodies and sCD4 to mutually induce binding to gp120
glycoprotein variants that exhibit conformational perturbations
(Fig. 5) suggests that these ligands recognize related gp120 con-
formations.

Although the CD4i HMAbs contact a conserved gp120 ele-
ment, changes in the major gp120 variable loops can influence
the binding of these HMAbs. Removal of the V1/V2 loop has
been shown to expose the epitopes for some CD4i HMAbs.22

At least some of CD4-induced increase in CD4i HMAb bind-
ing can be attributed to movement of the V1/V2 loops from a
position that masks the CD4i epitopes. The deletion of the V3
variable loop from the wtD protein resulted in a loss of recog-
nition by the CD4i HMAbs, unless sCD4 was present.23 Most
of this effect is probably an indirect consequence of V3 loop
removal on the local conformation of the gp120 bridging sheet.
However, current structures on the gp120–17b antibody com-
plexes leave open the possibility of V3 loop–antibody con-
tacts.28,29 The relatively efficient binding of the CD4i antibod-
ies to V3 loop-deleted gp120 in the presence of CD4 suggests

that such contacts, if they occur, contribute minimal binding
energy to the antibody–gp120 interaction.

The results of our virus inhibition studies indicate a re-
markable similarity in the potency and breadth of neutraliza-
tion exhibited by the different CD4i HMAbs. This may result
from the close relatedness of the epitopes for these HMAbs im-
posed by the gp120 variable structures discussed above. Dif-
ferences in the conformations of the V2 and V3 variable loops
have been shown to account for at least some of the neutral-
ization resistance associated with primary compared with lab-
oratory-adapted strains of HIV-1.40 Such differences in V2 and
V3 loop configurations provide a natural explanation for the
limited sensitivity of primary HIV-1 isolates to neutralization
by CD4i HMAbs. One primary isolate, ADA, exhibited some
sensitivity to the CD4i HMAbs. Possibly relevant is our ob-
servation that removal of the V1/V2 variable loops renders the
ADA HIV-1 isolate CD4 independent,51 suggesting that the
ADA CCR5-binding region is either formed or can be formed
without prior CD4 binding. Likewise, the CD4i epitopes on the
ADA gp120 glycoprotein may be available for antibody bind-
ing once the V2 loop is bypassed. As the neutralization potency
of CD4i antibodies depends on their ability to bind the viral en-
velope glycoproteins prior to CD4 binding,20 a virus that has
the CD4i epitope preformed in the absence of CD4 would be
more sensitive to neutralization by these antibodies. More neu-
tralization-resistant viruses might employ both V2 loop mask-
ing and conformational flexibility of CD4i epitope components
to minimize the efficacy of CD4i antibodies. Further under-
standing of these epitopes and the mehcanisms employed by
HIV-1 to protect them from the neutralizing antibody response
may suggest strategies for intervention in virus transmission or
spread within the host.
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