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Abstract

Two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) was used to systematically investigate the impact of solar ultravi-
olet-B (UV-B) radiation on the soybean leaf proteome. In order to investigate the protective role of flavonoids against UV-B, two isolines
of the Clark cultivar (the standard line with moderate levels of flavonoids and the magenta line with reduced flavonoids) were grown in
the field with or without natural levels of UV-B. The 12-day-old first trifoliates were harvested for proteomic analysis. More than 300
protein spots were reproducibly resolved and detected on each gel. Statistical analysis showed that 67 protein spots were significantly
(P < 0.05) affected by solar UV-B. Many more spots were altered by UV-B in the magenta line than in the standard line. Another 12
protein spots were not altered by UV-B but showed significantly (P < 0.05) different accumulations between the two lines, and for most
spots the line-specific differences were also observed under UV-B exclusion. Most of the differentially accumulated spots were identified
by mass spectrometry. The proteins were quite diverse, and were involved in metabolism, energy, protein destination/storage, protein
synthesis, disease/defense, transcription, and secondary metabolism. The results suggest that high levels of flavonoids lead to a reduction
in UV-B sensitivity at the proteomic level.
Published by Elsevier Ltd.
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1. Introduction

Increases in chlorofluorocarbons in the atmosphere
may deplete the earth’s stratospheric ozone layer (Molina
and Rowland, 1974), and a decrease in the ozone column
lead to an increase in the levels of ultraviolet-B (UV-B:
280–320 nm) radiation that reach the earth’s surface
(Blumthaler and Amback, 1990; Gleason et al., 1993).
Although UV-B radiation has important regulatory and
photomorphogenic roles (Ballare et al., 1995), excessive

UV-B radiation is clearly harmful. In general, a high level
of UV-B causes reduced photosynthesis and growth (Ruh-
land et al., 2005; Germ et al., 2005), oxidative damages
(Yannarelli et al., 2006), and damage to DNA (Bray and
West, 2005).

Plants possess an array of adaptive responses to UV-B
that allow them to prevent, mitigate or repair UV-B
damage. We still do not have a complete understanding
of the molecular bases of these responses, but they gener-
ally are the result of signal perception by receptor mole-
cules and transduction of a response signal to the cellular
machinery, a part of which may regulate gene expression.
Many researchers have studied the effects of UV-B on
gene expression and have identified a number of UV-B
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responsive genes in plants. For example, photosynthetic
genes may be down-regulated (A-H-Mackerness et al.,
2001; Jordan et al., 1998; Surplus et al., 1998), while
pathogenesis-related genes, the defencin gene (PDF 1, 2)
(A-H-Mackerness et al., 1999, 2001), genes for flavonoids
biosynthesis (A-H-Mackerness et al., 2001; Chappell and
Hahlbrock, 1984) and antioxidant enzymes (A-H-Mack-
erness et al., 1998; Willekens et al., 1994) may be up-reg-
ulated by UV-B. Using microarray analysis, Casati and
Walbot (2004) and Ulm et al. (2004) identified more than
100 UV-B responsive genes in maize and Arabidopsis,
respectively. However, most studies were conducted
indoors under artificial condition with unrealistically high
UV-B radiation as well as low ultraviolet-A (UV-A: 320–
400 nm) and photosynthetically active radiation (PAR:
400–700 nm). Responses of plants in controlled condi-
tions may differ from those in field conditions, because
of the different levels of UV-A and PAR (Krizek,
2004). Casati and Walbot (2003) examined the response
of gene expression in maize to solar UV-B under field
conditions, and found several photosynthesis-associated
genes were decreased and antioxidant-associated genes
were increased. Also, the genes involved in the fatty acid
metabolism and oxylipin biosynthesis were increased by
solar UV-B (Izaguirre et al., 2003). These results are
the most comprehensive data currently available on the
effects of solar UV-B on plant gene expression.

However, these studies only looked at mRNA level,
which may not necessarily translate into the quantity and
quality of the final gene products, i.e. the proteins. There
is a loose correlation between mRNA and protein levels,
especially for chloroplast genes, which are usually con-
trolled at the post-transcriptional level (Jordan et al.,
1992; A-H-Mackerness et al., 1997). Moreover, many pro-
teins undergo post-translational modifications (PTM) such
as removal of signal peptides, phosphorylation and glyco-
sylation, which are extremely important for protein activi-
ties and subcellular localizations. Therefore, changes at the
mRNA level alone may not adequately assess the response
to UV-B, and it is necessary to study the effects of UV-B at
the protein level. There has been only limited research on
the effects of UV-B on proteins, and most of this research
focused on a single protein, such as PR-1 (Green and
Fluhr, 1995), glutathione reductase, ascorbate peroxidase,
superoxide dismutase (Rao et al., 1996) or nitrite reductase
(Migge et al., 1998).

Two-dimensional polyacrylamide gel electrophoresis (2-
D PAGE) is a sensitive and powerful technique for resolv-
ing hundreds of proteins in parallel. Combined with mass
spectrometry (MS), it allows rapid and reliable protein
identification and can provide information about abun-
dance and PTM. In recent years, proteomic-based technol-
ogies have been successfully applied to the systematic study
of the proteomic responses in many plant species to a wide
range of abiotic stresses, including drought (Pinheiro et al.,
2005), nutrition deficiency (Alves et al., 2006), temperature
(Yan et al., 2006; Sule et al., 2004), oxidative stress (Wang

et al., 2004), herbicide (Castro et al., 2005), wound (Shen
et al., 2003), anoxia (Chang et al., 2000), salt (Yan et al.,
2005) and heavy metal (Labra et al., 2006). Casati et al.
(2005) have used proteomic technologies to investigate
the effects of UV-B on the proteome of the maize leaf. They
found that UV-B radiation regulated the accumulation of
178 protein spots and phosphorylated pyruvate phosphate
dikinase.

Soybean (Glycine max) provides an inexpensive source
of protein for human consumption and the animal industry
and it has been the dominant oilseed produced since the
1960. Soybean genotypes exhibit a wide range in sensitivity
to UV-B radiation due in part to differences in flavonoid
content (Middleton and Teramura, 1993; Reed et al.,
1992), since the flavonoids in the leaf epidermis can screen
out UV-B radiation (Schmelzer et al., 1988; Robberecht
and Caldwell, 1983). The purpose of this UV-B exclusion
study was to systematically examine the effects of solar
UV-B on the soybean leaf proteome and to investigate
whether flavonoids afforded protection against solar UV-
B under field conditions. Two soybean isolines with differ-
ent flavonoid content were used: the Clark standard line
that produces moderate levels of flavonol glycoside, and
the Clark magenta line that has reduced flavonol glycoside
levels (Buzzell et al., 1977).

2. Results

2.1. 2-D PAGE and quantitative analysis

More than 300 protein spots were clearly separated and
detected by 2-D PAGE despite the predominance of ribu-
lose bisphosphate carboxylase/oxygenase (Rubisco). The
2-D PAGE gels were reproducible and had well-separated
spots, although as is frequently observed with proteome
analysis, the dynamic range of protein accumulation was
very large (Wilson et al., 2002; Watson et al., 2003). A rep-
resentative gel image is presented in Fig. 1a. Only spots
that were significantly affected by UV-B, or spots that
had different intensity between the two lines were further
analyzed. A total of 79 spots were selected, and no interac-
tion between UV-B and line was detected for these 79
spots. The statistical data for the 79 spots are listed in
Table 1, and magnified regions of several differentially
accumulated proteins are presented in Fig. 1b. The 79
selected spots were divided into three groups. Spots in
Group I are those that were increased by solar UV-B; this
group had 31 spots (spots 1–31; Fig. 1; Table 1). Group II
includes 36 spots that were decreased by solar UV-B (spots
32–67; Fig. 1; Table 1). Group III includes 12 spots that
had different intensity between the two lines but were not
altered by UV-B (spots 68–79; Fig. 1; Table 1). The accu-
mulations of a total of 67 spots were altered by solar
UV-B, and the total number of spots that increased in
abundance was similar to the number of spots that
decreased.
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In group I, only four spots (spots 5, 27, 29, 30) were
increased in both lines, 23 spots (spots 2, 4, 6–9, 11–16,
18–26, 28, 31) were increased only in the magenta line,
and four spots (spots 1, 3, 10, 17) increased only in the
standard line (Table 1). In group II, 14 spots (spots 32,
38–40, 44, 45, 47, 49, 51, 56–59, 61) were decreased in both
lines, and 16 spots (spots 35–37, 41–43, 46, 48, 50, 52, 54,
55, 60, 64–66) were decreased only in the magenta line,
whereas 6 spots (spots 33, 34, 53, 62, 63, 67) decreased only
in the standard line (Table 1). Many more proteins were
responsive to solar UV-B in the magenta line than in the
standard line. In group III, 11 spots (spots 68–70, 72–79)
showed different intensities between the two lines even with
no UV-B treatment (Table 1).

2.2. Identification of differentially accumulated proteins

Of the 79 spots, 56 had been identified previously (Xu
et al., 2006). The remaining 23 spots were digested with
trypsin and subjected to matrix-assisted laser desorption/
ionization-time of flight (MALDI-TOF) MS. Only one
spot (spot 3, Rubisco activase) could be identified in this
way. The other 22 spots were further analyzed by liquid
chromatography tandem mass spectrometry (LC–MS/
MS), and 16 of these spots could be identified (Table 2).
Both the theoretical and experimental molecular weight
(Mr) and isoelectric point (pI) matched for 8 of the 19 iden-
tified proteins. We used the ExPASy (Expert Protein Anal-
ysis System) proteomics server of the Swiss Institute of
Bioinformatics for annotation and found that some of
the identified proteins have a signal peptide. When the the-
oretical pI/Mr of these proteins without the signal sequence

was calculated, we found that another three spots (spots 6,
53, 74) matched the experimental and theoretical pI/Mr.
The pI/Mr discrepancy for the remaining spots might be
due to the presence of different isoforms (spot 27), or to
the amino acid sequence being derived from an EST that
may not include the complete sequence (spots 66 and 77),
or due to post-translational modification (spots 4 and 7).

3. Discussion

3.1. Impacts of solar UV-B and flavonoids on protein

accumulation

In this study, the accumulation of 67 peptide spots were
affected by solar UV-B, with the total number of spots
increasing in abundance being similar to the number of
spots decreasing. Casati et al. (2005) found that 178 maize
leaf protein spots were altered by UV-B radiation, and that
more protein spots increased than decreased after UV-B
exposure. This disparity may be due to the dissimilar spe-
cies used, or to the different conditions used in the experi-
ments. The maize experiments were conducted using both
field and greenhouse conditions and the field experiments
included both exclusion and supplement UV-B studies
(Casati et al., 2005). In the present study, only UV-B exclu-
sion was examined in the field.

Many more proteins were responsive to solar UV-B in
the magenta line than in the standard line. Plants have
evolved several mechanisms to cope with UV-B damage.
One of the most important mechanisms is screening out
UV-B radiation by accumulation of flavonoids in the leaf

Fig. 1. 2-D PAGE gel image and magnified regions of some protein spots. Arrows indicate protein spots that were differentially accumulated between
different UV-B treatments or between different lines (P < 0.05). Numbers correlate with protein identifications and statistical analysis results listed in
Tables 1–3. (a) Representative 2-D PAGE gel image of soybean leaves (cv. Clark, standard line) grown under Teflon shelter. (b) Magnified regions of
several differentially accumulated proteins in two lines of soybean growing under different UV-B conditions.
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Table 1
Relative abundance of protein spots in different treatments

ID Protein Relative abundanceA (Mean ± SD)

Standard line Magenta line

With UV-B No UV-B With UV-B No UV-B

Group I: Spots increased by solar UV-B

1 GCV P-protein 0.310 ± 0.03a 0.256 ± 0.02b 0.247 ± 0.01b 0.239 ± 0.01b

2 Gamma-glutamyl hydrolase 0.363 ± 0.01a 0.340 ± 0.02a 0.366 ± 0.02a 0.294 ± 0.02b

3 Rubisco activase 0.440 ± 0.02a 0.361 ± 0.03b 0.434 ± 0.04ab 0.375 ± 0.02b

4 Rubisco rbcL 0.379 ± 0.03a 0.363 ± 0.03a 0.451 ± 0.02b 0.354 ± 0.02a

5 Ribulose-phosphate 3-epimerase 0.361 ± 0.02a 0.252 ± 0.02b 0.333 ± 0.02a 0.260 ± 0.01b

6 Triosephosphate isomerase Superoxide dismutase 0.236 ± 0.01a 0.216 ± 0.01a 0.266 ± 0.01b 0.217 ± 0.01a

7 ATP synthase CF1 60 kDa chaperonin 0.190 ± 0.02a 0.161 ± 0.01a 0.276 ± 0.02b 0.170 ± 0.01a

8 PSI subunit D 1.411 ± 0.04a 1.401 ± 0.06a 1.346 ± 0.06a 0.933 ± 0.05b

9 PSI subunit IV A 1.167 ± 0.04a 1.076 ± 0.09a 1.152 ± 0.04a 0.915 ± 0.04b

10 PSI PsaN subunit 0.148 ± 0.02a 0.098 ± 0.02b 0.128 ± 0.01ab 0.090 ± 0.01b

11 PSI D2 subunit 0.154 ± 0.02a 0.141 ± 0.01a 0.157 ± 0.02a 0.089 ± 0.01b

12 PSII OEE protein 1 2.487 ± 0.07a 2.405 ± 0.04a 2.311 ± 0.04a 2.154 ± 0.03b

13 PSII OEE protein 2 1.162 ± 0.04ab 1.080 ± 0.03a 1.204 ± 0.02b 0.993 ± 0.02c

14 PSII OEE protein 2 1.627 ± 0.07a 1.622 ± 0.06a 1.764 ± 0.04a 1.472 ± 0.04b

15 PSII OEE protein 2 0.688 ± 0.03ab 0.633 ± 0.02ac 0.708 ± 0.03b 0.599 ± 0.01c

16 PSII OEE protein 3 0.577 ± 0.03a 0.554 ± 0.02a 0.579 ± 0.02a 0.494 ± 0.01b

17 RNA-binding protein 0.694 ± 0.03a 0.630 ± 0.04b 0.705 ± 0.03a 0.657 ± 0.02ab

18 50S ribosomal protein 0.137 ± 0.01a 0.136 ± 0.01a 0.140 ± 0.01a 0.106 ± 0.01b

19 30S ribosomal protein 0.235 ± 0.01ab 0.215 ± 0.01a 0.259 ± 0.01b 0.185 ± 0.01c

20 Vegetative storage protein 1.042 ± 0.04a 0.921 ± 0.13a 1.045 ± 0.05a 0.713 ± 0.02b

21 Chaperonin 2 0.364 ± 0.01ab 0.346 ± 0.01ac 0.392 ± 0.01b 0.334 ± 0.01c

22 Cyclophilin 0.280 ± 0.02a 0.242 ± 0.03ab 0.257 ± 0.02a 0.182 ± 0.02b

23 Vegetative storage protein 0.530 ± 0.02a 0.467 ± 0.06a 0.465 ± 0.04a 0.353 ± 0.03b

24 Copper chaperone homolog 0.094 ± 0.01a 0.072 ± 0.01a 0.100 ± 0.01a 0.052 ± 0.01b

25 Cu–Zn-superoxide dismutase 0.089 ± 0.01ab 0.072 ± 0.01a 0.110 ± 0.01b 0.079 ± 0.01a

26 Ascorbate peroxidase 0.421 ± 0.01a 0.434 ± 0.02a 0.439 ± 0.01a 0.351 ± 0.01b

27 Lectin 0.318 ± 0.02a 0.246 ± 0.03b 0.297 ± 0.02ab 0.194 ± 0.01c

28 Putative protein 0.160 ± 0.01a 0.132 ± 0.03a 0.138 ± 0.01a 0.093 ± 0.01b

29 Unidentified 0.188 ± 0.01a 0.142 ± 0.01b 0.196 ± 0.01a 0.145 ± 0.01b

30 Unidentified 0.398 ± 0.02a 0.310 ± 0.03b 0.431 ± 0.01a 0.239 ± 0.01c

31 Unidentified 0.211 ± 0.01a 0.196 ± 0.03a 0.217 ± 0.01a 0.143 ± 0.01b

Group II: Spots decreased by solar UV-B

32 GCV P-protein 0.303 ± 0.02a 0.438 ± 0.05b 0.255 ± 0.01c 0.345 ± 0.03ab

33 GCV T-protein 0.677 ± 0.04a 0.778 ± 0.04b 0.585 ± 0.02c 0.642 ± 0.02ac

34 GCV T-protein 0.292 ± 0.02a 0.337 ± 0.01b 0.260 ± 0.01a 0.287 ± 0.01a

35 Alanine aminotransferase 0.074 ± 0.01ab 0.101 ± 0.02a 0.060 ± 0.01b 0.098 ± 0.01ac

36 SHMT 0.511 ± 0.03a 0.526 ± 0.01a 0.510 ± 0.02a 0.586 ± 0.03b

37 SHMT 0.224 ± 0.01a 0.216 ± 0.02a 0.272 ± 0.01b 0.315 ± 0.01c

38 Glutamine synthetase 0.632 ± 0.03a 0.774 ± 0.04b 0.586 ± 0.02a 0.704 ± 0.02c

39 Glutamine synthetase 0.185 ± 0.01a 0.221 ± 0.02b 0.155 ± 0.01c 0.193 ± 0.01ab

40 Phosphoglycerate kinase Glutamine synthetase 0.145 ± 0.03a 0.238 ± 0.03b 0.132 ± 0.01a 0.206 ± 0.01b

41 Phosphoribulokinase 0.460 ± 0.02a 0.466 ± 0.03a 0.384 ± 0.02b 0.434 ± 0.01a

42 Rubisco rbcS2 5.306 ± 0.22a 5.622 ± 0.18a 5.853 ± 0.20a 6.549 ± 0.13b

43 Rubisco rbcS4 0.280 ± 0.01a 0.306 ± 0.01ab 0.293 ± 0.01a 0.330 ± 0.02b

44 Rubisco activase 0.142 ± 0.02a 0.233 ± 0.01b 0.136 ± 0.01a 0.189 ± 0.01c

45 Rubisco activase 1.315 ± 0.13a 1.699 ± 0.04b 0.970 ± 0.03c 1.273 ± 0.05a

46 Rubisco activase 0.050 ± 0.01ab 0.069 ± 0.01ac 0.047 ± 0.01b 0.071 ± 0.01c

47 Phosphoribulokinase 0.444 ± 0.04a 0.676 ± 0.02b 0.429 ± 0.01a 0.643 ± 0.02b

48 GAPDH 0.345 ± 0.03a 0.407 ± 0.03ab 0.356 ± 0.02a 0.431 ± 0.02b

49 GAPDH 0.103 ± 0.02a 0.160 ± 0.02b 0.091 ± 0.01a 0.148 ± 0.01b

50 GAPDH 0.117 ± 0.02ab 0.153 ± 0.01ac 0.108 ± 0.01b 0.159 ± 0.01c

51 GAPDH 0.341 ± 0.02a 0.429 ± 0.02b 0.346 ± 0.03a 0.505 ± 0.02c

52 Phosphoglycerate kinase 0.502 ± 0.02a 0.527 ± 0.03a 0.536 ± 0.01a 0.619 ± 0.02b

53 Ferredoxin NADP reductase 0.165 ± 0.01a 0.204 ± 0.01b 0.170 ± 0.01a 0.176 ± 0.01a

54 Carbonic anhydrase 0.679 ± 0.04 0.695 ± 0.04a 0.640 ± 0.05a 0.832 ± 0.05b

55 Carbonic anhydrase 0.298 ± 0.02ab 0.330 ± 0.02a 0.269 ± 0.02b 0.384 ± 0.018ac

56 Translation elongation factor 0.133 ± 0.01a 0.178 ± 0.01b 0.124 ± 0.02 0.202 ± 0.01c

57 Chaperonin precursor 0.179 ± 0.01a 0.214 ± 0.01b 0.170 ± 0.01a 0.231 ± 0.01b

(continued on next page)
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epidermis (Schmelzer et al., 1988; Robberecht and Cald-
well, 1983). The increased response of the magenta line to
UV-B may be related to its reduced flavonoid content. Of
the group III peptides, 11 spots (spots 68–70, 72–79)
showed different intensities between the two lines even

without UV-B treatment (Table 1). This might be due to
the high UV-A and PAR levels in the solar radiation
and/or oxidative stress caused by other stress factors such
as high temperature. While flavonoids provide UV-B pro-
tection by absorbing radiation in UV-B region, they also

Table 1 (continued)

ID Protein Relative abundanceA (Mean ± SD)

Standard line Magenta line

With UV-B No UV-B With UV-B No UV-B

58 Chaperonin groEL 0.301 ± 0.02a 0.353 ± 0.01b 0.262 ± 0.02a 0.352 ± 0.01b

59 Chaperonin precursor 0.121 ± 0.01a 0.161 ± 0.01b 0.095 ± 0.01c 0.153 ± 0.01b

60 ER HSC70-cognate binding protein 0.350 ± 0.02a 0.383 ± 0.02a 0.298 ± 0.02b 0.361 ± 0.02a

61 ER HSC70-cognate binding protein 0.374 ± 0.01a 0.466 ± 0.01b 0.337 ± 0.01c 0.428 ± 0.01d

62 Metalloproteinase 0.103 ± 0.01a 0.134 ± 0.01b 0.093 ± 0.01a 0.080 ± 0.01a

63 Catalase 0.508 ± 0.03a 0.691 ± 0.06b 0.502 ± 0.03a 0.526 ± 0.02a

64 Peroxiredoxin 0.232 ± 0.03a 0.246 ± 0.01a 0.240 ± 0.02a 0.307 ± 0.01b

65 1-Deoxy-D-xylulose 5-phosphate reductoisomerase 0.277 ± 0.01a 0.269 ± 0.02a 0.234 ± 0.01b 0.298 ± 0.01a

66 Chalcone reductase 0.106 ± 0.01a 0.120 ± 0.01a 0.087 ± 0.01b 0.110 ± 0.01a

67 Unidentified 0.074 ± 0.01a 0.095 ± 0.01b 0.069 ± 0.01a 0.063 ± 0.01a

Group III: Spots not altered by UV-B but had different accumulations between the two lines

68 GCV H-protein 0.223 ± 0.03ab 0.266 ± 0.02a 0.200 ± 0.03b 0.193 ± 0.01b

69 GCV H-protein 0.427 ± 0.04ab 0.461 ± 0.02a 0.356 ± 0.04b 0.348 ± 0.01b

70 Rubisco activase 1.326 ± 0.08a 1.466 ± 0.05a 1.039 ± 0.04b 1.156 ± 0.05b

71 PSII 10 KD peptide 0.095 ± 0.02a 0.165 ± 0.03ab 0.210 ± 0.04b 0.237 ± 0.03b

72 PSII OEE protein 1 1.440 ± 0.05a 1.396 ± 0.02ab 1.315 ± 0.06bc 1.209 ± 0.03c

73 Carbonic anhydrase 0.576 ± 0.03a 0.527 ± 0.04a 0.458 ± 0.02b 0.450 ± 0.02b

74 Carbonic anhydrase 0.173 ± 0.01a 0.167 ± 0.02a 0.127 ± 0.02b 0.107 ± 0.01b

75 Heat shock protein 70 0.819 ± 0.04a 0.839 ± 0.02a 0.872 ± 0.04ab 0.976 ± 0.05b

76 PR1 A precursor 0.133 ± 0.01ab 0.187 ± 0.02a 0.115 ± 0.02bc 0.084 ± 0.01c

77 Thaumatin-like protein 0.146 ± 0.01a 0.192 ± 0.03a 0.306 ± 0.03b 0.285 ± 0.02b

78 Unidentified 0.108 ± 0.01a 0.120 ± 0.01a 0.074 ± 0.01b 0.074 ± 0.01b

79 Unidentified 0.082 ± 0.01ab 0.086 ± 0.01a 0.061 ± 0.01b 0.041 ± 0.01b

A Different letters indicate significantly different means separated by least significant difference (P 6 0.05). Spot numbers (ID) correspond to Fig. 1.

Table 2
Proteins identified from the soybean leaf by MS

ID Protein identification [species] T Mr/pI MO PM SC Acce. No.

1 GCV P-protein [Pisum sativum] 115411/7.17 73 2 5 gi|20741
3 Rubisco activase [Vigna radiata] 48042/7.57 75 10 27 gi|8954287
4 Rubisco large subunit [Tribeles australis] 52050/6.13 132 5 11 gi|9910002
6 Triosephosphate isomerase [Fragaria · ananassa] 33733/7.64 496 17 35 gi|7650502

Superoxide dismutase [Glycine max] 27881/5.60 308 11 27 gi|134646
7 ATP synthase CF1 epsilon sub [G. max] 14801/5.41 291 13 41 gi|91214127

60 kDa chaperonin [Ricinus communis] 52461/4.77 186 5 9 gi|134101
24 Copper chaperone homolog [G. max] 13753/4.66 92 3 20 gi|6525011
25 Cu-Zn-superoxide dismutase [Pinus pinaster] 22328/6.11 103 2 13 gi|16798638
27 Lectin [G. max] 22568/9.59 155 4 18 gi|81238245
28 Putative protein [Arabidopsis thaliana] 27880/8.31 93 3 10 gi|7269238
41 Phosphoribulokinase [P. sativum] 39230/5.41 471 14 32 gi|1885326
46 Rubisco activase [Phaseolus vulgaris] 48342/8.19 142 4 10 gi|3033513
51 GAPDH [G. max] 43479/8.42 668 20 35 gi|77540210
53 Ferredoxin NADP reductase [A. thaliana] 40643/8.32 171 5 16 gi|10177134
62 Metalloproteinase [G. max] 19001/5.82 135 5 19 gi|384337
66 Chalcone reductase [G. max] 23143/8.63 81 2 10 gi|7588574
74 Carbonic anhydrase [Vigna radiata] 35804/7.59 66 2 6 gi|8954289
77 Thaumatin-like protein precursor [G. max] 17425/4.12 105 2 19 gi|15000431

All spots were identified by LC–MS/MS except spot 3, which was identified by MALDI-TOF. The NCBI nr database was searched for all the spots except
spots 66 and 77 for which the EST_others database was searched. ID: Spot number (Fig. 1); T Mr/pI: Theoretical Mr/pI; MO: MOWSE score; PM:
Number of peptides matched; SC: Percentage of sequence coverage (%); Acce. No.: Accession number.
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are effective UV-A absorbers. Although it is less damaging
on a photon basis than UV-B, UV-A comprises a much lar-
ger portion of the solar radiation than does UV-B, and
UV-A is able to penetrate to greater depths within the leaf
than UV-B (Liakoura et al., 2003). The greater responses
under UV-B exclusion in the magenta line could be related
to its inability to synthesize flavonoids. Irradiation of the
magenta line with solar UV radiation could have resulted
in increased flux of UV-A through the more transparent
epidermis reaching mesophyll cells, as compared to the
standard line capable of synthesizing flavonoids. Also,
because flavonoids can act as antioxidants (Peng et al.,
2003), their absence in the magenta line could also lead
to greater oxidative stress, and this hypothesis is supported
by evidence for greater oxidative responses in the magenta
line (data not shown).

Many proteins are represented by multiple spots
(Casati et al., 2005; Sarnighausen et al., 2004; Giavalisco
et al., 2005). The multiple spots may be different products
of closely related genes or PTM of a single protein. Tak-
ing into account the multiplicity of spots, we detected 47
unique proteins altered by UV-B radiation (Table 1). In
maize, Casati et al. (2005) reported that 14 proteins that
were represented with multiple spots showed opposite
effect by UV-B radiation. For example, three spots of
the Rubisco large subunit were increased while another
two spots of Rubisco large subunit were decreased by
UV-B radiation (Casati et al., 2005). Similar results were
observed for Rubisco activase and glycine cleavage system
(GCV) P-protein in the present study. One spot (spot 3) of
Rubisco activase was increased by UV-B, while another
three spots (spots 44–46) of this protein were decreased.
In the present study, most of the spots contained only
one protein, but three spots contained two different pro-
teins (spot 6: triosephosphate isomerase and superoxide
dismutase; spot 7: ATP synthase CF1 epsilon subunit
and 60 kDa chaperonin alpha subunit; spot 40: phospho-
glycerate kinase and glutamine synthetase). These spots
were altered by solar UV-B. UV-B may affect one or both
of the proteins in each spot, although at this stage of our
investigation we could not distinguish between these
possibilities.

3.2. Functional analyses of proteins responsive to UV-B

The identified proteins in this study were classified
according to the functional categories described by Bevan
et al. (1998) (Table 3). The proteins are quite diverse and
are involved in metabolism, energy, protein destination/
storage, disease/defense, transcription, protein synthesis,
and secondary metabolism. The functional group with
the largest number of protein spot altered by UV-B was
the energy category. In this category, 30 protein spots were
altered by UV-B, 14 increased while 16 decreased (Table 1
and 3). Nine spots were identified as photosystem (PS) II
oxygen-evolving enhancer (OEE) (spots 12–16) or subunits
of PS I (spots 8–11), and all were enhanced by solar UV-B.
Only one protein spot (spot 7: epsilon subunit of ATP syn-
thase CF1) is involved in electron transport, and this spot
was also increased by UV-B. Using microarray technology,
Izaguirre et al. (2003) found that most genes encoding PS
polypeptides were decreased by solar UV-B, but one gene,
encoding the PS II OEE 23-kDa polypeptide, was
increased. Interestingly, all the responsive proteins related
to PS were enhanced by solar UV-B in the present study.

The other spots affected by UV-B in the energy category
were identified as enzymes involved in primary carbon
metabolism. Most of the spots, identified as Rubisco acti-
vase (spots 44–46), Rubisco small subunit (spots 42 and
43), glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
(spots 48–51), phosphoglycerate kinase (spots 40 and 52),
phosphoribulokinase (spots 41 and 47) or other enzymes
(spots 53–55), were decreased by UV-B radiation (Tables
1 and 3). In addition to catalyzing reactions in the Calvin
cycle, GAPDH is also reported to have protein kinase
activity (Duclos-Vallee et al., 1998), to bind RNA (Nagy
and Rigby, 1995), and to increase ribozyme (Sioud and Jes-
persen, 1996) and phosphotransferase activities (Engel
et al., 1998). Other environmental stresses have been
reported to increase GAPDH level (Yang et al., 1993;
Chang et al., 2000; Russell et al., 1990), however, four
spots of GAPDH were decreased by UV-B in the present
study. This inconsistency may be due to the multiple iso-
forms of GAPDH. Izaguirre et al. (2003) also found that
some genes for Calvin cycle enzymes were decreased by

Table 3
Functional distribution of protein spots responsive to UV-B

UV-B
effects

Lines Protein spot numbera

Energy Metabolism Protein
destination
storage

Transcription Protein
synthesis

Disease
defence

Secondary
metabolism

Unclear

Increase Standard 3,5,10 1 17 27 29,30
Magenta 4–9,11–16 2 7,20–24 18,19 6 ,25–27 28–31

Decrease Standard 40,44,45,47,49,51,53 32–34,38–
40

57–59,61,62 56 63 67

Magenta 40–52,54,55 32,35–40 57–61 56 64 65,66

Protein spots were grouped according to the functional categories described by Bevan et al. (1998).
a Spot numbers correspond to Fig. 1.
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solar UV-B. It is reported that the inhibition of UV-B on
photosynthesis is associated with enzymatic, rather than
PS II limitations (Xiong and Day, 2001). Sullivan and Ter-
amura (1990) found that UV-induced reductions involving
PS in soybean occurred only at high internal CO2 levels,
suggesting that UV-B could lead to increased substrate lim-
itations on photosynthesis. Also, some studies indicated
that UV-B could reduce the carbohydrate levels in plants
(Quaggiotti et al., 2004; Ghisi et al., 2002). Consistent with
these results, the enzymes involved in CO2 assimilation
were suppressed by solar UV-B in this study. The remain-
ing spots (spot 3: Rubisco activase; spot 4: Rubisco large
subunit; spot 5: ribulose-phosphate 3-epimerase; spot 6: tri-
osephosphate isomerase) were increased by UV-B. Spot 4 is
only a fragment of Rubisco large subunit because its
sequence only matches the first half part of Rubisco and
it has very low Mr. Therefore, an increase in spot 4 most
probably indicates increased degradation of the Rubisco
large subunit.

Increases in proteins related to PS and electron trans-
port may lead to greater reducing power. However, ambi-
ent levels of UV-B may limit CO2 fixation and reduce the
regeneration of NADP+ and ribulose bisphosphate,
because the enzymes involved in the Calvin cycle were
decreased. For example, GAPDH and phosphoglycerate
kinase both are key enzymes in the regeneration of ribulose
bisphosphate and reducing power. Therefore, the photo-
synthetic electron transport chain may be over reduced,
leading to the formation of superoxide radicals and singlet
oxygen. Xu et al. (data not shown) have found that solar
UV-B radiation does cause oxidative stress in the two soy-
bean lines.

The metabolism category includes 11 spots altered by
UV-B (Table 3). Two of them (spot 1: GCV T- protein;
spot 2: gamma-glutamyl hydrolase) increased in abun-
dance, while 9 spots, identified as glutamine synthetase
(spots 38–40), alanine aminotransferase (spot 35), GCV
T- or P-protein (spots 32–34), and serine hydroxymethyl-
transferase (SHMT) (spots 36 and 37), were decreased by
solar UV-B. These enzymes are involved in nitrogen
metabolism. Glutamine synthetase catalyzes the assimila-
tion of ammonium to glutamine using glutamic acid as
its substrate (Chen and Silflow, 1996). Reduction of this
enzyme under stress conditions has been reported, and this
may be a protective mechanism because nitric oxide, an
intermediate of nitrogen assimilation, is an active radical
(Wang et al., 2004). It has been reported that UV-B can
decrease nitrogen assimilation in some plants (Quaggiotti
et al., 2004; Ghisi et al., 2002; Balakumar et al., 1999).
The reduction of enzymes involved in primary nitrogen
and carbon metabolism indicates redirection of carbon
and nitrogen resources into other pathways, such as those
involved in repair or protection processes.

The protein destination and storage category includes 12
spots altered by solar UV-B (Table 3). Several spots (spots
57–61) of chaperonin and associated co-chaperones were
decreased by solar UV-B. Other spots, identified as 60 kDa

chaperonin (spot 7), vegetative storage protein (spots 20
and 23), chaperonin 2 (spot 21), copper chaperone homolog
(spot 24), and cyclophilin (spot 22), were increased by UV-B
radiation. Chaperones are proteins whose function is to
assist other proteins in achieving proper folding, and have
been shown to accumulate in plants in response to many
stresses (Wang et al., 2004; Yan et al., 2006). In this study,
some chaperone spots (spots 7, 21, 24) were enhanced while
others (spots 57–61) were decreased by UV-B, and similar
results were observed under UV-B stress by Casati et al.
(2005). These results can be explained by the varied functions
of chaperones. Some chaperones act to repair the potential
damage caused by misfolding; some are involved in folding
newly made proteins as they are extruded from the ribosome;
and others are involved in transport across membranes
(Georgopoulos and Welch, 1993; Leone et al., 2000).

Only six protein spots involved in the disease and
defense category were altered by UV-B radiation (Table
2). Two of them, identified as catalase (spot 63) and perox-
iredoxin (spot 64), were decreased by UV-B. Four spots,
identified as ascorbate peroxidase (spot 26), superoxide dis-
mutase (spots 6 and 25), and lectin (spot 27), were
increased by UV-B. All six proteins, except the lectin, are
enzymes that destroy active oxygen species and are usually
increased under stress conditions (Wang et al., 2004; Yan
et al., 2006). Under the same conditions, solar UV-B
increased the total activity of ascorbate peroxidase,
decreased the total activity of superoxide dismutase, and
had no effect on catalase activity (Xu et al., data not
shown). However, total enzymatic activity does not reflect
the changes in the different isoforms of the same enzyme,
and enzyme activity could be altered without changes in
protein quantity.

Only two spots in the secondary metabolism category
(spot 65: 1-deoxy-D-xylulose 5-phosphate reductoisomer-
ase; spot 66: chalcone reductase) were responsive to solar
UV-B (Table 3). These two spots were decreased by solar
UV-B in the magenta line but not in the standard line.
Increases in leaf flavonoids concentration are the most con-
sistent response to supplemental UV-B (Searles et al.,
2001). However, increases in proteins involved in the flavo-
noid biosynthetic pathway were not detected in the present
study. However, proteins involved in flavonoid synthesis
may be in too low abundance to be detected on these gels,
because more than one hundred protein spots were identi-
fied and no other proteins associated with secondary
metabolism were found. The one spot (spot 17) responsive
to solar UV-B in the transcription category was identified
as RNA-binding protein, and its abundance was increased
by UV-B. The protein synthesis category has three spots
regulated by solar UV-B. Two of them (spot 18: 50S ribo-
somal protein; spot 19: 30S ribosomal protein) were
increased in abundance in response to UV-B, while spot
56, translation elongation factor, decreased in abundance.

In summary, our results indicate that proteins related to
the photosynthetic photosystems increased in abundance,
while enzymes involved in primary carbon and nitrogen
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metabolism decreased, and substantiate that flavonoids act
as screening compounds in protecting plants from UV-B
radiation. No effects on proteins involved in the signal
transduction were detected, possibly because many of the
proteins involved in the signal transduction occur in too
low abundance to be detected in crude extracts, or because
membrane proteins are usually under-represented on 2-D
PAGE gels. This study provides new insights into the
responses in the soybean leaf to solar UV-B radiation. Fur-
ther studies are needed to better understand the molecular
basis of the UV-B response in soybean.

4. Materials and methods

4.1. Plant materials and experiment design

Seeds of the standard and magenta isolines of the Clark
cultivar of soybean were planted in pots in a greenhouse at
the University of Maryland (College Park, MD) and
allowed to germinate for 3 days. Following this period
the plants were moved to the USDA Southfarm (Beltsville,
MD) where they were separated into two UV-B treatment
regimes. Half of the plants were placed inside either of two
open-ended exclusion shelters made of polyester (DuPont,
Circleville, OH, USA), which absorbs almost all solar radi-
ation below 316 nm. The remaining plants were placed
under another two shelters covered by clear Teflon
(DuPont, Circleville, OH, USA), which is virtually trans-
parent to solar UV radiation. The materials are similar in
transmission properties in the UV-A and PAR wavelength.
The plants beneath the polyester filters received very little
UV-B radiation and served as controls for seasonal
changes in temperature and PAR, etc. Plants were rotated
every day and watered to minimize the occurrence of
drought stress. The first trifoliates appeared on July 4th,
2005 and were harvested from 3 to 5 plants for each sample
when they were 12-day old. Five independent samples were
harvested for each treatment replicate. The harvested sam-
ples were immediately frozen in liquid nitrogen, and then
stored at �80 �C prior to analysis.

4.2. Protein extraction and 2-D PAGE

Frozen samples were ground with liquid nitrogen and
incubated with 10% trichloroacetic acid (TCA) and
0.07% 2-mercaptoethanol in acetone for 1 h at �20 �C.
The precipitated proteins were pelleted and washed with
ice-cold acetone containing 0.07% 2-mercaptoethanol to
remove pigments and lipids until the supernatant was col-
orless. The pellet was vacuum dried, resuspended in resol-
ubilization solution (9 M urea, 1% CHAPS, 1% DTT, 1%
pharmalyte) and sonicated to extract proteins. Insoluble
tissue was removed by centrifugation at 21,000g for
20 min. Protein concentration was determined according
to Bradford (1976) using a commercial dye reagent (Bio-
Rad Laboratories, Hercules, CA) with BSA as a standard.

An IPGPhor apparatus (GE Healthcare, Piscataway, NJ)
was used for isoelectric focusing (IEF) with immobilized
pH gradient (IPG) strips (pH 3.0–10.0, linear gradient,
13 cm). The IPG strips were rehydrated for 12 h with
250 lL rehydration buffer (8 M urea, 2% CHAPS, 0.5%
pharmalyte, 0.002% bromophenol blue) containing 350 lg
proteins. The voltage settings for IEF were 500 V for 1 h,
1000 V for 1 h, 5000 V for 1 h, and 8000 V to a total
46.86 kVh. Following electrophoresis, the protein in the
strips was denatured with equilibration buffer (50 mM
Tris–HCl pH 8.8, 6 M urea, 30% glycerol, 2% SDS,
0.002% bromophenol blue, 1% DTT) and then incubated
with the same buffer containing 2.5% iodoacetamide
instead of DTT for 30 min at room temperature. The sec-
ond dimension electrophoresis was performed on a 12.5%
gel using a Hoefer SE 600 Ruby electrophoresis unit (GE
Healthcare, Piscataway, NJ). The gels were stained with
Coomassie brilliant blue (CBB) G-250 (Newsholme et al.,
2000) and scanned using a Personal Densitometer SI (GE
Healthcare, Piscataway, NJ).

4.3. Image acquisition and data analysis

Densitometry images were analyzed with Image Master
2D-Elite (version 4.01) (GE Healthcare, Piscataway, NJ)
software. Image analysis included the following proce-
dures: spot detection, spot measurement, background sub-
traction, and spot matching. Only spots that were detected
on all the five replicate gels were further analyzed. To cor-
rect the variability due to CBB staining, the spot volumes
were normalized as a percentage of the total volume of
all spots on the gel. Data were subjected to analysis of var-
iance to test for the effects of cultivar, UV-B and their
interactions. Significantly different means were separated
by least significant difference (P < 0.05) using SAS software
(1995).

4.4. Spots digestion and MS

Protein digestion was performed as described previously
(Natarajan et al., 2005). Gel spots were washed with
CH3CN:H2O (1:1, v/v) containing 25 mM ammonium
bicarbonate to remove the dye, dehydrated with 100%
ACN, dried under vacuum, and incubated overnight at
37 �C with 20 lL of 10 lg/mL trypsin (modified porcine
trypsin, sequencing grade, Promega, Madison, WI) in
20 mM ammonium bicarbonate. The resulting tryptic frag-
ments were eluted by diffusion into CH3CN:H2O (1:1, v/v)
and 0.5% trifluoroacetic acid (TFA). The extract was vac-
uum dried and the pellet was dissolved in CH3CN:H2O
(1:1, v/v) and 0.1% TFA.

For peptide mass fingerprinting (PMF), a Voyager DE-
STR MALDI-TOF mass spectrometer (Applied Biosys-
tems, Framingham, MA) operated in positive ion reflector
mode was used to analyze tryptic peptides. Samples were
co-crystallized with a-cyanohydroxycinnamic acid matrix,
and spectra were acquired with 50 shots of a 337 nm
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Nitrogen Laser operating at 20 Hz. Spectra were cali-
brated using the trypsin autolysis peaks at m/z 842.51
and 2,211.10 as internal standards. For LC–MS/MS a
Thermo Finnigan LCQ Deca XP plus Ion Trap mass
spectrometer was used to analyze proteins. Peptides were
separated on a reverse phase column using a 30 min gra-
dient of 5–60% ACN in water with 0.1% formic acid. The
instrument was operated with a duty cycle that acquired
MS/MS spectra on the three most abundant ions identi-
fied by a survey scan from 300 to 2000 Da. Dynamic
exclusion was employed to prevent the continuous analy-
sis of the same ions. Once two MS/MS spectra of any
given ion had been acquired, the parent mass was placed
on an exclusion list for the duration of 1.5 min. The raw
data were processed by Sequest to generate DTA files for
database searching. The merge.pl script from Matrix
Science was used to convert multiple Sequest DTA files
into a single mascot generic file suitable for searching in
Mascot (Perkins et al., 1999).

4.5. Protein identification

Protein identification was performed using the Mascot
search engine, which uses a probability based scoring sys-
tem (Perkins et al., 1999). The NCBI nr database was
selected as the primary database to be searched. For LC–
MS/MS, if the primary database did not yield identity,
the ‘‘EST_others’’ database was queried. The following
parameters were used for database searches with
MALDI-TOF PMF data: monoisotopic mass, 25 ppm
mass accuracy, trypsin as digesting enzyme with 1 missed
cleavage allowed, carbamidomethylation of cysteine as a
fixed modification, oxidation of methionine, N-terminal
pyroglutamic acid from glutamic acid or glutamine as
allowable variable modifications. For database searches
with MS/MS spectra, the following parameters were used:
monoisotopic mass; 1.5 Da peptide and MS/MS mass tol-
erance; peptide charge of +1, +2, or +3; trypsin as digest-
ing enzyme with 1 missed cleavage allowed;
carbamidomethylation of cysteine as a fixed modification;
oxidation of methionine, N-terminal pyroglutamic acid
from glutamic acid or glutamine as allowable variable
modifications. Taxonomy was limited to green plants for
both MALDI and MS/MS ion searches. For MALDI-
TOF MS data to qualify as a positive identification a pro-
tein’s score had to equal or exceed the minimum significant
score of 64. Positive identifications of proteins by MS/MS
analysis required a minimum of two unique peptides, with
at least one peptide having a significant ion score.
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Klose, J., Gobom, J., 2005. Proteome analysis of Arabidopsis thaliana

by two-dimensional gel electrophoresis and matrix-assisted laser
desorption/ionisation-time of flight mass spectrometry. Proteomics 5,
1902–1913.

Gleason, J.F., Bhartia, P.K., Herman, J.R., McPeters, R., Newman, P.,
Stolarski, R.S., Flynn, L., Labow, G., Larko, D., Seftor, C.,
Wellemeyer, C., Komhyr, W.D., Miller, A.J., Planet, W., 1993.
Record low global ozone in 1992. Science 260, 523–526.

Green, R., Fluhr, R., 1995. UV-B-induced PR-1 accumulation is mediated
by active oxygen species. Plant Cell 7, 203–212.

Izaguirre, M.M., Scopel, A.L., Baldwin, I.T., Ballare, C.L., 2003.
Convergent responses to stress. Solar ultraviolet-B radiation and
Manduca sexta herbivory elicit overlapping transcriptional responses
in field-grown plants of Nicotiana longiflora. Plant Physiol. 132, 1755–
1767.

Jordan, B.R., He, J., Chow, W.S., Anderson, J.M., 1992. Changes in
mRNA levels and polypeptide subunits of ribulose 1,5-bisphosphate
carboxylase in response to supplementary ultraviolet-B radiation.
Plant Cell Environ. 15, 91–98.

Jordan, B.R., James, P.E., A-H-Macerness, S., 1998. Factors affecting
UV-B-induced changes in Arabidopsis thaliana L. gene expression: the
role of development, protective pigments and the chloroplast signal.
Plant Cell Physiol. 39, 769–778.

Krizek, D.T., 2004. Influence of PAR and UV-A in determining plant
sensitivity and photomorphogenic responses to UV-B radiation.
Photochem. Photobiol. 79, 307–315.

Labra, M., Gianazza, E., Waitt, R., Eberini, I., Sozzi, A., Regondi,
S., Grassi, F., Agradi, E., 2006. Zea mays L. protein changes in
response to potassium dichromate treatments. Chemosphere 62,
1234–1244.

Leone, A., Piro, G., Leucci, M.R., Zacheo, G., Dalessandro, G., 2000.
Membrane-cell wall-associated heat shock proteins in two genotypes of
barley seedlings. Plant Biosyst. 134, 171–178.

Liakoura, V., Bornman, J.F., Karabourniotis, G., 2003. The ability of
abaxial and adaxial epidermis of sun and shade leaves to attenuate
UV-A and UV-B radiation in relation to the UV absorbing capacity of
whole leaf methanolic extracts. Physiol. Plant 117, 33–43.

Middleton, E.H., Teramura, A.H., 1993. The role of flavonol glycosides
and carotenoids in protecting soybean from ultraviolet-B damage.
Plant Physiol. 103, 741–752.

Migge, A., Carrayol, E., Hirel, B., Lohmann, M., Meya, G., Becker, T.W.,
1998. Two nitrite reductase isoforms are present in tomato cotyledons
and are regulated differently by UV-A or UV-B light and during plant
development. Planta 207, 229–234.

Molina, M.J., Rowland, F.S., 1974. Stratospheric sink for chlorome-
thanes: chlorine atomic-catalysed destruction of ozone. Nature 249,
810–812.

Nagy, E., Rigby, W.F.C., 1995. Glyceraldehyde-3-phosphate dehydroge-
nase selectively binds Au-rich RNA in the NAD+ -binding region
(Rossmann fold). J. Biol. Chem. 270, 2755–2769.

Natarajan, S., Xu, C., Caperna, T.J., Garrett, W.M., 2005. Comparison of
protein solubilization methods suitable for proteomic analysis of
soybean seed proteins. Anal. Biochem. 342, 214–220.

Newsholme, S.J., Maleeft, B.F., Steiner, S., Anderson, N.L., Schwartz,
L.W., 2000. Two-dimensional electrophoresis of liver proteins: char-
acterization of a drug-induced hepatomegaly in rats. Electrophoresis
21, 2122–2128.

Peng, Z.F., Strack, D., Baumert, A., Subramaniam, R., Goh, N.K., Chia,
T.F., Tan, S.N., Chia, L.S., 2003. Antioxidant flavonoids from leaves
of Polygonum hydropiper L.. Phytochemistry 62, 219–228.

Perkins, D.N., Pappin, D.J.C., Creasy, D.M., Cottrell, J.S., 1999.
Probability-based protein identification by searching sequence dat-
abases using mass spectrometry data. Electrophoresis 20, 3551–3567.

Pinheiro, C., Kehr, J., Ricardo, C.P., 2005. Effects of water stress on lupin
stem protein analysed by two-dimensional gel electrophoresis. Planta
221, 716–728.

Quaggiotti, S., Trentin, A.R., Vecchia, F.D., Ghisi, R., 2004. Response of
maize (Zea mays L.) nitrate reductase to UV-B radiation. Plant Sci.
167, 107–116.

Rao, M.V., Palijyath, G., Ormrod, D.P., 1996. Ultraviolet-B- and ozone-
induced biochemical changes in antioxidant enzymes of Arabidopsis

thaliana. Plant Physiol. 110, 125–136.
Reed, H.E., Teramura, A.H., Kenworthy, W.J., 1992. Ancestral US

soybean cultivars characterized for tolerance to ultraviolet-B radiation.
Crop Sci. 32, 1214–1219.

Robberecht, R., Caldwell, M.M., 1983. Protective mechanisms and
acclimation to solar ultraviolet-B radiation in Oenothera stricta. Plant
Cell Environ. 6, 477–485.

Ruhland, C.T., Xiong, F.S., Clark, W.D., Day, T.A., 2005. The influence
of ultraviolet-B radiation on hydroxycinnamic acids, flavonoids and
growth of Deschampsia antarctica during the springtime ozone
depletion season in Antarctica. Photochem. Photobiol. 81, 1086–1093.

Russell, D.A., Wong, D.M.L., Sachs, M.M., 1990. The anaerobic response
of soybean. Plant Physiol. 92, 401–407.

Sarnighausen, E., Wurtz, V., Heintz, D., Dorsselaer, A.V., Resk, R., 2004.
Mapping of the Physcomitrella patens proteome. Phytochemistry 65,
1589–1607.

Schmelzer, E., Jahnen, W., Hahlbrock, K., 1988. In situ localisation of
light-induced chalcone synthase mRNA, chalcone synthase, and
flavonoid end products in epidermal cells of parsley leaves. PNAS
85, 2989–2993.

Searles, P.S., Flint, S.D., Caldwell, M.M., 2001. A meta-analysis of plant
field studies stimulating stratospheric ozone depletion. Oecologia 127,
1–10.

Shen, S., Jing, Y., Kuang, T., 2003. Proteomics approach to identify
wound-response related proteins from rice leaf sheath. Proteomics 3,
527–535.

Sioud, M., Jespersen, L., 1996. Enhancement of hammerhead ri-bozyme
catalysis by glyceraldehyde-3-phosphate dehydrogenase. J. Mol. Biol.
257, 775–789.

Sule, A., Vanrobaeys, F., Hajos, G., Beeumen, J.V., Devreese, B., 2004.
Proteomic analysis of small heat shock protein isoforms in barley
shoots. Phytochemistry 65, 1853–1863.

Sullivan, J.H., Teramura, A.H., 1990. Field study of the interaction
between solar ultraviolet-B radiation and drought on photosynthesis
and growth in soybean. Plant Physiol. 92, 141–146.

Surplus, S.L., Jordan, B.R., Murphy, A.M., Carr, J.P., Thomas, B., A-H-
Mackerness, S., 1998. Ultraviolet-B-induced responses in Arabidopsis
thaliana: role of salicylic acid and reactive oxygen species in the
regulation of transcripts encoding photosynthetic and acidic patho-
genesis-related proteins. Plant Cell Environ. 21, 685–694.

Ulm, R., Baumann, A., Oravecz, A., Mate, Z., Adam, E., Oakeley, E.J.,
Schafer, E., Nagy, F., 2004. Genome-wide analysis of gene expression
reveals function of the bZIP transcription factor HY5 in the UV-B
response of Arabidopsis. PNAS 101, 1397–1402.

C. Xu et al. / Phytochemistry 69 (2008) 38–48 47



Wang, S.B., Chen, F., Sommerfeld, M., 2004. Proteomic analysis of
molecular response to oxidative stress by the green alga Haematococ-

cus pluvialis (Chlorophyceae). Planta 220, 17–29.
Watson, B.S., Asirvatham, V.S., Wang, L., Sumner, L.W., 2003. Mapping

the proteome of barrel medic (Medicago truncatula). Plant Physiol.
131, 1104–1123.

Willekens, H., Camp, W.V., Montagu, M.V., Inze, D., Langebartels, C.,
Sandermann Jr., H., 1994. Ozone, sulfur dioxide, and ultraviolet B
have similar effects on mRNA accumulation of antioxidant genes in

Nicotiana plumbaginifolia L. Plant Physiol. 106, 1007–1014.
Wilson, K.A., McManus, M.T., Gordon, M.E., Jordan, T.W., 2002. The

proteomics of senescence in leaves of white clover, Trifolium repens

(L.). Proteomics 2, 1114–1122.
Xiong, F.S., Day, T.A., 2001. Effect of solar ultraviolet-B radiation during

springtime ozone depletion on photosynthesis and biomass production
of Antarctic vascular plants. Plant Physiol. 125, 738–751.

Xu, C., Garrett, W.M., Sullivan, J., Caperna, T.J., Natarajan, S., 2006.
Separation and identification of soybean leaf proteins by two-
dimensional gel electrophoresis and mass spectrometry. Phytochemis-
try 67, 2431–2440.

Yan, S., Tang, Z., Su, W., Sun, W., 2005. Proteomic analysis of salt stress-
responsive proteins in rice roots. Proteomics 5, 235–244.

Yan, S., Zhang, Q., Tang, Z., Su, W., Sun, W., 2006. Comparative
proteomic analysis provides new insights into chilling stress responses
in rice. Mol. Cell. Proteomics 5, 484–496.

Yang, Y., Kwon, H.B., Peng, H.P., Shih, M.C., 1993. Stress responses and
metabolic regulation of glyceraldehyde-3-phosphate dehydrogenase
genes in Arabidopsis. Plant Physiol. 101, 209–216.

Yannarelli, G.G., Noriega, G.O., Batlle, A., Tomaro, M.L., 2006.
Heme oxygenase up-regulation in ultraviolet-B irradiated soy-
bean plants involves reactive oxygen species. Planta 224, 1154–
1162.

48 C. Xu et al. / Phytochemistry 69 (2008) 38–48


	Impact of solar Ultraviolet-B on the proteome in soybean lines differing in flavonoid contents
	

	Impact of solar Ultraviolet-B on the proteome in soybean lines differing in flavonoid contents
	Introduction
	Results
	2-D PAGE and quantitative analysis
	Identification of differentially accumulated proteins

	Discussion
	Impacts of solar UV-B and flavonoids on protein accumulation
	Functional analyses of proteins responsive to UV-B

	Materials and methods
	Plant materials and experiment design
	Protein extraction and 2-D PAGE
	Image acquisition and data analysis
	Spots digestion and MS
	Protein identification

	Acknowledgements
	References


	Text6:     This article is a U.S. government work, and is not subject to copyright in the United States.


