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(Received 16 September 2004; accepted 24 March 2005) 

SUMMARY 

A cell line, BPE-1, was derived from a parthenogenetic 8-d in vitro-produced bovine blastocyst that produced a cell 

outgrowth on STO feeder cells. The BPE-1 cells resembled visceral endoderm previously cultured from blastocysts 
produced by in vitro fertilization (IVF). Analysis of the BPE-1 cells demonstrated that they produced serum proteins and 
were negative for interferon-tau production (a marker of trophectoderm). Transmission electron microscopy revealed that 
the cells were a polarized epithelium connected by complex junctions resembling tight junctions in conjunction with 
desmosomes. Rough endoplasmic reticulum was prominent within the cells as were lipid vacuoles. Immunocytochemistry 
indicated the BPE-1 cells had robust microtubule networks. These cells have been grown for over 2 yr for multiple 
passages at 1:10 or 1:20 split ratios on STO feeder cells. The BPE-1 cell line presumably arose from embryonic cells 
that became diploid soon after parthenogenetic activation and development of the early embryo. However, metaphase 
spreads prepared at passage 41 indicated that the cell population had a hypodiploid (2n = 60) unimodal chromosome 
content with a mode of 53 and a median and mean of 52. The cell line will be of interest for functional comparisons 
with bovine endoderm cell lines derived from IVF and nuclear transfer embryos. 

Key words: bovine; cell; line; parthenogenic; endoderm. 

INTROI)UCTION 

In vitro models of bovine extraembryonic visceral endoderm are 

important for the study of mechanisms of preimplantation bovine 

embryo development. Visceral or yolk sac endoderm cells derive 
from the primitive endoderm or hypoblast (Kadokawa et al., 1987) 
and form the yolk sac, which is ventral to the early bovine embryo 
(embryonic disc) and is adjacent to, and continuous with, the inner 

aspect of the trophectoderm as it rapidly expands to form the fila- 
mentous blastocyst stage by 3 wk postfertilization (Chang, 1952; 
Carlson, 1981; Rtsse et al., 1992). As gastrulation proceeds, me- 
soderm cells delaminate from the embryonic disc and rapidly cover 
the visceral endoderm epithelial sheet (splanchnic mesoderm) so as 
to contribute to a vascular network that develops within the yolk 
sac tissue (Carlson, 1981; Rtisse et al., 1992). The yolk sac persists 
for several weeks until the chorioallantoic membranes are estab- 
lished. After this time, it rapidly shrinks in size, and the remnant 
is finally absorbed into the belly stalk of the fetus (Carlson, 1981; 
Mossman, 1987). 

Although the yolk sac of mammals is referred to as a vestigial 

structure, because no yolk is actually present for the tissue layer to 

surround, it carries out various important functions in the devel- 

oping embryo during the preimplantation and periimplantation pe- 
riods of pigs and ruminants (Carlson, 1981; Mossman, 1987; Rtisse 
et al., 1992). The yolk sac epithelial layer is in direct contact with 
an extensive area of the chorion (trophectoderm), and this in close 

apposition to the uterine endometrium, is positioned to facilitate 
nutrient transport from the uterus to the embryo and early fetus 

(Carlson, 1981; Mossman, 1987). The yolk sac also supports the 

early development of the fetus by producing a spectrum of serum 

proteins (Janzen et al., 1982; Young and Klein, 1983; Shi et al., 

1985) and functions as the site of early blood cell formation (Riisse 
et al., 1992; Niimi et al., 2002). These functions are of particular 
importance to the cow because formation of the placenta is delayed 
until after approximately 40 d of gestation (Chang, 1952). The yolk 
sac, therefore, has the specialized function of supporting the early 
development of the fetus until further nutrient and physiological 
support is taken over by the formation of the chorioallantosis and 
its connection with the uterus, i.e., placentation (Carlson, 1981; 
Rtisse et al., 1992). 

In vitro cell culture models of bovine visceral endoderm may be 
useful in the study of bovine early embryonic and periimplantation 
development and survival. Recently, in vitro cell culture models of 
bovine endoderm were reported (Talbot et al., 2000a). Morphologi- 
cal features of bovine endoderm cells continuously cultured in vitro 
were similar to those found in vivo, and the cells also showed in 
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vivo functional characteristics such as serum-protein secretion (Tal- 
bot et al., 2000a). Although in vitro models of visceral endoderm 
exist for the mouse (Walter et al., 1984; Adamson et al., 1985; 

Mummery et al., 1991) and human (Pera et al., 1987), the greatly 
delayed implantation of ruminant embryos and the extensive size of 
the bovine yolk sac suggest that the function of the ruminant yolk 
sac may be more vital for bovine embryo survival than in the mouse 
or human (Carlson, 1981; Riisse et al., 1992). Thus, bovine visceral 
endoderm cell lines may offer a more relevant in vitro cellular sub- 
strate with which to study yolk sac function and mechanisms of 

preimplantation embryo survival in ruminants. 
Given this, models of bovine yolk sac endoderm may help illu- 

minate differences between embryos created by somatic cell nuclear 
transfer (NT) and embryos derived from normal fertilization of eggs 
with sperm. This is particularly relevant because preimplantation 
embryo survival appears to be a critical problem with NT pregnancy 
establishment (Hill et al., 2000; De Sousa et al., 2001; Hashizume 
et al., 2002). For the comparative study of mechanisms of devel- 

opmental failure in NT pregnancies, an in vitro model of endoderm 
derived from a source of bovine embryos that never successfully 
implant and that have deficiencies in their extraembryonic mem- 
brane form and function would be useful. Endoderm cell lines de- 
rived from parthenogenetic bovine embryos might provide such a 

comparative model because, in the mouse, parthenogenetic embryos 
are characterized by poor development of their extraembryonic 
membranes and they uniformly fail to maintain pregnancy (Surani 
and Barton, 1983; Surani et al., 1990). Much of the developmental 
failure in parthenogenotes is thought to arise from their lack of 

paternally imprinted genes (Surani et al., 1990) and, similarly, the 
aberrant gene expression that occurs after cloning, some in imprint- 
ed genes, may be the causes of the high incidence of pregnancy 
failure in NT embryos (Humpherys et al., 2002; Inoue et al., 2002). 
Although mammalian parthenogenote-derived cell lines are rare, 

they have been established from mouse embryos either in the form 
of embryonic stem cell lines (Kaufman et al., 1983) or in the form 
of embryonic fibroblast secondary cell cultures (Kharroubi et al., 

2001). 
The isolation of an endoderm cell line from a parthenogenetic 8-d 

bovine blastocyst is described. The continuous culture and char- 
acterization of the cell line were undertaken to demonstrate their 
basic similarity to or differences from another endoderm cell line 

previously isolated from a blastocyst produced by in vitro fertiliza- 
tion (IVF) (Talbot et al., 2000a). 

MATERIALS AND METHODS 

Cell culture. All cells were grown on tissue culture plasticware (Nunc, 
Roskilde, Denmark; and Falcon, Becton Dickinson, Lincoln Park, NJ). Cryov- 
ials (2 ml) were purchased from Nunc. Fetal bovine serum (FBS) was obtained 
from Hyclone (Logan, UT). Cell culture reagents, including Dulbecco phos- 
phate-buffered saline (PBS) without Ca++ and Mg++, media, trypsin-ethyl- 
enediaminetetraacetic acid (EDTA) (0.05% trypsin, 0.43 mM EDTA), anti- 
biotics, nonessential amino acids, and L-glutamine were purchased from 
InVitrogen Corporation, Gaithersburg, MD (GIBCO). The STO cells (CRL 
1503, American Type Culture Collection, Rockville, MD) were grown in Dul- 
becco modified Eagle medium (DMEM) with high glucose (4.5 g/L) supple- 
mented with 10% FBS (10% DMEM). Feeder layers were prepared by ex- 
posing a suspension of STO cells to 8 krad gamma radiation and plating the 
cells at 6 x 104 cells/cm2. Feeder layers were maintained by refeeding with 
10% DMEM every 6-7 d. 

A primary bovine parthenogenetic endoderm (BPE-1) culture was initiated 
from a day-8, blastocyst-stage, parthenogenetic embryo, created as described 

previously (Talbot et al., 2000b), by pressing it onto the STO feeder cell 

monolayer and plastic with a hypodermic needle, as described previously 
(Talbot et al., 2000a). No epiblast or trophectoderm contamination was ob- 
served in the colony outgrowth that occurred over the first 2 wk of primary 
culture. After 3 wk of primary culture, the colony, then approximately 1 cm 
in diameter, was passaged for secondary culture. This first passage was ac- 

complished by chopping the primary colony into small pieces using two hy- 
podermic needles and transferring the resulting clumps of BPE-1 cells into 
a T25 flask containing a STO feeder cell layer. The culture, henceforth, was 

passaged by physical disruption of the BPE-1 monolayer (as described pre- 
viously in Talbot et al., 2000a) approximately every 3 wk at a 1:3 split ratio 
onto fresh STO feeder layers. BPE-1 cells were cultured in DMEM/199 me- 
dium (50/50) with 10% FBS (Talbot et al., 2000a) until passage 24. Subse- 

quent passages were cultured in 10% DMEM. 
BPE-1 cell growth assays. Growth of the BPE-1 cells was assayed mac- 

roscopically by photodocumentation of sister flasks of the culture that were 

simultaneously fixed and stained at progressively longer time points postpas- 
sage. Fixation and staining of the cultures were performed by aspirating the 
medium from the flasks and immediately replacing it with a fixing-staining 
solution of 0.125% Coomassie Blue R-250 (InVitrogen/GIBCO), 50% meth- 

anol, and 10% acetic acid for 10 min. The staining solution was decanted, 
and the cell monolayer was rinsed with distilled water to stop cell staining. 
If necessary, the stained cells were destained to varying degrees with a so- 
lution of 50% methanol and 10% acetic acid. 

BPE-1 cell growth was assayed at passage 36 by counting the increase in 
the total cells per T25 flask over a 3-wk period at 4-d intervals postpassage. 
Duplicate T25 flasks were counted at each time interval. Single cell suspen- 
sions of the contents of each flask were produced by washing the cells once 
with 2 ml of 2 M urea. The cells were incubated at -350 C in the residual 
urea left behind after aspiration (-0.2 ml) for 5-6 min. One-half milliliter 
of trypsin-EDTA was added to each T25 flask to finish dissociation of the 
cells during a further 10 min incubation at -350 C. The cells were suspended 
to a total volume of 2 ml for cell counts in 10% DMEM. Total cells per T25 
flask was ascertained by averaging the counts of 16 hemocytometer squares 
(1 mm2). Input of the number of BPE-1 cells at the start of the growth assay 
was undefined, but was a 1:40 split ratio from a nearly confluent stock cul- 
ture. The STO feeder cells surviving the urea-trypsin-EDTA dissociation 
were similarly enumerated from a parallel group of feeder cell T25 flasks 
that had not received any BPE-1 cell input. 

Cytogenetic analysis. BPE-1 cells were analyzed for chromosome content 
at passage 41. The BPE-1 cells were harvested to single cells by treatment 
with 2 M urea and trypsin-EDTA as previously described to prepare meta- 

phase spreads (Talbot et al., 2000a). Metaphase spreads on replicate slides 
were stained with 1 ptg/ml propidium iodide (PI; Molecular Probes, Eugene, 
OR) and 2 pRg/ml bisbenzimide (Hoechst 33342; Molecular Probes) for fluo- 
rescent observation. For chromosome counts, PI-stained metaphase spreads 
were imaged at -x 1000 magnification using a Zeiss LSM 410 confocal mi- 

croscope equipped with a x63 C-Apochromat 1.2 numerical aperture water 
immersion objective. For Hoechst 33342 fluorescent observation, the 351-nm 
line of a Coherent Innova 90 laser was used for excitation, and the emitted 

light was passed through a long-pass 397-nm filter. The 568-nm line of an 

argon-krypton laser was used for excitation of PI, and emitted light was 
filtered through a long-pass 590-nm emission filter. Approximately 50 BPE- 
1 metaphase spreads were counted for chromosome content. Approximately 
30 metaphase spreads from a bovine fetal fibroblast (BFF) cell culture at 

passage 4 were counted as a comparative control. 
Antiviral interferon-tau activity assay. Antiviral assays of the conditioned 

medium (CM) of BPE-1 were completed as described by Roberts et al., 1989. 
BPE-1 cells were assayed at passage 17, where the 4-d CM was serum-free 

(SF) DMEM + lx ITS (insulin [10 
spIpg/ml], 

transferrin [5.5 pLg/ml], and 
selenium [0.005 Ipg/ml]; Sigma Chemical Co., St. Louis, MO). The CM from 
STO feeder cells alone and unconditioned medium were assayed as negative 
controls. The ability of samples to prevent virus-induced cell lysis by 50% 
was compared with a recombinant human interferon-alphaA standard (Cal- 
biochem, La Jolla, CA; 3.84 X 108 IU/mg). The concentration of interferon- 
tau (IFN-7) in CM was calculated on the basis of the specific activity of 
recombinant bovine IFN-T (2.52 + 0.49 X 108 IU/mg) included in each assay. 
Assays were completed in duplicate, and results were reported in interna- 
tional units of IFN-T per milliliter of culture medium and in nanogram per 
milliliter. The assay had a sensitivity of 20 IU/ml. 

Immunoblot analysis of CM. Western blots and immunoprobing of the blots 
with antitransferrin antibody were done as described previously (Talbot et 
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al., 2000a). Three milliliters of SF medium (DMEM high glucose) was con- 
ditioned for 72 h by confluent monolayers of passage 42 BPE-1 cells (T25 
flask) that had been washed 4x with SF medium. The washes were performed 
to remove traces of serum proteins left behind by the FBS-containing growth 
medium routinely used in the propagation and maintenance of the cell cul- 
ture. The CM samples were centrifuged at 500 x g for 15 min to pellet cell 
debris, and supernatants were stored frozen at -200 C. Serum-free medium 
conditioned by STO feeder cells alone, a bovine parthenogenetic trophecto- 
derm cell culture, the CE-2B bovine endoderm cell line (Talbot et al., 2000a), 
and adult bovine serum (ABS) were assayed as comparative controls. The 
CM samples (Ix, 30 .1l of each) and ABS (0.1 pl) were mixed 3:1 with 4X 
loading buffer containing sodium dodecyl sulfate (SDS) and 3-mercaptoeth- 
anol. Samples were loaded onto 8% polyacrylamide gels, and electrophoresis 
(polyacrylamide gel electrophoresis [PAGE]) was performed as described by 
Laemmli, 1970. Proteins were transferred to polyvinylidene fluoride (PVDF) 
membranes (Bio-Rad, Hercules, CA), blocked with porcine albumin, and 
probed with polyclonal rabbit antisera to bovine transferrin (Axell Accurate, 
Westbury, NY). Specific immunoreactive proteins were observed by reaction 
with alkaline phosphatase-conjugated secondary anti-rabbit antibody, fol- 
lowed by the addition of nitro-blue tetrazolium chloride/5-bromo-4-chloro-3'- 
indolylphosphate p-toluidine (NBT/BCIP) reagents (Sigma). For total protein 
staining, parallel blots were stained with 0.015% Coomassie Blue R-250 
(Bio-Rad) in 40% methanol and 5% acetic acid. 

Immunocytochemistry. BPE-1 cells at passage 43 and CE-2B cells (bovine 
visceral endoderm cell line previously derived from a blastocyst produced by 
IVF; Talbot et al., 2000a) at passage 4 were grown in T25 flasks and were 
fixed for 25 min in 4% methanol-free formaldehyde in PBS. The bottoms of 
the flasks were cut out and processed for immunocytochemistry as described 
previously (Talbot et al., 2003) using antibodies to alpha-tubulin (1:1000; 
Sigma) and beta-tubulin antibody (1:500; Sigma) mixed together. Alexa 488- 
labeled goat anti-mouse secondary antibody (Molecular Probes) was used to 
detect binding of the primary antibody. The actin cytoskeleton was stained 
with AlexaFluor 594 phalloidin (Molecular Probes) at 2 U/ml (66 nM). Cell 
nuclei were counterstained with 500 ng/ml bisbenzimide (Hoechst 33342; 
Molecular Probes), and the specimens were mounted in Vectashield (Vector 
Labs, Burlingame, CA). 

Transmission electron microscopy. Transmission electron microscopy (TEM) 
sample preparation and photomicroscopy were done with the assistance of 
JFE Enterprises, Brookeville, MD as described previously (Talbot et al., 
2000a). Ultrastructural analysis was performed on samples processed from 
one T25 flask culture that was 3-wk postpassage at passage 34. 

RESULTS 

Establishment of the BPE-1 cell line. A primary outgrowth of 
bovine endoderm was initiated from a bovine parthenogenote that 
had reached the blastocyst stage after 8 d of egg culture. The en- 

doderm outgrowth was recognized as such by its distinct cell and 

colony morphology (Talbot et al., 2000a). Also, on the basis of mi- 

croscopic observation of cell and colony morphology, no trophoblast 
or epiblast contamination was present in the primary culture. Al- 

though it was unusual to find no trophoblast contamination in the 

primary culture, an absence of trophectoderm was observed in 3 of 
111 parthenogenetic whole bovine blastocyst explant cultures or 
-3% in an unrelated study involving similar primary blastocyst 
cultures (unpublished data; N. C. Talbot). Epiblast survival in whole 
bovine blastocyst explant cultures is more rare (less than 1%; un- 

published observation; N. C. Talbot) and did not occur in this case. 

This lack of contaminating cell types simplified the establishment 

of the bovine parthenogenetic endoderm culture. The culture was 

designated BPE-1. 
The primary BPE-1 colony was composed of approximately cu- 

boidal epithelial cells closely packed together in the center of the 

colony, with flatter and more spread out cells at the periphery of 

the colony. The primary colony had frequent domes or areas of cells 

that formed vesicle-like structures by transporting fluid between two 
or three adjacent cells. The cells were not as granular in appearance 
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Fir. 1. Growth curve of BPE-1 cells assayed at passage 36. Total of BPE-1 
and nondividing STO feeder cells (0). STO feeder cells only (A). 

as trophectoderm cells and had scant amounts of visible lipid. In 

addition, at the periphery of colonies or where domes occurred, 
distinct web-like arrangements of phase-contrast, dark cytoskeletal 
fibers were observed in the cells (as in Fig. 3). The cells grew 
predominantly on top of the STO feeder cells. 

Secondary culture of the BPE-1 cells was performed after 3 wk 
when the colony had reached a size of approximately 1 cm in di- 
ameter. Clumps of BPE-1 cells that attached in the first 24 h grew 
into -1-cm-diameter colonies over 3-4 wk of culture. The BPE-1 
cell culture grew relatively slowly during the initial secondary cul- 
ture period (the first 5-10 passages); however, after this "establish- 
ment period," the secondary culture grew more quickly and was 

routinely passaged at 1:20 or 1:40 split ratios. After establishment, 
the cell line had a characteristic lag period of about 1 wk postpas- 
sage that was followed by a population doubling time of approxi- 
mately 96 h (Figs. 1 and 2). The BPE-1 cell culture did not require 
colony cloning to maintain the purity of the visceral endoderm pop- 
ulation, as putative parietal endoderm differentiation was not ob- 
served during the establishment of the cell line (Talbot et al., 

2000a). 
Similar to the primary culture, the established BPE-1 cell line 

formed monolayers composed of approximately cuboidal epithelial 
cells where most of the cells were closely packed together but did 
have some areas where the cells were flatter and more spread out 

(Fig. 3). Domes or vesicle-like structures, formed by adjacent cells 

transporting fluid between themselves, were common in the BPE-1 

monolayer (Fig. 3). In contrast to the primary culture, later passage 
BPE-1 cells had cell-associated lipid droplets that were easily dis- 
cernible by phase-contrast microscopy. As in the primary culture, 
later passage BPE-1 cells were found to have distinctive phase- 
contrast, dark, web-like cytoskeletal elements that traversed the cy- 
toplasm and encircled the nucleus (Fig. 3). These cytoskeletal el- 
ements were positive for reaction with antitubulin antibody by im- 

munocytochemical assay (Fig. 4A) and were, therefore, microtu- 
bules. In comparison, similar robust microtubule arrays were also 
found in the cells of the CE-2B visceral endoderm cell line (Fig. 
4B), previously isolated from a bovine embryo produced by IVF 

(Talbot et al., 2000a), and were similar to those found in the en- 
doderm cells lining the interior of an 11-d in vivo porcine blastocyst 
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FIG. 2. Growth of BPE-1 cells shown in a cohort of T25 flasks after passage at a 1:20 split ratio at passage 38. Individual flasks were 
sequentially fixed and stained with Coomassie Blue R-250 over a 24-d postpassage culture period to illustrate the growth of the cells. 

(Fig. 4C). The actin cytoskeleton, although occurring in the cyto- 
plasm of the cells and perhaps colocalizing with the microtubule 

network, was most distinctly present at the cell boundaries in all 
cases (Fig. 4D-F). 

Transmission electron microscopic analysis of the BPE-1 cell line. 

BPE-1 cells were arranged in a single layer of elongated cuboidal 
cells growing on top of or between the STO feeder cells (Fig. 5A). 
Although the BPE-1 cells were never intimately joined to the STO 
feeder cells, they were usually in close proximity to the STO cells, 

except in the case where dome formation occurred. Prominent and 
numerous microvilli at the apical surface (facing the medium) 
marked the polarized morphology of the BPE-1 cells, and the cells 
were joined by numerous desmosomal elements and tight junctional 
complexes at their lateral surfaces (Fig. 6A). Smooth and rough 
endoplasmic reticulum, lysosomes or digestive vacuoles, and lipid 
vacuoles were all numerous and well represented in the BPE-1 cells 

(Fig. 6B). Golgi complexes, although present, were not particularly 
numerous in the BPE-1 cells analyzed by TEM. Overall, the 

BPE-1 cells were similar in ultrastructure presentation to the in 
vivo endoderm cells of a 19-d expanded bovine blastocyst that was 
also examined by TEM (Fig. 5B). 

Cytogenetic analysis of the BPE-1 cells. Figure 7 shows the dis- 

tribution of chromosome counts found from the enumeration of 48 

BPE-1 metaphase spreads at passage 41. A unimodal distribution 
was found in which the majority (85%) of BPE-1 cells were hypo- 
diploid and contained between 47 and 56 chromosomes (Fig. 7A). 
The remaining 15% of metaphase spreads consisted of cells with 
various hypo- and hyperdiploid contents or near triploid cells (Fig. 
7A). All the chromosomes were acrocentrics or telocentrics with the 

exception of the X-chromosome, which was submetacentric, and of 
which there appeared to be two (Fig. 8). As a comparative control, 

secondary cultures of bovine fetal fibroblast were assayed at passage 
4. Of 30 BFF metaphase spreads examined, 80% were diploid con- 

taining a full complement of 60 chromosomes (Fig. 7B). The re- 

maining BFF metaphase spreads were either near diploid or near 

tetraploid (Fig. 7B). 
Protein expression by BPE-1 cells. Visceral endoderm is known to 

synthesize and secrete serum proteins (Young and Klein, 1983; Shi et 

al., 1985), whereas trophectoderm, the other differentiated epithelium 
of the early blastocyst, specifically secretes IFN-T (Roberts et al., 1989). 
The medium conditioned by BPE-1 for 96 h was tested for IFN-tr by 
antiviral assay and found to have less than 20 IU/ml of IFN-7, i.e., the 
level was at the limit of sensitivity of the assay. Therefore, the BPE-1 
cells were not secreting detectable amounts of IFN-T. 
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FIG. 3. Phase-contrast light micrograph of a monolayer of BPE-1 cells at passage 42. Note the characteristic cell associated lipid 
droplets found in many of the cells in the monolayer (arrowheads) and the characteristic web-like cytoskeletal elements within the larger 
cells (arrow). Bar, 40 C m. 

BPE-1 cells were assayed for their secretion of serum proteins, 
particularly, the serum protein transferrin. A Western blot of sam- 
ples of SF media conditioned by either BPE-1 cells, CE-2B cells, 
a bovine parthenogenetic trophectoderm cell culture, or STO feeder 
cells only was analyzed for transferrin content by probing with an- 
titransferrin antibody. A protein with a molecular weight equal to 
that of transferrin (-78 kDa) was detected by the antibody in the 
BPE-1 CM (Fig. 9A, lane 3) and in the CM of the CE-2B cell line 
(Fig. 9A, lane 4) but not in the STO feeder cell CM or trophectoderm 
culture CM (Fig. 9A, lanes 2 and 5, respectively). Coomassie Blue 
staining for the total proteins in CM separated by one-dimensional 
SDS-PAGE showed that the BPE-1 culture was secreting a spectrum 
of proteins similar to that found in bovine serum (Fig. 9B, lane 3). 
In comparison, the CM of the IVF-derived CE-2B bovine endoderm 
cell line also showed a serum protein-like profile (Fig. 9B, lane 4), 
whereas CM from STO feeder cells alone, or a bovine parthenoge- 
netic trophectoderm cell culture, did not (Fig. 9B, lanes 2 and 5, 
respectively). The Coomassie Blue total protein staining indicated 
that the transferrin was abundantly expressed by both the parthe- 
nogenetic-derived (BPE-1; lane 3) and the IVF-derived (CE-2B; 
lane 4) cell lines. Also, the lack of any prominent protein bands at 
-68 kDa in lanes 2 and 5 of Fig. 9B indicated an absence of serum 
protein contamination in the CM. 

DISCUSSION 

The study demonstrates that a parthenogenetic bovine endoderm 
cell culture could be readily established in long-term culture. This 
might not have been assumed, because a striking feature of mouse 

gynogenotes/parthenogenotes development in vivo is poor develop- 
ment and degeneration of the extraembryonic membranes (Surani et 
al., 1990; Tada and Takagi, 1992). However, ruminant extraembry- 
onic tissue development is distinctly different from the mouse 
(Chang, 1952; Mossman, 1987). Studies of in vivo development of 
parthenogenotes in sheep indicated either no gross extraembryonic 
tissue abnormalities (Loi et al., 1998) or some hypertrophy and 
hypervascularization in the tissue (Hagemann et al., 1998). Also, 
because cell growth in culture is without the complex interdepen- 
dent interaction found in vivo, the establishment of continuous cell 
cultures from uniparental tissue sources is perhaps not surprising 
(Kaufman et al., 1983; Kharroubi et al., 2001). Because the BPE-1 
cells have been continuously cultured for nearly 3 yr and for greater 
than 45 passages, usually at high split ratios, it is probable that the 
culture is immortalized and is a cell line. 

It was unusual not to find trophoblast contamination in the pri- 
mary blastocyst explant culture that gave rise to BPE-1, but this is 

unnecessary for the establishment of the endoderm cultures. In an 
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FIG. 4. Fluorescent staining of alpha/beta tubulin and actin in BPE-1 and CE-2B cell lines. Characteristic web-like array of microtubule 
(tubulin) cytoskeletal elements that ramify the cell and surround the nucleus in BPE-1 cells (A), CE-2B cells (B) or the endoderm cells 
lining the interior of an 11-d in vivo porcine blastocyst (C). Bar, 25 pIm. Corresponding Phalloidin staining of the actin cytoskeleton in 
BPE-1 cells (D), CE-2B cells (E), or in vivo porcine endoderm cells (F). Bar, 25 p[m. Arrowheads indicate borders of cells; n, nucleus. 

unrelated study, it was found that parthenogenetic whole bovine 

blastocyst explant cultures produced endoderm outgrowth at high 
rates but that most were contaminated by the coincident outgrowth 
of trophectoderm cells (unpublished observation; N. C. Talbot). This 

presents little problem in establishing the parthenogenetic endo- 
derm culture in pure form because the trophectoderm outgrowth can 
be readily removed. Trophectoderm outgrowths, recognized by their 

distinct cell and colony morphology, can be detached from the en- 
doderm cells and the plastic substrate using 25-gauge hypodermic 
needles for dissection and a glass micropipette to aspirate the troph- 
ectoderm cells from the culture. This is efficient because the troph- 
ectoderm forms a continuous sheet of cells that are strongly con- 
nected to one another, and the endoderm does not adhere to the 

trophectoderm. 
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FIG. 5. Electron micrograph of BPE-1 cells at passage 42 compared with the endoderm cells of an in vivo 19-d bovine blastocyst. 
(A) Cell monolayer showing polarized morphology with characteristic microvilli (arrowheads) and tight junctional unions (arrow) along the 
apical portion of the roughly cuboidal cells. The STO feeder cells, not shown, are underneath the three BPE-1 cells. X7500. (B) In vivo 
endoderm from near the tip of an elongated 19-d bovine blastocyst. The endoderm cells are positioned just underneath the basal membrane 
of the trophectoderm (T) cells. Note the tight junctional unions with associated desmosomes (arrows) between the endoderm cells and the 
microvilli at the cell membrane facing the blastocoel cavity. X9450. N, Nucleus; L, lipid vacuole. 

Overall, the BPE-1 cell line was substantially similar to the CE- 
2B cell line previously isolated from a blastocyst produced by IVF 

(Talbot et al., 2000a). The BPE-1 cells were similar to the CE-2B 
cells in ultrastructural features, with the exception that BPE-1 cells 
examined did not have the numerous and robust Golgi complexes 
that were the striking feature of the CE-2B cells. In this way, the 
BPE-1 cells appeared more like the bovine endoderm cells analyzed 
from an in vivo 19-d filamentous bovine blastocyst (Fig. 5). The 
BPE-1 cells were perhaps most similar to CE-2B cells in cell and 

colony morphology, growth rate, and transferrin secretion. Besides 

transferrin, the BPE-1 cells appeared to produce several other se- 
rum proteins as was previously shown to be a characteristic of the 

CE-2B cell line (Talbot et al., 2000a) and of visceral endoderm cells 
in general (Janzen et al., 1982; Young and Klein, 1983; Shi et al., 
1985). It will be of interest to analyze the secreted proteins pro- 
duced by the BPE-1 cell line in comparison with the CE-2B cell 
line by 2-D gel electrophoresis to see what difference may exist 
between them. Differences in gene and protein expression may in 

FIG. 6. Electron micrograph of BPE-1 cell monolayer at passage 42. (A) Tight junctional area (arrows) and desmosomes (arrowheads) 
connect the BPE-1 cells together. Note the microvilli (my) at the apical surface of the cells. X 18,900. (B) Higher magnification showing 
the rough endoplasmic reticulum (RER) that was often prominent in the cells. X94,500. N, Nucleus; L, lipid vacuole; M, mitochondria. 
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FIG. 7. Karyotype analysis of BPE-1 cells. (A) Forty-eight metaphase spreads of BPE-1 cells were prepared and counted at passage 
41. (B) Thirty metaphase spreads from a bovine fetal fibroblast culture at passage 4 were prepared and counted as a comparative control. 

part reflect deficiencies resulting from the lack of paternally im- 

printed genes that are expected to be absent in the BPE-1 cells 

(Kharroubi et al., 2001). However, the evaluation of several cell 
lines independently derived from parthenogenetic and IVF embryos 
will be necessary to establish what differences simply reflect vari- 
ations in cell population selection, i.e., growth and survival, in re- 

sponse to adapting to the in vitro environment. 
The BPE-1 cell line was hypodiploid on the basis that most of 

the metaphase spreads assayed contained fewer than the normal 

complement of 60 chromosomes. Also, the level of heterogeneity in 
the chromosomal content of BPE-1 is not unexpected for an exten- 

sively passaged cell line, but it may indicate that the karyotype of 
the BPE-1 cell population has not stabilized, as described for other 
cell lines, even after greater than 40 passages in culture (Freshney, 
1994; Mamaeva, 1998). The endoderm of the initial cell culture 

presumably arose from cells that diploidized early on after parthe- 
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Fic. 8. Normal diploid metaphase spread prepared from bovine fetal fi- 
broblast cells at passage 4 (A) in comparison with the hypodiploid metaphase 
spread of a BPE-1 cell at passage 41 (B). Note the two X-chromosomes in 
the BPE-1 and BFF karyotypes (arrows) BFF, bovine fetal fibroblast. 

nogenetic activation or from an egg that did not extrude a second 

polar body. Karyotype studies of parthenogenetic bovine blastocysts 
that were produced in a similar manner (i.e., sequential ionomycin 
and 6-dimethylaminopurine treatment) have shown that most of the 

resulting blastocysts contain cells that are not all diploid but are 
instead polyploid, with mixoploidy being in evidence (Winger et al., 
1997; De La Fuente and King, 1998). Thus, it is possible that the 
BPE-1 cell culture was initially of mixed ploidy, but that diploid 
endoderm cells that were present in the primary explant culture 
thrived and out competed cells of abnormal ploidy. Subsequent drift 
in the population to a hypodiploid state probably resulted during 
the extensive passage of the culture (Freshney, 1994; Mamaeva, 
1998). However, it is possible the BPE-1 cell line was generated 

from haploid or near-haploid endoderm cells existing in the primary 
parthenogenetic blastocyst explant culture, although haploidy in bo- 
vine parthenogenotes appears to occur rarely (Winger et al., 1997). 
Although hypodipoid and near-haploid cell lines exist, it has been 
found that over extensive passage, a compensatory shift takes place 
in the cell population to a hyperdiploid state, presumably to correct 
for partial or complete monosomies (Freshney, 1994; Mamaeva, 
1998). 

A previously observed distinct morphological feature of primary 
cultures of porcine and bovine visceral endoderm cells (Talbot et 
al., 1993, 1995) was a phase-contrast-dark, web-like pattern of un- 
identified cytoskeletal-like elements that ran through the cytoplasm 
and encircled the nucleus. A similar web-like cytoskeletal array 
was also a prominent morphological feature in the cells of a visceral 
endoderm cell line, CE-2B, previously isolated from a bovine em- 

bryo produced by IVF (Talbot et al., 2000a). The immunocytochem- 
ical analysis for actin and tubulin defined their spatial arrangement 
in the BPE-1 cells and showed that the microtubule network (tu- 
bulin) corresponded with the phase-contrast-dark elements ob- 
served in the cells. In comparison, the microtubule networks in the 
CE-2B cell line and in the endoderm cells lining the interior of an 
11-d porcine embryo were more coalesced and, therefore, seemingly 
even more robust in appearance. This feature may reflect the mi- 
crotubule network's major role in transport of endosomes in endo- 
cytotic or transcytotic transport of nutrients through the yolk sac 
epithelium (Starling et al., 1983; Beckman et al., 1997). 

The BPE-1 parthenogenetic cell line and similar cell lines that 
could be created in the future may help define deficiencies in "re- 
programming" that lead to developmental abnormalities in NT preg- 
nancies (Hill et al., 2000; De Sousa et al., 2001; Hashizume et al., 
2002). In comparison with NT embryos and the successful repro- 
gramming of the donor somatic nucleus, IVF-derived endoderm rep- 
resents the best case comparative developmental potential (often 
successful), and the parthenogenote-derived endoderm represents 
the worst case comparative developmental potential (never success- 
ful). Thus, analysis of endoderm cell lines derived from IVF em- 
bryos (i.e., bovine embryos carrying a normal maternal and paternal 
genetic complement) or parthenogenotes (maternal genetic comple- 
ment only) might allow the definition of many genetic and pheno- 
typic differences that predispose parthenogenetic embryos to early 
death (Surani and Barton, 1983; Fukui et al., 1992; Boediono and 
Suzuki, 1994; Susko-Parrish et al., 1994; Loi et al., 1998). Although 
analyses of genetic imprinting would be complicated by a nondi- 

ploid chromosome complement (loss of a chromosome could be in- 

terpreted as a loss of induced state), diploid cell lines are usually 
genetically stable at early passage levels (Freshney, 1994; Talbot et 
al., 2000a). That in vitro models can yield reliable gene expression 
profiles is supported by the finding that in fibroblast cultures de- 
rived from uniparental fetuses (androgenotes or parthenogenotes), 
the parent of the origin expression profile of several maternally im- 
printed and several paternally imprinted genes was maintained over 
30 cell generations in culture (Kharroubi et al., 2001). Aberrant 
alterations in gene expression arising from the lack of normal im- 
printed gene complements in parthenogenetic endoderm (Surani and 
Barton, 1983; Surani et al., 1990) might therefore provide mecha- 
nistic candidates for pregnancy failure that can be similarly found 
in NT endoderm epigenetic gene expression, but, in the case of NT, 
results from ineffective reestablishment of genetic imprint status or 
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FIG. 9. The SDS-PAGE and Western blot of BPE-1 conditioned medium demonstrating the expression of serum-like protein profile 
and the specific expression of transferrin. Separating gel of 1 x CM (72 h) was stained for total protein with Coomassie Blue (B), and the 
corresponding Western blot (A) was probed with antibovine transferrin. Lane 1, 0.1 [LI adult bovine serum; lane 2, STO feeder cell CM; 
lane 3, BPE-1 CM at passage 42; lane 4, CM from CE-2B bovine endoderm cell line; lane 5, CM from a bovine parthenogenetic 
trophectoderm cell culture SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; CM, conditioned medium. 

methylation status (Humpherys et al., 2002; Cezar et al., 2003; 
Santos et al., 2003). 

In summary, the presented work demonstrates the establishment 
of a parthenogenetic visceral endoderm cell line, and it is assumed 
that this could be readily repeated to create numerous cell lines for 

comparative purposes. Besides the "standard" culture conditions, 
the in vitro endoderm model enables the experimental manipulation 
of the cell's environment (e.g., addition of specific growth factors, 
hormones, metabolites, etc.) to ask how gene expression responses 
are changed in themselves and in comparison with other cell lines. 
It is anticipated that functional comparisons with IVF- or NT-de- 

rived visceral endoderm cell cultures will yield information relevant 
to the yolk sac's role in supporting the growth and survival of peri- 
implantation bovine embryos. 
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