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RESEARCH ARTICLE Open Access

Evolution of the Kdo2-lipid A biosynthesis in bacteria
Stephen O Opiyo1,3, Rosevelt L Pardy1, Hideaki Moriyama1, Etsuko N Moriyama2*

Abstract

Background: Lipid A is the highly immunoreactive endotoxic center of lipopolysaccharide (LPS). It anchors the LPS
into the outer membrane of most Gram-negative bacteria. Lipid A can be recognized by animal cells, triggers
defense-related responses, and causes Gram-negative sepsis. The biosynthesis of Kdo2-lipid A, the LPS substructure,
involves with nine enzymatic steps.

Results: In order to elucidate the evolutionary pathway of Kdo2-lipid A biosynthesis, we examined the distribution
of genes encoding the nine enzymes across bacteria. We found that not all Gram-negative bacteria have all nine
enzymes. Some Gram-negative bacteria have no genes encoding these enzymes and others have genes only for
the first four enzymes (LpxA, LpxC, LpxD, and LpxB). Among the nine enzymes, five appeared to have arisen from
three independent gene duplication events. Two of such events happened within the Proteobacteria lineage,
followed by functional specialization of the duplicated genes and pathway optimization in these bacteria.

Conclusions: The nine-enzyme pathway, which was established based on the studies mainly in Escherichia coli K12,
appears to be the most derived and optimized form. It is found only in E. coli and related Proteobacteria. Simpler
and probably less efficient pathways are found in other bacterial groups, with Kdo2-lipid A variants as the likely
end products. The Kdo2-lipid A biosynthetic pathway exemplifies extremely plastic evolution of bacterial genomes,
especially those of Proteobacteria, and how these mainly pathogenic bacteria have adapted to their environment.

Background
Kdo2-lipid A is a complex glycolipid consisting of gluco-
samine, 3-OH fatty acids, and unusual sugar 3-deoxy-D-
manno-octulonsonic acid (Kdo) (Figure 1). Kdo2-lipid A
is the principle and essential component of the outer
leaflet of the outer cell wall of Gram-negative bacteria
[1]. It is the membrane anchor for a wide and variable
range of polysaccharide repeating units extending
beyond the cell wall. Together with Kdo2-lipid A the
polysaccharide repeating units constitute lipopolysac-
charide (LPS), a class of molecules believed to occur
solely in Gram-negative bacteria and Cyanobacteria and
essential for their viability [2]. Lipid A is a potent
immunoreactive factor responsible for triggering a
macrophage mediated and frequently overwhelming
immune response resulting in endotoxic shock, a poten-
tially lethal condition. Indeed, as far as is known, all ver-
tebrates and an assortment of invertebrates exhibit a
robust and highly specific anti-LPS response.

For decades lipid A/LPS has been essentially synon-
ymous with Gram-negative organisms, yet, despite the
relative diversity of the Gram-negative bacteria, the ori-
gin and evolutionary pathway of this important molecule
is virtually unknown. Presently the complex, nine-
enzyme biosynthetic process of Kdo2-lipid A is best
known from Escherichia coli (Figure 1). The genetic
sequences for the enzymes have been derived from the
E. coli genome (Additional file 1). This pathway and the
concomitant genes in E. coli probably represent the
most highly evolved Kdo2-lipid A biosynthetic pathway
given the highly adapted association of E. coli with ver-
tebrate enteric habitats, which depends heavily on the
structure of LPS. Thus, the central question becomes:
can the evolutionary radiation of LPS be described by
understanding the comparative genomics of Kdo2-lipid
A biosynthetic pathway?
Traditional classification of bacteria: Gram-positive vs.

Gram-negative, is based on the Gram-staining procedure
[3]. Gram-positive bacteria retain the crystal-violet stain,
whereas Gram-negative bacteria are decolorized with
alcohol or acetone and stained red with safranin or
basic fuchsin. Different responses to the staining are
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caused by the chemical properties of the cell walls.
Gram-positive bacteria have an impermeable cell wall
that is made of thick peptidoglycan and is not affected
by decolorization. Gram-negative bacteria, on the other
hand, have a thin peptidoglycan layer and an outer
membrane containing LPS, which can be disrupted by
decolorization.
Phylogenetic analysis of biomolecular sequences is

now considered to be more reliable for bacterial classifi-
cation. Molecular phylogenies do not support the tradi-
tional simple grouping of eubacteria: Gram-negative vs.
Gram-positive [e.g., [4-6]]. The most important and
often used phylogenetic marker for bacteria is 16S ribo-
somal RNA (rRNA) due to their highly conserved nature
of sequences. The second edition of Bergey’s Manual of

Systematic Bacteriology [7], the gold standard of bacter-
ial classification, is mostly based on 16S rRNA phyloge-
nies. Gram-positive bacteria are now grouped into two
paraphyletic groups: the phylum Firmicutes (low G+C
content Gram-positive) and the phylum Actinobacteria
(high G+C content Gram-positive). Gram-negative bac-
teria are composed of more than 20 of highly diverged
phyla. Firmicutes, a Gram-positive phylum, forms a sis-
ter cluster with a Gram-negative phylum Cyanobacteria.
The phylum Proteobacteria, the largest Gram-negative
bacteria group that includes E. coli and many pathogens,
is the most derived group of bacteria.
Understanding the distribution and diversity of the

Kdo2-lipid A biosynthetic pathway among bacteria is
important for a multitude of reasons. Notwithstanding
its limitation, Gram-staining is still widely used in clini-
cal practice. It is often the first diagnostic test, which is
crucial for the initial diagnostic and treatments. Kdo2-
lipid A is the highly immunoreactive endotoxic center
of LPS. The endotoxicity of LPS is dependent on and
mediated by the Kdo2-lipid A component. Furthermore,
the Kdo2-lipid A pathway is being considered as a target
for new antibiotic development [e.g., [8,9]]. Kdo2-lipid A
is required for growth of E. coli and most other Gram-
negative bacteria. Inhibitors of the Kdo2-lipid A bio-
synthesis, therefore, can become good antibiotics against
these bacteria.
In order to elucidate how the Kdo2-lipid A biosyn-

thetic pathway has evolved in the bacterial kingdom, we
examined the distribution of the nine enzymes involved
in this pathway across 61 bacterial genomes. With
Kdo2-lipid A as the final product, the entire pathway
was expected to be highly conserved among Gram-nega-
tive bacteria. On the other hand, Gram-positive bacteria
would lack some or all of the enzymes required for the
Kdo2-lipid A biosynthesis. On the contrary, we identified
a widely varied level of conservation in this pathway
among Gram-negative bacteria. We showed that the
currently known, considered to be “canonical”, nine-
enzyme pathway, which has been characterized mainly
in E. coli and related bacteria, does not represent nor
should be considered as ancestral to all Gram-negative
bacteria. Rather, the nine-enzyme pathway represents
the product of genomic plasticity, evolved in highly-
derived Proteobacteria, especially in those closely related
to E. coli.

Results and discussion
Distribution of Kdo2-lipid A biosynthetic enzymes across
bacterial genomes
Gram-negative bacteria, by definition, should have LPS-
containing outer membranes; hence all these bacteria
are expected to possess all genes encoding Kdo2-lipid A
biosynthetic enzymes. These genes, on the other hand,
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Figure 1 Structure of Kdo2-lipid A from E. coli K12. Parts joined
by the nine enzymes are indicated with shadow and dashed
surrounding. The nine-enzyme pathway is illustrated at the bottom.
Abbreviations for enzymes and substrates are as follows: LpxA: UDP-
N-acetylglucosamine acyltransferase, LpxC: UDP-3-O-(3-
hydroxymyristoyl) N-acetylglucosamine deacetylase, LpxD: UDP-3-O-
(3-hydroxymyristoyl) glucosamine N-acyltransferase, LpxH: UDP-2,3-
diacylglucosamine pyrophosphatase, LpxB: lipid-A-disaccharide
synthase, LpxK: lipid A 4’-kinase, WaaA (or KdtA): 3-deoxy-D-manno-
octulosonate-lipid A transferase (or Kdo-lipid A transferase), LpxL (or
HtrB): Kdo2-lipid IVA lauroyl-ACP acyltransferase, LpxM (or MsbB):
Kdo2-lauroyl-lipid IVA -myristoyl-ACP acyltransferase, ACP: acyl carrier
protein, UDP: uridine diphosphate, UDP-GlcNAc: UDP-N-
acetylglucosamine, and DS-1-P: tetraacyldisaccharide 1-phosphate. In
the pathway, substrates are shown with numbers as follows: 1: UDP-
3-O-(3-hydroxytetradecanoyl)-N-acetylglucosamine, 2: UDP-3-O-(3-
hydroxytetradecanoyl)-glucosamine, 3: UDP-2,3-bis(3-
hydroxytetradecanoyl)-glucosamine, 4: 2,3-bis(3-
hydroxytetradecanoyl)-beta-D-glucosaminyl 1-phosphate, 5:
tetraacyldisaccharide 1,4’-bis-phosphate (lipid IVA), 6: Kdo2-lipid IVA,
and 7: Kdo2-(lauroyl)-lipid IVA.
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are likely to be missing from Gram-positive bacteria
unless they are used in alternative functions in these
bacteria. As we expected, none of the seven Gram-posi-
tive bacteria we examined had the genes encoding these
enzymes. On the other hand, we found surprisingly a
wide range of presence/absence patterns with these
genes among 54 Gram-negative bacteria we studied
(Additional file 1). Only one group of Gammaproteobac-
teria including Escherichia, Vibrio, and Shewanella spe-
cies had all nine genes required for Kdo2-lipid A
biosynthesis. We call them Group II Gammaproteobac-
teria (see Figure 2A). Remaining Gammaproteobacteria
(Group I; e.g., Pseudomonas, Xylella fastidiosa, Coxiella
burnetii) as well as Betaproteobacteria (e.g., Bordetella
parapertussis and Dechloromonas aromatica) had all
genes except lpxM. All other Gram-negative bacteria are
missing lpxH as well as lpxM genes. This implies that
the Kdo2-lipid A biosynthetic pathway consisting of the
nine enzymes is not ancestral, but rather a specialized,
derived form found only in E. coli and closely related
Group II Gammaproteobacteria. The LpxM protein,
found only in this group, shares a sequence similarity of
47% with the LpxL protein, and appeared to be a pro-
duct of gene duplication. We also found two exceptions
among Proteobacteria. Nitrosomonas europaea (Betapro-
teobacteria) had only one (lpxK) and two species of
Walbachia (Alphaproteobacteria) we examined had
none of the nine genes. Seven other bacteria also lacked
all of the nine genes although they are classified as
Gram-negative (Figure 2B and Additional file 1).

Gene duplication and functional specialization
characterize the evolution of the Kdo2-lipid A
biosynthetic pathway
We identified multiple gene-duplication events during
the evolution of the Kdo2-lipid A biosynthetic pathway.
lpxA and lpxD are duplicated genes and share 45%
sequence similarity at the protein level. LpxA and LpxD
proteins have trimer structures with different quaternary
assembly and active sites [10,11]. All bacteria we exam-
ined either possess or lack both enzymes. Therefore,
generation of this pair of enzymes must have been an
early event in Gram-negative bacteria. Further duplica-
tions of either of the genes have happened in some
lineages independently (e.g., lpxA duplication in Geobac-
ter sulfurreducens and lpxD duplication in Gloeobacter
violaceus) (see Additional file 1 for details). lpxH gene,
which encodes pyrophosphatase [12], appeared to have
arisen from a duplication of lpxH2 gene within the Pro-
teobacteria lineage but before Beta- and Gammaproteo-
bacteria divergence (Figure 2). Furthermore, lpxL gene
seems to be prone to duplicate. We identified several
such duplication events including one that generated
lpxM in the Group II Gammaproteobacteria (Figure 2).

lpxH/lpxH2 duplication within Proteobacteria
LpxH and LpxH2 proteins share 42% sequence similarity
[13]. LpxH2 candidates were found mainly in the phylum
Proteobacteria, but also in some other Gram-negative
bacteria (Additional file 1, Figure 2). The duplication
event that created the lpxH gene happened within the
phylum Proteobacteria before the divergence of Beta-
and Gammaproteobacteria (Figures 2A and 3). Interest-
ingly, after the duplication event, lpxH2 gene was lost
from the Group II Gammaproteobacteria except for She-
wanella sp. MR-4 (Figure 2A). It implies that lpxH2 gene
is dispensable when lpxH gene exists. Since some of the
Gram-negative bacteria that have seven enzymes in the
pathway have only lpxH2 gene or neither lpxH nor lpxH2
genes, it is tempting to speculate that functions of LpxH
and LpxH2 proteins are interchangeable or can be
replaced by other non-specific phosphatases (see below
for LpxI discovery). Babinski et al. [12] showed that lpxH
gene from Pseudomonas aeruginosa compensated for the
loss of E. coli K12 lpxH, but lpxH2 of P. aeruginosa did
not. For those Proteobacteria that have both of LpxH and
LpxH2 proteins, the function of each protein may have
been optimized for their specific roles. Such specialized
proteins may not be as flexible as the ancestral form.
LpxH and LpxH2 proteins belong to the metallopho-

sphoesterase superfamily (PF00149; the Pfam database
[14]). The LpxH and LpxH2 protein groups form two dis-
tinct clusters among similar bacterial proteins identified
(see the inset of Figure 3). All these proteins contain a
five-block motif: D-Xn-GD-Xn-GNH(E/D)-Xn-H-Xn-
GHXH, a signature of the metallophosphoesterase super-
family. Mutational and structural analyses showed that
these residues are involved in metal-ion binding and cata-
lysis [15-18]. The five-block residues are completely con-
served among all proteins we examined including LpxH
and LpxH2 (shown in the inset of Figure 3) except for the
third block, GNH(E/D), where the histidine (H) is substi-
tuted to arginine (R) only in LpxH (Additional file 2).
After the LpxH2/H ancestral protein was generated by a
duplication of a gene encoding a protein similar to calci-
neurin phosphohydrolase (the closest relative of LpxH2/
H), another duplication produced the two protein families,
LpxH2 and LpxH (Figure 3). Although the function of
LpxH2 has been unknown, comparisons of structural
models of LpxH and LpxH2 proteins indicate that the
five-block regions form similar cavities in these proteins
(see Methods and Additional file 2). The histidine-to-argi-
nine substitution in the third block in LpxH may have
increased the LpxH activity significantly in Beta- and
Gammaproteobacteria.
Recently, Metzger and Raetz [19] identified a gene

located between lpxA and lpxB in Caulobacter crescen-
tus (Alphaproteobacteria). This gene, named lpxI, which
does not share similarity with lpxH/lpxH2 genes, was
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found to catalyze UDP-2,3-diacylglucosamine hydrolysis
by a mechanism different from lpxH. It also rescued
lpxH-deficient E. coli. lpxI orthologues were found in
many, but not all of, bacteria that lack lpxH [19] (see
also Additional file 1). Metzger and Raetz [19] reported

that lpxI was found even from Gram-positive bacteria
(e.g., Firmicutes). It suggests that replacement of lpxH
gene function appears to be not very difficult, and mul-
tiple gene recruitments may have happened during the
evolution of Kdo2-lipid A biosynthetic pathway.

Porphyromonas gingivalis (Ba)
Pelodictyon phaeoclathratiforme (Cr)

Geobacter sulfurreducens (δ)
Campylobacter jejuni (ε)

Coxiella burnetii (γ) 
Helicobacter pylori (ε)

Candidatus Koribacter versatilis Ellin345 (Ac)
Rhodopirellula baltica (Pl) 

Shewanella sp. MR-4 (γ*)
Marinobacter aquaeolei (γ)

Stenotrophomonas maltophilia (γ)
Sinorhizobium meliloti (α) 

Agrobacterium tumefaciens (α) 
Bordetella parapertussis (β)

Ralstonia solanacearum (β)
Dechloromonas aromatica (β)
gamma proteobacterium HTCC5015 (γ)
Pseudomonas aeruginosa (γ) 
Pseudomonas putida (γ) 
Pseudomonas syringae (γ)

Saccharophagus degradans (γ)
Opitutus terrae  (Ve) 

Marinobacter aquaeolei (γ)
Pseudomonas aeruginosa (γ)

Pseudomonas putida (γ)
Pseudomonas syringae (γ)

Coxiella burnetii (γ)
Ralstonia solanacearum (β)

Dechloromonas aromatica (β) 
Bordetella parapertussis (β)

gamma proteobacterium HTCC5015 (γ)
Saccharophagus degradans (γ)

Xylella fastidiosa (γ)
Stenotrophomonas maltophilia (γ)

Shewanella sp. MR-4 (γ*)
Pasteurella multocida (γ*) 

Haemophilus influenzae (γ*)
Vibrio cholerae (γ*)

Yersinia pestis (γ*)
Escherichia coli (γ*) 
Salmonella enterica (γ*)

L
p

xH
2

L
p

xH

1.0 amino acid substitutions/site

LpxH2/LpxH
duplication

L
p

xH
2

LpxH

Calcineurin-like

phosphoesterase

(IPR013622)

C
yc

lic
-A

M
P

p
h

o
sp

h
o

d
ie

st
er

as
e,

 
cl

as
s-

II
(I

P
R

00
03

96
)

P
hosphodiesterase

M
J0936 (IP

R
000979)

UDP-2,3-diacylglucosamine hyd
ro

la
se

 (I
PR

01
01

83
) 

2.0 amino acid substitutions/site

DNA re
pair e

xonuclease

(IP
R003701)

Exonuclease SbcD

(IPR004593)

Figure 3 The maximum-likelihood phylogenetic tree of LpxH, LpxH2, and related proteins. Circles at internal nodes indicate bootstrap-
supporting values as follows: black circles ≥ 95%, gray circles ≥ 85%, and white circles ≥ 70%. Proteobacteria are shown with green letters and
lines. Group-II Gammaproteobacteria are indicated by *. See Figure 2 legend for abbreviations used for bacterial classification. The red arrowhead
shows where the LpxH/LpxH2 duplication happened. The inset shows the maximum likelihood phylogeny reconstructed from all of the similar
proteins identified in this study. It shows that each protein family (indicated with triangles with InterPro accession numbers) forms a distinct cluster.

Opiyo et al. BMC Evolutionary Biology 2010, 10:362
http://www.biomedcentral.com/1471-2148/10/362

Page 5 of 13



Multiple lpxL duplications within Gram-negative bacteria
Figure 4 shows the LpxL phylogeny for the entire set of
bacteria we examined. Among the Gram-negative bac-
teria, we identified three or more independent duplica-
tion as well as loss events that involved with lpxL. The
first duplication appears to have happened within the
phylum Proteobacteria. After Coxiella burnetti has
diverged from other Beta- and Gammabacteria, the
duplication event generated two lpxL genes (we call
them Types 1 and 2 in Figure 4). One of the duplicated
lpxL genes, Type 2, was lost before the divergence of
the Group-I Gammaproteobacteria. Interestingly this
event coincided with the second gene duplication that
created the lpxM gene in this group (Figure 4). The
third duplication event is identified only in the lineage
leading to closely related enterobacteria (E. coli, Salmo-
nella enterica, and Yersinia pestis). The duplication pro-
duct, LpxP, shares 74% sequence similarity with the
LpxL protein. The original lpxL gene (Type 1) was sub-
sequently lost from the Y. pestis genome (Figure 4). In
addition to these major duplication events, we also iden-
tified at least two species-specific lpxL duplications in
Gammaproteobacteria: one for Type 1 (in Alcanivorax
borkumensis SK2; order Oceanospirillales) and another
for Type 2 (in Francisella novicida; order Thiotrichales).
Functional specialization in lpxL and its paralogues
Although it is not clear if Types-1 and -2 LpxL function
differently in all Beta/Gammabacteria, in some bacteria
duplicated LpxL copies have apparently evolved to have
slightly different functions. Type-1 LpxL (LpxL1) of Bor-
detella pertutssis adds secondary 2-hydroxy laurate at
the position 2 of Kdo2-lipid A, and Type-2 LpxL
(LpxL2) adds myristate at the position 2’ of Kdo2-lipid
A [20]. Francisella novicida has species-specific dupli-
cated copies of Type-1 LpxL, LpxL1 and LpxL2, and
they function as Kdo-dependent and -independent acyl-
transferases, respectively. LpxL2 of F. novicida can add
laurate at the position 2’ of lipid IVA without Kdo addi-
tion by WaaA, which probably accounts for a large
amount of ‘free lipid A’ (lipid A not linked to Kdo, core
sugars, and O-antigen) [21].
Acyltransferases LpxL and LpxM share 47% sequence

similarity. In E. coli, LpxL and LpxM add laurate at the
position 2’ and myristate at the position 3’ of Kdo2-lipid
A, respectively [22], and have conserved catalytic dyad
motifs HX4D and HX4E, respectively [23]. LpxM is not
required for growth of E. coli K12 [24]. While E. coli
K12 mutants for lpxL and lpxM genes can grow on
minimum medium and at all temperatures, they do not
grow on rich media at temperatures above 32°C [24-26].
In Haemorphilus influenzae, LpxL and LpxM are both
myristoyl transferases [27]. Therefore, four types of
related enzymes appear to have evolved after duplica-
tions: “generalist” LpxL enzyme that catalyzes the

transfer of both laurate and myristate, more “specia-
lized” LpxL enzyme that acts only either on laurate or
myristate, and LpxM newly “specialized” as myristoyl
transferase. LpxM is especially optimized for Group II
Gammaproteobacteria, many of which live in warm
body temperatures of the hosts.
Cold-temperature adaptation with lpxP
Another lpxL duplicate, lpxP, is found in E. coli and
other closely related enterobacteria. While E. coli and S.
enterica have all three paralogous genes (lpxL, lpxM,
and lpxP), Y. pestis has only two derived copies (lpxM
and lpxP). lpxP encodes the palmitoleoyl transferase,
which is induced upon cold shock (12°C) [28]. In E. coli,
palmitoleate is incorporated to Kdo2-lipid IVA by LpxP
at the position where normally LpxL incorporates lau-
rate (See Figure 1) [26]. Palmitoleoyl residue changes
the properties (e.g., fluidity) of the outer membrane and
makes bacteria adaptable to low growth temperatures.
While survival outside of an animal host is necessary in
bacteria such as E. coli, H. influenzae, for example, is
transmitted from animal to animal without being
exposed in the colder environment. These Gram-nega-
tive bacteria do not have lpxP gene.
Another example of lipid-A associated adaptation is

found in Y. pestis. Y. pestis changes its host from flea to
mouse, cold to warm temperature environment. Due to
the absence of the lpxL gene, Y. pestis produces only
tetra-acylated Kdo2-lipid IVA (see Figure 1) but not hexa-
acylated Kdo2-lipid A at 37°C (mammalian host tempera-
ture) contributing bacteria’s poor Toll-like receptor 4
(TLR4) stimulating activity [29]. With lpxP activated,
however, at 21°C (flea temperature) hexa-acylated Kdo2-
lipid A with palmitoleate is synthesized in Y. pestis.

Four-enzyme pathway in Cyanobacteria and Dictyoglomi:
the primordial form?
Cyanobacteria (Cn in Figure 2) and Dictyoglomi (Di)
have only four of the nine genes: lpxA, lpxC, lpxD, and
lpxB (Figure 2). These genes encode the first four
enzymes of Kdo2-lipid A biosynthesis up to the point of
producing the lipid A disaccharide (DS-1-P in Figure 1),
implying that this may be the primordial form of lipid
A. LPS from Cyanobacteria is simpler than that of LPS
of enteric bacteria and lacks Kdo, heptose, and phos-
phate [30-33]. It is reported that LPS from E. coli is
more toxic than LPS from Cyanobacteria [34].

Kdo2-lipid A biosynthetic pathway gene clusters
In prokaryotic genomes, many functionally related gene
sets exist as gene clusters [e.g., [35-37]]. As shown in Addi-
tional file 3, genes encoding some or all of the first four
enzymes (lpxA , lpxC, lpxD, and lpxB) are often found in a
gene cluster. Dictyoglomi and Cyanobacteria have only
these four genes and all of them exist in a conserved gene
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cluster, lpxD-lpxC-fabZ-lpxA-lpxB. Note that the majority
of these clusters include fabZ, which encodes (3R)-hydro-
xymyristoyl acyl carrier protein (ACP) dehydratase [38].
(3R)-hydroxymyristoyl-ACP serves as an important bio-
synthetic branch point. It is transferred to UDP-GlcNAc
to initiate lipid A biosynthesis (Figure 1). Or it is elongated

by FabZ and other enzymes of fatty acid synthesis to pal-
mitate, which is a major component of the membrane gly-
cerophospholipids. Therefore, this gene cluster is
important for regulating the proportion of LPS and phos-
polipids in bacterial membranes. In some bacteria (e.g.,
Bacteriodetes, Chorolobi, and Verrucomicrobia), the
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lpxC-fabZ part of the cluster has been fused and exists as a
single gene (denoted as lpxC/fabZ in Additional file 3).
Although lpxH is not found as part of these gene clusters,
as mentioned before, its functional equivalent lpxI is
found as part of the cluster (existing between lpxA and B)
in Alphaproteobacteria and some other bacteria (see Addi-
tional file 3). Another often found gene cluster is waaA-
lpxK. Again these genes encode enzymes that catalyze the
two consecutive steps (see Figure 1) indicating the impor-
tance of their functional association in Kdo2-lipid A
biosynthesis.

Bacterial phylogeny based on Kdo2-lipid A biosynthetic
enzymes
There have been a number of studies to reconstruct
bacterial phylogenies using various molecular data [e.g.,
[6,39-41]]. Our phylogenies based on Kdo2-lipid A bio-
synthesis enzymes, analyzed concatenated (Figure 2A) or
individually (Figures 3 and 4), are largely consistent with
previous studies. The monophyletic cluster including
both Gamma- and Betaproteobacteria is strongly sup-
ported by high bootstrap values in both Lpx protein and
16S rRNA phylogenies (both 100% in Figure 2) as well
as by the shared events with lpxH2/lpxH and lpxL dupli-
cations. Group II Gammaproteobacteria, which includes
the orders Enterobacteriales (E. coli, S. enterica, Y. pes-
tis), Pasteurellales (H. influenzae, Pasteurella multocida),
Vibrionales (V. cholerae), and Alteromonadales (Shewa-
nella), also form a highly-supported cluster (100% boot-
strap values in Figure 2) and all share the newly
emerged lpxM gene. This Group II Gammaproteobac-
teria clustering is also supported by the phylogenetic
study by Gao et al. [42] based on 36 protein data as
well as the existence of the unique indel within the
RNA polymerase b-subunit (RpoB).
Using the Dictyoglomi (Di) as the outgroup (see

Method), phylogenies based on both of the Kdo2-lipid A
biosynthetic enzymes and the 16S rRNA (Figure 2)
showed that most bacteria that have no or only four
enzymes (both Gram-positive and -negative bacteria) are
located at basal relative to those that have seven or
more of the enzymes. Exceptions include Brachyspira
hyodysenteriae (phylum Spirochaetes) and Thermodesul-
fovibrio yellowstonii (phylum Nitrospirae). Fusobacter-
ium nucleatum (phylum Fusobacteria) was also located
outside of Cyanobacteria cluster in Kdo2-lipid A enzyme
phylogeney (Figure 2A). Note, however, that none of
their phylogenetic positions was supported with high
bootstrap values in 16S rRNA phylogeny (Figure 2B).

Gram-negative bacteria with no Kdo2-lipid A biosynthetic
enzyme
Some Gram-negative bacteria (shown with stars in
Figure 2B; described also in [2]) as well as Gram-

positive bacteria (shown with orange letters and lines in
Figure 2B) have none of the nine enzymes. As men-
tioned above, since both Dictyoglomi (used as the out-
group; Di) and Cyanobacteria (Cn) have the first four
enzymes of the pathway, having the four-enzyme path-
way appears to be the ancestral form. It implies that
these enzymes must have been lost later in some groups
of bacteria. Many of the Gram-negative bacteria with no
Kdo2-lipid A biosynthetic enzyme have specialized life-
styles: endosymbiomes (e.g., Wolbachia and Borrelia
burgdorferi), obligate chemolithoautotroph (e.g., Nitroso-
monas europaea), or hyperthermophiles (e.g., Thermosi-
pho africanus and Petrotoga mobilis).
Wolbachia is either a parasite in arthropod hosts or a

mutualist in nematode hosts. It belongs to the family Ana-
plasmataceae of the class Alphaproteobacteria. Bacteria in
this family include Ehrlichia chaffeensis, Anaplasma phago-
cytophilum, and Neorickettsia sennetsu; all are obligatory
intracellular and infect mononuclear cells and granulocytes.
They have been found to lack Kdo2-lipid A biosynthetic
genes [43,44]. Therefore, the loss of these genes must have
happened in the ancestral lineage after the divergence from
other Alphaproteobacteria group (see Figure 2). Lipid A is
directly recognized by hosts to trigger innate-immune
responses [45,46]. It is likely that the endosymbiotic bac-
teria have adapted to their symbiosis conditions by losing
these enzymes and not producing lipid A to avoid the
induction of defense response in the hosts.
B. burgdorferi is also an endosymbiotic bacterium that

lives in ticks and transmits Lyme disease. T. denticola is
the cause of periodontal disease. They belong to the
family Spirochaetaceae (phylum Spirochaetes; order
Spirochaetales). While there have been conflicting
reports whether or not these bacteria have LPS [47-50],
genomic analyses showed that these bacteria as well as
T. pallidum lack Kdo2-lipid A biosynthetic enzymes
[51-53] (see also Additional file 1). The genes encoding
these enzymes have been identified from two other Spir-
ochaetes families (Leptospiraceae and Brachyspiraceae),
which diverged earlier than the family Spirochaetaceae
(Figure 2A; also see [54,55]). Therefore, the gene loss
event is specific to the family Spirochaetaceae.
N. europaea is a obligate chemolithoautotroph that

derives all its energy and reductant for growth from the
oxidation of ammonia to nitrite [56,57]. Only lpxK was
detected from this Betaproteobacteria species. From the
closely related Nitrosospira multiformis genome, only
lpxA gene instead has been identified [58]. These
ammonia-oxidizing bacteria have the smallest genomes
(~3 Mb) among the Betaproteobacteria [59]. Such gen-
ome reduction is consistent with their limited lifestyles
as we also described earlier for obligate endosymbionts
and pathogens. Large numbers of insertion sequence
elements and pseudogenes have been also found in
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these genomes, implying that the genomes are still
undergoing reductive evolution.

The origin of lpx genes found in plants
Although Kdo2-lipid A biosynthesis is generally consid-
ered to be a prokaryote-specific function, at least six of
the nine lpx genes have been identified in Arabidopsis
thaliana, Oryza sativa, and other plant genomes (data
not shown; see also [2,60]). Furthermore, Armstrong et
al. [61] showed that green algae and chloroplasts of gar-
den pea were stained with affinity reagents for lipid A,
indicating that these plants synthesize lipid A-like mole-
cules. Since Cyanobacteria possess only the first four
genes, all or some of the lpx genes in plants must have
been transferred from bacteria other than Cyanobacteria.
Despite the presence of lipid A genes in plants,

attempts to isolate canonical lipid A from plants using
standard methods have been unsuccessful (Pardy, unpub-
lished data); no structural data for putative lipid A in
higher plants has been reported. However, as mentioned
earlier, using a novel lipid A preparation technique, Sny-
der et al. [33] recently provided chemical composition
and structural data for a simple lipid A from strains of a
marine cyanobacteria, Synechoccoccus. The composition
and structure of this lipid A differs significantly from that
of canonical lipid A from enteric bacteria in ways
hypothesized to be adaptive to marine Synechoccoccus.
Although not only the first four genes exist in plants,
lipid A in plants likely has a structure different from
canonical lipid A. Further investigation is required to elu-
cidate the origin and functions of eukaryotic lpx genes.

Conclusions
Bacterial genomes are extremely plastic. Although the
Kdo2-lipid A biosynthesis is one of the most fundamen-
tal and most conserved pathways among Gram-negative
bacteria, this study showed that gene duplications as
well as partial or complete losses of the genes encoding
these enzymes have happened multiple times indepen-
dently during bacterial evolution. Each group of bacteria
took advantage of such evolutionary events to optimize
the pathway and adapted to their specialized life style.
The most optimized form of the pathway is found in
the Proteobacteria lineage, especially among Gammapro-
teobacteria. The nine-enzyme pathway currently known
for the Kdo2-lipid A biosynthesis, which is mainly stu-
died in E. coli and related bacteria, is the most opti-
mized, derived form of this pathway.

Methods
Bacterial genomes used
All bacterial genomes were downloaded from National
Center for Biotechnology Information website [62] and
other sources (see Additional file 1). Complete genomes

of 61 bacterial species were sampled from 17 phyla
including seven species of Gram-positive bacteria as
controls. All species we examined were listed in Addi-
tional file 1. Accession numbers and sequences used in
this study are available upon request.

Searching for Kdo2-lipid A biosynthetic enzymes
BLAST similarity search
We started our similarity searches using the nine enzyme
sequences obtained from the E. coli K12 genome as
queries against the other 60 bacterial genomes (Addi-
tional file 1). For LpxI, the protein sequence from Caulo-
bacter crescentus (Accession # NP_420717) was used as
the query. blastp and tblastn [63] were used with a con-
stant sample size (database length = 6,400,000; obtained
as the average length of the query, 320 amino acids, mul-
tiplied by a constant genome size, 20,000). A cut-off E-
value of 0.01 was used to define when there was no hit.
In order to identify the orthologues, ‘reciprocal’ searches
were performed against all genomes again using the top
hit from each genome as the query.
Note that for Brachyspira hyodysenteriae (phylum

Spirochaetes), although Bellgard et al. [54] mentioned
that seven of the nine genes including lpxM was identi-
fied from the genome, we found only one copy of the
LpxL protein and no other protein similar to LpxL.
Profile hidden Markov models (profile HMMs)
Each bacterial genome was further searched using profile
HMMs. The protein sequences found by BLAST similar-
ity searches were used to build the profile HMM for each
enzyme using the w0.5 script of the Sequence Alignment
and Modeling Software System (SAM, version 3.5; [64]).
Since LpxH and LpxM were found only from a limited
number of Proteobacteria, additional protein sequences
of these enzymes (29 for LpxH, 42 for LpxM, and 47 for
LpxI) were added from other bacterial species to build
profile HMMs. A cut-off E-value of 0.01 and a constant
sample size of 20,000 were used for profile HMM
searches. To identify LpxH2 from the profile HMM
search results, all sequences with the metallophosphoes-
terase superfamily signature D-Xn-GD-Xn-GNH(E/D)-
Xn-H-Xn-GHXH were selected. Phylogenetic analysis
(described next) was performed on the selected
sequences to discriminate LpxH2 from other metallopho-
sphoesterase. All sequences found in the cluster (78%
bootstrap support) that includes proteins identified as the
“UDP-2,3-diacylglucosamine hydrolase family” by Inter-
Pro (IPR010138; [65]) were selected as LpxH2 as well as
LpxH (see Figure 3). Based on the phylogenetic locations,
sequences belonging to LpxH and LpxH2 were decided.

Multiple alignment and phylogenetic tree inferences
Multiple alignments of protein sequences were gener-
ated using MAFFT with the FFT-NS-i algorithm
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(version 6.24; [66]). The multiple alignment of 16S
rRNA sequences was reconstructed using cmalign
(Infernal package, version 1.02; [67]). Phylogenetic trees
were reconstructed by a maximum likelihood method
RAxML (version 7.0.4; [68]). The WAG and the general
time reversible substitution model both with Gamma
distribution for rate heterogeneity among sites were
used for protein and 16S rRNA sequences, respectively.
Bootstrap analysis was done with 1,000 replications for
all phylogenetic reconstructions.
Many previous studies based on various molecular

data showed that among the phyla included in this
study, Thermotogae, Dictyoglomi, Deinococcus-Ther-
mus, and Chloroflex have diverged earlier than other
groups. Thermotogae and Dictyoglomi, for example,
were shown as outmost groups based on studies from
16S and 23S rRNAs, ribosomal and other proteins, as
well as based on the gene order [e.g., [6,41,69,70]]. Fir-
micutes as an outmost group has been also supported
by some other studies [40,71,72]. Our phylogenetic ana-
lysis showed paraphyly among Firmicutes. Among bac-
terial group that have Kdo2-lipid A biosynthetic
enzymes, we chose Dictyoglomi as the outgroup.
For the concatenated protein phylogeny for Figure 2A,

six proteins are included: LpxA, LpxC, LpxD, LpxB,
WaaA, and LpxL. Each set of protein sequences were
aligned individually, then concatenated as one align-
ment. For LpxA and LpxD, one copy was included
when there was more than one duplicated copy. For
LpxL, Type 1 was included when there was more than
one copy.

Structural analyses of LpxH and LpxH2 proteins
Conserved motifs
Figure S1A (Additional file 2) shows the five conserved
blocks found in multiple alignments of the calcineurin-
like phosphoesterase (PF00149), LpxH, and LpxH2
families, illustrated by sequence logos [73-75]. For
PF00149, the Pfam seed alignment including 330
sequences was used. For LpxH and LpxH2, the align-
ments included 17 and 38 sequences, respectively, after
removing sequences from closely related Pseudomonas
species except for those from P. aeruginosa as
representatives.
Structural modeling of LpxH and LpxH2 proteins
Structural modeling is performed using SWISS-MODEL
Web server [76,77]. Figure S1B (Additional file 2) shows
the models for P. aeruginosa LpxH (Pa LpxH; the posi-
tions 2- 232 out of 240 amino acids were used for mod-
eling), P. aeruginosa LpxH2 (Pa LpxH2; pos. 16- 253
out of 270 aa), Y. pestis LpxH (Yp LpxH; pos. 3-238 out
of 240 aa), and Sinorhizobium meliloti LpxH2 (Sm
LpxH2; pos. 15-252 out of 281 aa). These four proteins
were chosen to represent following different modes of

LpxH/LpxH2 proteins: “LpxH2 only” mode before
LpxH/LpxH2 duplication (Sm LpxH2), “dual” mode
after the duplication (Pa LpxH and Pa LpxH2), and
“LpxH only mode” after losing LpxH2 (Yp LpxH;
modeling was not possible with the E. coli LpxH) (see
Figure 2 for the evolution of LpxH/LpxH2 proteins).
The template structure selected by the server was a
potential phosphoesterase, aq_1956 of Aquifex aeolicus
vf5 (PDB ID: 2YVT, A chain) [78]. The sequence simila-
rities (E-values) of the four proteins against the template
are as follows: 2 × 10-06 (Pa LpxH), 1.7 × 10-26 (Pa
LpxH2), 3.70 × 10-5 (Yp LpxH), and 9.20 × 10-26 (Sm
LpxH2). All LpxH and LpxH2 models have the root
mean square deviations (RMSD) against the template
structure of less than 1 Å for the colored regions and
they are considered to be usable for modeling. Struc-
tural mining and graphic representation were done by
PyMol [79].
Structural comparisons between LpxH and LpxH2
The first step of the LpxH/H2 reaction is to fix the UDP
moiety (the substrate) to the enzyme. All four models
show that blocks 3 and 5 form a narrow gate in the
middle of the long cleft formed by blocks 1, 2, 3, and 4.
The block 3 potentially plays a key role in this UDP-
binding. An arginine (R), included in the block 3 of
LpxH, has been found to bind directly to a uridine in a
deoxyuridine triphosphate pyrophosphatase (dUTPase)
[80,81]. The guanidine moiety in the arginine interacts
with the uridine in UDP. Németh-Pongrácz et al. [82]
showed that removal of the guanidine moiety almost
compromised the dUTPase activity. Therefore, it is plau-
sible that the replacement of His253 (the position num-
ber is based on the alignment shown in the sequence
logo) in LpxH2 to Arg253 in LpxH has brought signifi-
cant increase in the enzyme activity in LpxH. Based on
the studies on the dUTPase [80] as well as on metal-
dependent phosphatases [e.g., [15,17]], the roles of the
conserved residues in LpxH and LpxH2 proteins can be
inferred as follows. Negatively charged aspartic acids (D)
in blocks 1, 2, and 3 form metal-binding sites (e.g., for
magnesium). The block 4 provides an attacking-water.
Finally the block 5 holds the negatively charged sugar
moiety of UDP-2,3-diacylglucosamine.
LpxH2 does not have the key arginine in the block 3.

However, our modeling showed that the block 4 of Pa
LpxH2 is located inside of the molecule (not visible in
Figure S1B, Additional file 2) and the red-colored area
is occupied by the amino acids “NRW” providing an
arginine residue. Both in LpxH2 from S. meliloti (Sm
LpxH2) and in LpxH from Y. pestis (Yp LpxH), the
block 4’s are also inside of the molecules (not visible),
and other amino acids ("GDW” and “DTD”, respectively)
occupy the corresponding surface areas (red colored;
these amino acid positions are also marked with red
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open boxes under the sequence logos for LpxH and
LpxH2). Although the block 4 is highly conserved
among LpxH and LpxH2 proteins, only the first histi-
dine (H) is conserved among the metalophosphoesterase
family (see the PF00149 sequence logo in Figure S1A,
Additional file 2). Its exact spatial position may not sig-
nificantly affect the enzyme function. Alternatively, a
neighboring histidine may be used for the same func-
tion. After the duplication, acquiring an arginine (R) in
the block 3 must have improved the enzymatic activity
of LpxH (Pa LpxH and Yp LpxH). Such change did not
happen in the duplicated counterpart protein, Pa
LpxH2. However, a mutation to gain another arginine
happened in the area structurally equivalent to the block
4. This could also increase the enzymatic activity of
LpxH2 in P. aeruginosa.

Additional material

Additional file 1: Distribution of Kdo2-lipid A biosynthetic enzymes
across bacteria.

Additional file 2: Structural analysis of LpxH and LpxH2 proteins.

Additional file 3: Distribution of Kdo2-lipid A biosynthesis gene
clusters.
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