
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Valery Forbes Publications Papers in the Biological Sciences 

2009 

The Potential for the Use of Agent-Based Models in Ecotoxicology The Potential for the Use of Agent-Based Models in Ecotoxicology 

Christopher J. Topping 
University of Aarhus, Rønde, Denmark, cjt@dmu.dk 

Trine Dalkvist 
University of Aarhus, Rønde, Denmark 

Valery E. Forbes 
University of Nebraska-Lincoln, veforbes@umn.edu 

Volker Grimm 
Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany, volker.grimm@ufz.de 

Richard M. Sibly 
University of Reading, r.m.sibly@rdg.ac.uk 

Follow this and additional works at: https://digitalcommons.unl.edu/biosciforbes 

 Part of the Pharmacology, Toxicology and Environmental Health Commons 

Topping, Christopher J.; Dalkvist, Trine; Forbes, Valery E.; Grimm, Volker; and Sibly, Richard M., "The 
Potential for the Use of Agent-Based Models in Ecotoxicology" (2009). Valery Forbes Publications. 22. 
https://digitalcommons.unl.edu/biosciforbes/22 

This Article is brought to you for free and open access by the Papers in the Biological Sciences at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Valery Forbes Publications 
by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17246679?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/biosciforbes
https://digitalcommons.unl.edu/bioscipapers
https://digitalcommons.unl.edu/biosciforbes?utm_source=digitalcommons.unl.edu%2Fbiosciforbes%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/63?utm_source=digitalcommons.unl.edu%2Fbiosciforbes%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/biosciforbes/22?utm_source=digitalcommons.unl.edu%2Fbiosciforbes%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages


205

Published in J. Devillers (ed.), Ecotoxicology Modeling, Emerging Topics in Ecotoxicology:  
Principles, Approaches and Perspectives 2, pp. 205– 235; doi: 10.1007/978-1-4419-0197-2 _8   

Copyright © 2009 Springer Science+Business Media, LLC. Used by permission.   

The Potential for the Use of Agent-Based 
Models in Ecotoxicology 

Christopher J. Topping, Trine Dalkvist, Valery E. Forbes,  
Volker Grimm, and Richard M. Sibly 

Corresponding author — C. J. Topping, Department of Wildlife Ecology and Biodiversity, Na-
tional Environmental Research Institute, University of Aarhus, Grenåvej 14, DK-8410 Rønde, 
Denmark;  e-mail cjt@dmu.dk 

Abstract 
This chapter introduces ABMs, their construction, and the pros and cons of their use. Al-
though relatively new, agent-based models (ABMs) have great potential for use in ecotox-
icological research – their primary advantage being the realistic simulations that can be 
constructed and particularly their explicit handling of space and time in simulations. Ex-
amples are provided of their use in ecotoxicology primarily exemplified by different im-
plementations of the ALMaSS system. These examples presented demonstrate how mul-
tiple stressors, landscape structure, details regarding toxicology, animal behavior, and 
socioeconomic effects can and should be taken into account when constructing simulations 
for risk assessment. Like ecological systems, in ABMs the behavior at the system level is 
not simply the mean of the component responses, but the sum of the often nonlinear inter-
actions between components in the system; hence this modeling approach opens the door 
to implementing and testing much more realistic and holistic ecotoxicological models than 
are currently used. 

Keywords: Population-level risk assessment, ALMaSS, Pattern-oriented modeling, ODD, 
Multiple stressors 

1 Introduction 

This chapter is intended to provide some background on agent-based mod-
els (ABMs) and the potential for their use in ecotoxicology. This is achieved by 
a mixture of examples and minireview of ABM issues; it is, therefore, intended 
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as a primer for those interested in further exploring this type of modeling in 
ecotoxicology. 

Ecotoxicology has, in common with the majority of the natural sciences, fol-
lowed the basic principles of analytic thinking whereby the whole is abstractly  
separated into its constituent parts in order to study the parts and their relation-
ships. This approach to science works for physical systems such as those typically 
studied in physics or chemistry, but may not always be the optimal approach 
for biological systems with their innate complexity and interactions. For exam-
ple, in the case of evaluating the impact of stressors on biological systems there is 
clearly a great difference between the response of animals in the laboratory, given 
a precisely measured and timed dose of toxicant, and the populations of the same 
animals moving through a real-world situation of spatiotemporal variability in 
toxicant concentration, interacting with each other and the biotic and abiotic com-
ponents of their environment. 

It is in fact rather difficult to see how the abstract laboratory test can easily be 
related to impacts at the population level. Following this train of thought sug-
gests that in order to properly understand this kind of system we should perhaps 
embrace its complexity rather than ignore it. This means treating a system as an 
integrated whole whose properties arise from the relationships between the sys-
tem components rather than studying the components in isolation, thus shifting 
from the importance of elements to the importance of organizational pattern, i.e., 
applying a systems approach. Luckily, the use of ABMs opens up the potential 
for doing just this. 

1.1 What Is an ABM? 

An ABM is a computational model for simulating the actions and interactions 
of autonomous individuals in a defined virtual world, with a view to assessing 
their effects on the system as a whole. This is clearly analogous to integrating the 
response of individuals into a population response that, when considering im-
pact assessment in ecotoxicology, is the level at which interest and protection 
goals are usually aimed. 

Of course, there are many models of ecological populations and many ap-
proaches, but there are a number of characteristics of ABMs that set them apart 
from other more traditional approaches. These characteristics can be broadly de-
scribed as being their explicit consideration of spatiotemporal variability and 
their ability to include individual behavior, with population responses being 
emergent features. Thus, animal behavior such as patterns of movement can be 
simulated so that a dispersing animal moves in very different ways depending 
upon its type (e.g., bird, mouse, beetle, human). This provides a huge predictive 
potential compared with more aggregated approaches. 

These properties have resulted in the use of ABMs in a wide and steadily in-
creasing range of applications. In 1996, there were 31 agent-based papers pub-
lished (source: ISI Web of Knowledge), but by 2006 the number had risen to 
494. Some varied examples include simulations of immune system responses to 
perturbations [1], of ethnic diversity in economically and spatially structured 
neighborhoods [2], of entry and exit routes to a baseball stadium under a range 
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of conditions including simulation of terrorist attack [3], and of urban evacu-
ation strategies [4]. Current use of ABMs in ecotoxicology is limited, but their 
usage in related areas is increasing. Recent developments include models of 
whale watching by tour boats, including evaluation of the risks to the whale 
population [5], epidemiology (e.g., [6, 7]), the exploitation of limited renewable 
resource [8], and conservation [9–11]. ABMs help understand biological sys-
tems because, unlike physical systems, there is heterogeneity in their compo-
nents, and this heterogeneity affects the overall dynamics of the system [12,13] 
in short because variation in space and time matters in biological systems and 
ABMs deal with this very well. 

In ecology, ABMs developed somewhat independently of other disciplines 
and are often referred to as “individual-based models” (IBMs). The distinc-
tion is, however, of little importance today, and Grimm [14] suggests not dis-
tinguishing IBMs and ABMs any longer and using both terms interchangeably. 
Originally the term IBM was used to emphasize the discreteness of individuals, 
heterogeneity among individuals, and local interactions, rather than adaptive 
decision making and behavior, which have been the main drivers in the devel-
opment of ABMs [12, 15]. Recently however, IBMs and ABMs have merged into 
one big class of models [16], covering a wide range from very simple to rather 
complex models [17]. 

In this chapter, we focus on “full-fledged” ABMs, which include realistic land-
scapes, a high temporal and spatial resolution, individual heterogeneity, local in-
teractions, adaptive behavior, and often also different species. This is, in terms 
of development time and resources needed for testing and parameterization, the 
most demanding type of ABMs, but also the most powerful one if it comes to the 
potential to validate these models and to use them for predictions of environmen-
tal scenarios that so far have not been observed. It should be kept in mind, how-
ever, that more simple ABMs also have their place in basic and applied ecology, 
including ecotoxicology (e.g., [18]). 

1.2 Constructing ABMs 

ABMs can be significantly more demanding to develop than other population 
models. Development starts with the creation of a conceptual model of the sys-
tem of study comprising the basic simulation goals, elements of the system and 
their behaviors, and the endpoints of interest [16, 19]. Depending upon the goals 
of the model, it may utilize designed or empirically grounded agents and envi-
ronments, and choices here may have significant implications for results, as we 
now show. 

In early ABMs structural environment into which the agents are placed was 
created using regular geometric shapes, but it is now known that the use of unre-
alistic structural environments may bias results [20], and a similar argument can 
be made for simplification of the behaviors of agents [21]. Another problem that 
the ABM developer may face, which is not a problem for traditional modeling ap-
proaches, is that of concurrency. Concurrency problems occur when objects inter-
act, especially if their interaction is controlled via some limiting resource. A good 
example of this is the well-known model by DeAngelis et al. [22] where wide-
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mouthed bass interact indirectly through their Daphnia food resource and directly 
by eating each other. By not taking account of concurrency issues the positive 
feedback loops emergent in the model were strengthened (see [23] for a discus-
sion of this effect and concurrency issues in ABMs). Concurrency issues are not 
critical to all ABMs but in cases where they are they can increase the complexity 
of model design. Scheduling of the model’s processes and the exact mode of up-
dating the model’s state variables are thus critical and need to be planned and 
communicated carefully [24, 25]. 

It will by now be apparent that the increase in realism made accessible by 
ABMs comes at a cost, both in terms of potentially huge data requirements, but 
also in terms of the technical ability required for model construction. However, 
the technical problems are eased by the emergence of software tools. Thus, mod-
els may be created using ABM “platforms,” that is, libraries of predefined rou-
tines such as REPAST [26], NetLogo [27], and SWARM [28]. Models of limited 
complexity can be developed using these platforms, whereas more complex or 
computationally demanding models are usually implemented in more efficient 
low-level object-oriented languages such as C++ or Java. Animal, Landscape, and 
Man Simulation System (ALMaSS), a framework for ABMs for pesticide risk as-
sessment [29], which is used as an example throughout this paper, was written 
in C++ since run times are very long, and shaving tiny fractions of seconds from 
loops can save many hours of simulation time with millions of agents. 

While simple systems can be built by anyone of average programming ability, 
the effectiveness of larger scope and more realistic models depends on the abil-
ity of the programmer to code efficiently. At this level of software engineering 
there is a whole new skill set required by the ABM developer. For example, sort-
ing routines are common constructs in ABMs but vary hugely in their efficiency, 
so choices here may dramatically affect overall runtimes. There is also the prob-
lem of code reliability. With large and complex models the scope and complex-
ity of errors increases and code maintenance and debugging tasks can mushroom 
out of all proportion. This is particularly the case with highly complex multiagent 
communication such as between flock or family members, and it has cost many 
weeks of debugging in ALMaSS. Coping with such problems requires familiar-
ity with basic computing science principles. Hence, the optimal solution is that 
the modeler also possesses software engineering skills, which will not only speed 
up the development cycle, but will also improve the model design by ensuring 
good code structure at an early phase. However, while there is an increase in the 
number of computational biologists being trained, this skill combination is still 
rare. Grimm and Railsback [16] therefore recommend considering close collabo-
rations of ecological modelers and computer scientists where, however, the mod-
eler should keep full control of the software, that is, not depend on the computer 
scientist to use the software and modify it. 

Unfortunately no simple introduction to building ABMs currently exists. 
There are many good object-oriented tutorials available however, and these, com-
bined with an understanding of the philosophy of the approach, are a good place 
to start. Detailed advice can be found in Grimm and Railsback [16] who provide 
an introduction to what they term “individual-based ecology,” which encom-
passes the use and development of ABMs. 
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2 Examples Illustrating the Use of ABMs 

We here present examples selected to illustrate some of the facets of using 
ABMs, and some of the interesting results that can emerge. The series of ex-
ample applications used to illustrate the potential of ABMs in ecotoxicological 
research utilize a single ABM system, ALMaSS [29]. In these examples space 
limits a description of the manner in which conclusions were drawn, but in all 
cases this was by carrying out additional exploratory simulations to test the be-
havior of the system under different conditions, as well as detailed analysis of 
outputs in the light of knowledge of the model structure. In addition, we will 
briefly introduce two further families of ABMs, which were not developed for 
ecotoxicology, but which very well illustrate both the high costs for developing 
full-fledged ABMs and their striking predictive power, once their testing has 
been completed. 

2.1 Introduction to ALMaSS 

ALMaSS was designed as a system to evaluate the impact of human manage-
ment of landscapes on key species of animals in the Danish landscape. ALMaSS 
was not created with a clearly focused goal in mind but to be a highly flexible sys-
tem capable of simulating a wide range of interactions between landscape struc-
ture, management, and animal ecology. Thus, ALMaSS is a flexible system for im-
plementing ABMs of selected species, with the aim of predicting the impact of 
changes in management of the Danish landscape. 

ALMaSS can be separated into two main components: the landscape and 
animal models. The landscape comprises a topographical map, together with 
strategies of human management (primarily farming but also other manage-
ment such as mowing of roadside verges), traffic and road networks, weather, 
submodels for calculating arthropod biomass, models for general vegetation 
and crop growth, and also models of the environmental fate of pesticides. These 
submodels and processes are updated on a daily basis during the simulation 
and provide the potential to model factors such as farm and crop management 
in great detail. The farm management modules permit the definition of differ-
ent farm types each with their specific crop choices and type of management 
(e.g., conventional pig, arable, and dairy production, and organic variants of 
these). 

Each farm mapped in the landscape is allotted a farm type and the farm man-
ager, also an agent, applies management to his fields in terms of sowing crops 
and subsequent crop husbandry while reacting to weather and soil conditions. 
Crop husbandry is highly detailed (see [30]) and simulates all farming activities 
that would be carried out on that crop (e.g., plowing, harrowing, sowing, fertil-
izer applications, pesticide applications, harvest, and postharvest operations). 
Application of pesticides and fertilizers can be allocated specific characteristics 
(e.g., amount and type) and may result in changes in the vegetation growth, ar-
thropod biomass, and provide field-specific information for animal models such 
as the type and amount of toxicant present. 
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The topographic map utilized by the landscape has a resolution of 1m2 and 
typically covers an area of 100 km2. Combining this map with the management 
information, weather and vegetation growth information creates a virtual reality 
into which the animal models are placed. The animal models are agents designed 
to simulate the ecology and behavior of individual animals as closely as possible. 
Each agent moves around in its virtual world in much the same way that a real 
animal moves in the real world, picking up information from its surroundings as 
it goes and acting upon this in order to feed and ultimately reproduce. Changes 
to the agent’s environment occur on a daily basis as weather changes, vegetation 
grows, or the farmer manages a field. 

A number of animal models exist for ALMaSS. Those used as examples here 
are Alauda arvensis (skylark) [30, 31], Microtus agrestis (field vole) [29], Bembidion 
lampros (beetle) [32], Erigone atra/Oedothorax fuscus (spider) [33], and Capreolus cap-
reolus (roe deer) [34]. These range from species with highly detailed behavior but 
low numbers (roe deer) to spiders with simple behavior but the necessity to han-
dle over 1 million agents concurrently. However, all models conform to a basic 
framework, essentially a state machine, whereby: 

• Each animal has an initial state that is a behavioral state. 
• There is a set of possible input events. 
• Transitions to new behavioral states depend on input events. 
• Actions (output events) are determined by behavioral state and environ-

mental opportunities. 

Each agent will cycle through this state machine at least once per simulation 
day and potentially many times depending upon the inputs and outputs. For ex-
ample, a vole in the state “explore” may explore his surroundings, resulting in 
the input that there is no food, and make a transition to the new state “dispersal”; 
this results in the action of dispersal that then triggers a transition to the state 
“explore.” This cycle may repeat itself until the vole finds food, dies, or runs out 
of time that day (Figure 1). Inputs may also occur as events, not under the control 
of the animal. For example, if our dispersing vole is run over by a car it will make 

Figure 1. A diagram of a fragment of the field vole state machine. States are denoted with 
boxes, transitions by arrows. See text for further explanation.   
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an immediate transition to the state “dying.” This event-driven interaction is also 
the basis for modeling topical exposure to pesticide applications, meaning that an 
animal may only be exposed if it is in the location where the pesticide is sprayed 
at the time it is sprayed. 

A system such as ALMaSS has a number of potential uses in ecotoxicology. 
These can broadly be divided into three main categories: 

• Policy scenario analysis: This utilizes the capability of the agent-based system 
to respond to changing inputs. For example, how will pesticide usage be af-
fected by specific taxation measures? (see examples 1 and 4 later). Taxation 
is an input to the model that causes changes in farmer behavior, which result 
in changed patterns of pesticide use. Since the animals react to pesticides as 
they find them in their day-to-day activity, their behavior in turn is affected, 
and the sum of their behaviors results in a population response that can be 
evaluated. 

• Risk/impact assessment and regulation: Scenarios of application of pesticides 
with specified properties are studied and population responses are evaluated 
(see examples 2 and 3). The challenge here is to define specific yet representa-
tive scenarios, since a greater range of factors is analyzed than is traditional in 
this area. 

• Systems understanding: Perhaps the most important use of ABMs in ecotox-
icology is to improve our understanding of the ecological systems and how 
they are affected by pesticides. ALMaSS is able to use a systems approach to 
investigate system properties that would be impossible or exceedingly diffi-
cult to study in real life (see examples 1–4). 

2.2 Example 1: Impacts of Mechanical Weeding on Skylark Populations 

Pesticide use has been an important factor in the decline of a range of Euro-
pean farmland bird species over the last 20 years, primarily via indirect effects 
on wild plants and arthropods [35, 36]. It is, therefore, desirable to use pesticides 
less, but policies directed toward this need to be based on good advice. With this 
background Odderskær et al. [37] set out to evaluate the potential impact of re-
placing herbicide use with mechanical weeding on inter alia skylark populations. 
Mechanical weeding is rarely used in conventional farming, despite its well-doc-
umented effectiveness, so there is little opportunity for observational study. The 
goal of the ALMaSS modeling was to assess the direct or indirect impact of me-
chanical weeding on birds reproducing in fields where it is applied. The problem 
was tackled in two stages: the first an experiment to assess the lethality of me-
chanical weeding to skylark nests, and the second to assess potential impacts of 
different management scenarios. 

A range of scenarios were simulated (see [37]) but those that show the clearest 
results are experimental scenarios where the assumption is that all farmers in the 
landscape grew a single monoculture crop. Figure 2 shows the number of nests, 
nests with eggs (under incubation), and nests with young, which were destroyed 
when mechanical weeding was used in monoculture spring barley on either the 
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10th or 30th of May, which corresponds to mid- or late-season application. Al-
though variable with year and therefore weather, late-season use destroyed a 
very large number of nests containing eggs or young, whereas the earlier appli-
cation largely affected nests during nest building or egg-laying. The skylark pop-
ulation was consequently much reduced by late application (24–40%) whereas 
earlier application resulted in a slight increase of up to 3%. This increase is sur-
prising and the model was neither specifically designed nor calibrated to make 
this prediction, which, therefore, can be considered an independent or second-
ary prediction (sensu [16]). Moreover, an ABM does not require us to just believe 
in the results as a black box, but allows us to try and understand why certain 
things happen. In this case, closer analysis of the model revealed that due to the 
rapid growth of the cereal crop the skylark has only a limited window of breed-
ing opportunity between emergence and canopy closure [38–40] and is often lim-
ited to just one breeding attempt. Since the first clutch of the season is usually 
one egg smaller than the second clutch in this species, the early loss of a clutch 
was a slight benefit if the second brood could be completed before the breeding 
window closed. Broods lost due to weeding on 30th May (40 days from sowing) 
could not be replaced within the window of opportunity. These results led Odd-

Figure 2. Example 1: ALMaSS scenario results. (a) The number of nests destroyed by me-
chanical weeding on 10th May. (b) The number of nests destroyed by mechanical weeding 
on 30th May. (c) The population-level impact of mechanical weeding shown relative to a 
no mechanical weeding situation.   
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erskær et al. [37] to recommend that mechanical weeding be used up to a max-
imum of 30 days after sowing to avoid significant risk to skylark populations. 
The recommendation was not with respect to a calendar date, because it is timing 
with respect to the breeding window that is critical. In a subsequent independent 
field study [41], it was found that mechanical weeding 35 days or later after sow-
ing caused significant reduction in skylark breeding in spring cereals. Thus, the 
prediction of the model was confirmed indicating that key elements of the sky-
lark’s population dynamics were captured in the model, that is, the model was 
structurally realistic [42].  

2.3 Example 2: Risk Assessment for Beetles and Spiders Including 
Multiple Stressors 

Regulatory authorities have strict procedures for assessing whether a pesti-
cide presents an unacceptable risk to nontarget organisms. For example, accord-
ing to EU directive 91/414 and its annexes and guidance documents, if the tox-
icity exposure ratio (TER) is <5, “no authorization shall be granted, unless it is 
clearly established through an appropriate risk assessment that under field con-
ditions no unacceptable impact occurs after the use of the plant protection prod-
uct under the proposed conditions of use” (Annex VI of EU Directive 91/414/
EEC). While this criterion may seem objective and stringent it is also administra-
tively inflexible and simplified. In this example, we demonstrate how misleading 
the criterion can be by evaluating pesticide impact with and without other mor-
tality factors (multiple stressors) and by using test species with slightly differing 
characteristics. 

ALMaSS scenarios were created using the following assumptions: 

• An insecticide was applied to cereals. 
• Treated cereals received from one to three applications each year in late May to 

July following normal farming practices for insecticides. 
• No other pesticides were used anywhere in the landscape (the current regula-

tory standpoint). 
• Exposure to the pesticide resulted in 90% mortality for all exposed beetle and 

spider life-stages. 
• Exposure occurred when the organism was present in the field on the day 

of pesticide application, and all organisms present were considered to be 
exposed. 

• Residues were not assumed to have any impact, hence only direct exposure to 
spray was considered toxic. 

• There was no drift to off-crop areas. 
• The landscape considered was a 10 km × 10 km area of Denmark near the town 

of Bjerringbro (56° 22′ N; 9° 40′ E) (Figure 3). 

Three factors were varied: 

• The proportion of the landscape exposed was altered by assuming that insec-
ticide was applied to 0, 25, 50, and 100% of cereal fields, and that all arable 
fields grew cereals. 
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• The implications of assumptions about other mortality factors were inves-
tigated by running four scenarios—one where the impact of soil cultivation 
and harvest mortalities was assessed in the absence of pesticide (scenario BM 
in Figure 4b), a second scenario where only pesticide mortalities were incor-
porated and soil and harvest mortalities were ignored (scenario PM), and a 
third scenario where the impact of the pesticide was assessed against a back-

Figure 3. A GIS representation of the Bjerringbro area in central Jutland, Denmark. This is 
the landscape used in all ALMaSS examples.  
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Figure 4. Example 2: ALMaSS scenario results. Population reductions are expressed as a 
percentage of those in the baseline scenario (see text). (a) The size of population reduc-
tion in relation to the area treated with insecticide, for fast and slow moving beetles. (b) 
The size of population reduction of fast and slow beetles, BM = only agricultural operation 
mortalities, PM = only insecticide mortality, PM with BM = pesticide mortality assessed 
against a background of agricultural operation mortality. (c) Same as (b) but for two spe-
cies of spider.    
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ground of including the soil cultivation and harvest mortalities (scenario BM 
with PM). Values for mortalities were available from [43], and all arable fields 
were assumed to grow cereals and have insecticide applications. A fourth sce-
nario was run without pesticide or soil cultivation and harvest mortality and 
was used as a baseline for the results presented in Figure 4.   

• Variation in species life history was assessed in two ways. A very simple 
change to the beetle model was made by changing the maximum daily move-
ment rate used by [32] to be 10 or 20m per day (slow and fast beetles). The 
second assessment was made using models of two species of linyphiid spider 
(Erigone atra and Oedothorax fuscus), both with similar habitat requirements 
and both common agricultural species but differing in their breeding behav-
ior and dispersal. O. fuscus has a shorter breeding season and lower dispersal 
ability than E. atra. 

Twenty replicates were obtained of all scenarios with scenario runs of 55 
years. The first 11 years were discarded as a burn-in period, and the results were 
expressed as mean population size over the last 44 years. Weather data were as 
used by Topping and Odderskær [30] and were a continuous loop of 11 years of 
weather data from a weather station near to the landscape simulated. 

Results — For clarity all results are expressed as the size of the population re-
duction compared with a baseline scenario. Increasing the area treated with insec-
ticide reduced beetle population size, but the effect was much more severe if the 
beetles moved slowly (Figure 4a). Smaller differences were observed between fast 
and slow beetles in terms of their sensitivity to background and pesticide mor-
talities (scenarios BM, PM, and BM with PM, Figure 4b), nor was there much dif-
ference in the responses of the two spider species (Figure 4c). Background mor-
talities were generally high and much higher than those caused by the pesticide 
impact alone. However, if we evaluate the effects of the pesticide while control-
ling for background mortalities (i.e., BM vs. PM with BM) then in all cases the im-
pact of the pesticide was greater than measured without other mortalities, and in 
the case of the less mobile beetle and spider it was almost four times greater. 

The results demonstrate two effects. The first is that mobility clearly inter-
acts with the pesticide application, and therefore we can get widely differing re-
sults with different life-history strategies. This effect has been shown in the real 
world in carabid beetles [44] and is partly due to mobile beetles and spiders be-
ing able to “leapfrog” disaster by moving from field to field and therefore having 
a greater probability of not being sprayed, but largely due to the faster recovery 
potential of mobile animals as they reinvade and breed in recently sprayed areas. 

The second effect is related to the population dynamics. In cases where mor-
tality on individuals is low the population grows and reaches a level where it be-
comes self-regulating through density dependence. At this point the impact of 
lower levels of mortality is to remove many individuals that would have died in 
any case, equivalent to the doomed surplus of Errington [45]; hence, impacts are 
lower when seen at the population level. In contrast, a population under heavy 
mortality, such as slow beetles under soil cultivation and harvest mortalities, is 
very vulnerable to a small extra mortality because this kills animals that would 
otherwise have contributed to population growth. 
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2.4 Example 3: Impacts of an Endocrine Disrupter on Vole Populations: 
Toxicity, Exposure, and Landscape Structure 

As with example 2 with multiple stressors this analysis is derived from a risk 
assessment, but with the purpose of investigating the components of the assess-
ment to gain an understanding of the field vole population response, rather than 
conducting a formal risk assessment. Here, we exploit the ability of ALMaSS to 
incorporate complex patterns of toxicity, to modify different aspects of a pesti-
cide risk assessment, and calculate the population-level response. This flexibility 
allows the manipulation of all aspects of the risk assessment in an experimental 
way, using the model as a virtual laboratory to carry out experiments that would 
be impossible in the real world. Specifically we investigate how changes in toxi-
cology, exposure, and landscape structure alter population responses, to gain in-
sights into the properties of the system. The scenarios we present are illustrative 
only; for a comprehensive account, see Dalkvist et al. [46]. 

The toxicology investigated is unusual but closely similar to that of the fungi-
cide vinclozolin, an endocrine disrupter where the effect is inherited epigeneti-
cally through the male germline after exposure in the uterus [47, 48]. This toxicol-
ogy is challenging to model because of the epigenetic component of transmission 
of effects, and because expression of the toxic effects is chronic. In the model, ex-
pression of toxic effect was as either absolute sterility or a halving of the mating 
success of male offspring. Those with a reduced mating success passed on this 
genetic trait to their male offspring. 

Other than the altered fertility the affected males were assumed to behave as 
nonaffected individuals since it was not known if the affected voles would change 
behavior, and the worst case was assumed. However, females mating with ster-
ile males did not experience false pregnancies and would attempt to mate the fol-
lowing day if mating was unsuccessful. This is likely to be a real situation since 
voles are polygamous, but it is by no means certain that a female will not mate 
with the same infertile vole again. This depends on which male vole is closest to 
her at the time of mating, and it is therefore a function of the territorial behavior 
of the model voles. This polygamous behavior has the result that both inheritance 
and purging of the epigenetic effect are density dependent. This is because the 
probability of a nonsterile vole territory overlapping a female’s territory increases 
with vole density. The system thus comprises complex dynamics that would be 
difficult to study experimentally in the real world, but is amenable to investiga-
tion in an ABM. 

In all cases scenarios were constructed by modifying a single factor at a time 
and expressing the results as a population size relative to a baseline scenario 
where no pesticide was applied. The landscape used was again that shown in Fig-
ure 3, but with some fields replaced by orchards, randomly placed until orchards 
occupied 10% of the total agricultural land. Landscape structure was modified in 
later experiments by altering the locations of patches of optimal habitat. Pesticide 
was applied for 30 years starting in year 31 and was followed by a 60-year recov-
ery period again where no pesticide was applied. Thirty-five replicates of each 
scenario were run. For clarity the experimental scenarios were divided into two 
groups: one to investigate the toxicity and exposure factors and the other to eval-
uate landscape structural impacts. 
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2.4.1 Toxicity and Exposure Scenarios 

Five scenarios were constructed to evaluate the impact of factors related to 
toxicology and exposure. These were (1) a “default” scenario with one pesti-
cide application to all orchards on May 31. The other scenarios were constructed 
by varying one factor at a time of the default scenario, as follows: (2) a “clover/
grass” scenario where the pesticide was sprayed on clover grass fields that re-
placed orchards, (3) a “two applications” scenario where the orchards had an 
additional pesticide treatment on 14th June, (4) a “NOEL” (no observable effect 
level) scenario where the effect level was altered to one quarter of the NOEL in 
the default scenario, and (5) a “DT50” scenario where the pesticide half-life was a 
factor four times longer than that in the default scenario. 

Toxicity and Exposure Results 

The population responses differed between scenarios as shown in Figure 5. 
Taking each scenario in turn: 

Clover/Grass: Spraying clover grass instead of orchards resulted in the lowest 
population depression of all scenarios, and the population reached full recovery 
within the simulation period. This might seem strange because the field vole lives 
in grass-vegetated areas that can function both as a continuous food supply and 
cover [49], and therefore exposure might be expected in a grass crop. However, 
clover grass fields in the modern intensive agricultural landscape are cut for si-
lage or used for grazing livestock throughout the year, so that the voles’ habitat is 
continually being destroyed. Consequently, these fields are not suitable breeding 
habitat [50–52], although they facilitate dispersal. Accordingly a small fraction of 
the voles were exposed to the pesticide in our simulation, resulting in a negligible 
population depression. 

In contrast the orchards contain grass cover between the trees, which in the 
“default” scenario is cut once a year just before harvest, and voles living here 
were subject to much less disturbance. This illustrates the importance of the an-
imals’ ecology and behavior in risk assessment. It is also interesting to note that 
the impact at the population level in this scenario was ca. 1%, but that 4% of all 
male voles exhibited a toxic response (Table 1). Of these 4% only 22% carried the 
paternally transmitted gene, indicating that the voles that were affected were not 
breeding as successfully as those in other scenarios. 

Two applications scenario: A second application to the orchards led to a dou-
bling of the amount of pesticide applied in the landscape, but not a doubling of 
the population depression or the proportion of affected voles (Figure 5a, b). The 
explanation is that the second application hits a population containing voles al-
ready affected by the first.  

NOEL and DT50 (half-life) scenarios: In the NOEL scenario toxicity increased 
by a factor of 4, and this resulted in a doubling of population impact than in the 
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default scenario and a higher impact than applying the pesticide twice. However, 
a fourfold increase in half-life, in the DT50 scenario, had even more impact (Fig-
ure 5a). The explanation can be found in the first-order kinetics of decay for the 
pesticide: 

C = C0 e–kt  ⇔ k = – (ln (C/C0))/t  ⇔  k = ln2/DT50                         (1) 

where C is the concentration of the residue at time t; C0 is the residue concen-
tration at the start, and k is a rate constant for loss, which is dependent on DT50. 
By halving DT50, k is doubled, which increases the coefficient of the exponen-
tial curve and so reduces the period of exposure. By contrast changing NOEL is 
equivalent to changing the constant C in (1), which would result in a small change 
of the time period of exposure (t) compared with changes in k. Thus, the voles 
are more sensitive to alterations in half-life than to alterations in toxicity. Despite 
this, half-lives of pesticides receive little attention in current risk assessments. 

Toxicity and Exposure Discussion 

The population recovered completely by year 120 only in the Clover/Grass 
scenario, where a limited proportion of the voles had been affected. This result 
could have been related to the epigenetic effect of the pesticide, but investigation 
of the frequency of affected voles showed that the alteration was purged from 
the population after only a short period (Figure 5b). In fact, the phenomenon was 
related to the spatial dynamics of the voles in this fragmented landscape. Even 
small perturbations of the population can mean local extinction for small subpop-

Table 1. Example 3: results of ALMaSS simulations 

 Total of  Directly affected  Baseline 
 affected  males as a %  population 
Scenarios   males (%)  of total affected  size (1,000s) 

Clover/grass  4  78  58 
Default  15  52  58 
Two applications  16  56  58 
NOEL/4  17  59  58 
DT50 * 4  18 75  58 
NG around orchards  18  54  62 
NG not around orchards  10  51  54 
0% NG  12  51  37 

The total proportion of all male voles affected by the endocrine disrupter together with 
the proportion of those that were directly affected by exposure in the uterus and the total 
mean size of the vole population in the baseline scenario for each toxicological, exposure, 
and landscape structural scenarios  
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ulations, and the time before recolonization depends on their location relative to 
larger source populations. If the perturbation is large, then this effect is exacer-
bated, resulting in more isolated subpopulations and consequently an elongation 
of the recovery period (Figure 5a). 

The unusual form of the recovery curve was a result of initial logistic popula-
tion growth in core habitats, followed by delays dependent on dispersal to recol-
onize other areas that had been lost following pesticide application. The reverse 
mechanism, together with epigenetic breeding depression, explains the contin-
ual decline of the voles during the period of continuous pesticide application, as 
patches slowly become empty and the vole population contracts to core habitats. 
This spatial mechanism provides a new dimension to risk assessment since spa-
tial dynamics are currently ignored. 

2.4.2 Landscape Structural Manipulations 

As shown earlier there are indications that the magnitude and effect of pesti-
cide exposure on populations are influenced by the spatial structure of contam-
ination in the landscape and habitat location [53–55]. Even so, the use of non-
spatial approaches is still common when characterizing exposures and effects of 
pesticide stresses. To demonstrate the possible effect of landscape structure in the 
risk assessment three scenarios were constructed based on the default scenario al-
ready described containing randomly allotted primary vole habitat patches (“nat-
ural grass” = NG). The natural grassland is a habitat type particularly suitable 
to the voles because it supplies the animals with food and cover throughout the 
year. We explored three landscape scenarios as follows: (1) The NG close to the 
orchards scenario (NGc), where the natural grassland was located around the or-
chards where pesticide was applied; (2) The natural grass not around orchards 
scenario (NGa), where the natural grassland was placed away from the orchards; 
and (3) the 0% natural grass scenario (NGz), where no natural grassland occurred 
in the landscape. 

Landscape Structure Results 

The NGc scenario resulted in the lowest impact of the landscape scenarios 
with a population depression of 3%, but the proportion of voles affected by the 
pesticide was also highest here (Figure 5c, d). This seeming paradox arises be-
cause natural grassland in this scenario produced a connected set of suitable hab-
itat fragments capable of sustaining a larger population size around the orchards 
than in the other scenarios. There were thus sufficient healthy males in the nearby 
natural grassland to provide viable sperm for females in orchards. This means 
there were still quite high abundances of voles in the orchards despite these be-
ing the sites of exposure of gestating females (Figure 5d), and after spraying these 
populations recovered rapidly to baseline levels (Figure 5c). 

Compared with the NGc scenario the NGz scenario had the highest pop-
ulation depression and lowest recovery level of the landscape structure sce-
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narios. The natural grassland was removed from the landscape completely, 
thereby reducing connectivity between optimal habitats (which here are pri-
marily the orchards). The affected vole frequency was lower, because of the 
reduced vole abundance around the orchards, but the impact was higher due 
to the reduced level of source nontreated populations in the landscape. Ac-
cordingly local extinction occurred on a larger scale resulting in the lowest 
level of recovery. 

The NGa was used as a control for the NCc scenario, maintaining the area 
of grassland but locating it away from the orchards. Voles living in those grass-
lands were unaffected by the spraying, thus the proportion of affected voles was 
lower than in the default scenario (Figure 5d), but the population depression was 
greater (Figure 5c) because of a lack of healthy males in grasslands adjacent to or-
chards to provide viable sperm for females in the orchards. The lack of correla-
tion between three different endpoints, namely, the total proportion of males af-
fected, the proportion of these directly affected, and the baseline population size 
illustrates the nontrivial nature of the relationships between the factors consid-
ered (Table 1). 

2.5 Example 4: Impacts of Pesticide Bans and Reductions at Landscape 
Scales 

Jepsen et al. [21] utilized ALMaSS to evaluate the impact of a total pes-
ticide ban on the abundance and distribution of five species: Alauda arvensis 
(skylark), Microtus agrestis (field vole), Bembidion lampros (beetle), Oedothorax 
fuscus (linyphiid spider), and Capreolus capreolus (roe deer). While it would be 
temptingly simple to create a scenario where, on the one hand, we had con-
ventional agriculture and on the other the same thing but with no pesticides, 
this may be a rather too simple approach. Instead, a more holistic consider-
ation of the problem is required. The debate surrounding the safe use of pes-
ticides in Denmark prompted the establishment of a state-funded Pesticide 
Committee in 1999. This committee initiated a nation-wide evaluation of the 
economic and agronomic consequences of a partial or complete ban on pesti-
cide usage in Danish agriculture, the conclusion of which was published by 
Jacobsen and Frandsen [56]. 

The results suggest that a total pesticide ban will have wide-reaching conse-
quences for land use and also crop choices. For instance, under the EU CAP reg-
ulations relating to arable area payments at the time, farmers could claim pay-
ments and make a profit by sowing a crop they would never harvest. In other 
areas land would shift from arable to dairy production. In those areas where ar-
able production remained there would be a reduction in areas of pesticide-inten-
sive crops for harvest. In particular, a significant rise in the area of oil seed rape 
was indicated since this is cheap to sow and provides a good weed-suppressing 
cover. Jepsen et al. [21] simulated this outcome by comparing the distribution 
and abundance of the five species between agricultural practice as in 2003 and a 
scenario in which all crops were grown organically and where agricultural land 
altered its composition from 64 to 29% cereals, oil seed rape increased from 11 to 
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17% of the arable area, and where roughage (rotational grass, peas, etc.) increased 
from 19 to 59%, with the remaining areas being set aside. These simulations used 
the landscape of Figure 3. 

As expected due to reduced incidence of crop-management related stressors 
(insecticides and soil cultivation), beetle and spider numbers generally increased 
over the whole landscape. Field vole numbers also increased marginally and uni-
formly because of the increase in connectivity due to increasing the area of grass 
relative to arable fields. The skylark however, contrary to initial expectations, de-
creased in population size across the landscape with marked decreases in pre-
viously good habitats. These decreases were an integration of a number of posi-
tive and negative influences. The reduction in pesticides and subsequent increase 
in invertebrate food worked positively; however, the lack of tramlines caused by 
late-season pesticide applications meant that the food was less abundant. In addi-
tion, the grass areas would be grown for silage and would have very narrow win-
dows of breeding opportunity before cutting and/or grazing resulted in them be-
ing useless as breeding habitat. 

The response of the roe deer was also complex with a distinct spatial pattern 
to the changes. These local population changes were in response to changing crop 
locations relative to suitable wooded habitats, primarily hedgerows. In those ar-
eas where both hedgerows and suitable crops coincided, the deer could move 
out from woods and forage; in other areas, the lack of shelter meant that the im-
proved forage was not utilized [21]. 

A similar interaction between pesticide changes and farm management was 
found when evaluating the impact on skylark population sizes of taxation mea-
sures to alter pesticide use [57]. The effects of using pesticides were compared 
with spraying nothing. The real effect of not spraying would be to not open 
tramlines, preventing skylark foraging and breeding access, because the farmer 
would not drive onto the field. Not spraying would also alter the crops grown. 
When these effects were taken into account the mean 4% impact of pesticides 
predicted in an earlier study [30] was reduced to a barely significant 1% impact 
[31]. However, in both studies other structural changes in the landscape man-
agement were capable of altering skylark populations by 20–50%. We conclude 
that a common sense, holistic, approach to simulation is needed so that “knock-
on effects,” such as changes in crop area allocations, are taken into account in 
policy evaluation. 

2.6 Two Further Examples of Predictive, Fully Fledged ABMs 

The development of the ALMaSS framework took 10 years, including pro-
gram debugging and verifications. The development of a typical animal model 
with the ALMaSS framework, including testing, usually takes 1–2 years. The 
analysis of more theoretical scenarios of an existing animal model, however, 
can be performed rather quickly, typically within a few months. Historically, 
and due to reasons of page limitations in scientific journals, the extensive test-
ing of ALMaSS so far has not been fully documented. Therefore, we here briefly 
describe two further fully fledged ABMs that were developed for ecological 
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applications and where testing, verification, and validation have already been 
documented. These examples also show that basing a model on fitness-seeking 
behavior can make ABMs complex, but highly predictive. The trout model was 
explicitly developed for management support. The shorebird model has a more 
academic background but currently is being tailored to address a range of real-
world applications. 

2.6.1 Shorebird Models 

The shorebird models of Goss-Custard et al. predict the impact of land recla-
mation, resource harvesting, and recreation on the winter mortality of shorebirds 
and waterfowl. The ABMs had to predict the effect of new environmental condi-
tions for which no empirical rules or data were available [58–65]. 

In these models, the habitat is divided into discrete patches, which vary in 
their exposure and their quantity and type of food. During each time step birds 
choose where and on what to feed, or whether to roost. Time steps typically rep-
resent 1–6 h. The bird’s state variables include foraging efficiency, dominance, lo-
cation, diet, assimilation rate, metabolic rate, and amount of body reserves. Key 
environmental inputs to the models are the timings of ebb and flow and temper-
ature. The submodels describing the bird’s decision where to move, what to eat, 
and how much time to spend in feeding are based on principles mainly from op-
timal foraging theory. The individuals are assumed to always try and maximize 
fitness, i.e., their own chance of survival. 

Model predictions were compared with many observed patterns during sev-
eral iterations of the modeling cycle. The modeling cycle includes defining the 
model’s purpose, choosing a model structure, and implementing and analyz-
ing the model [16]. At the end of this process, patch selection, prey choice, and 
the proportion of time spent in feeding were accurately predicted for many spe-
cies and sites. In one case, the increase in winter mortality due to land reclama-
tion was known from observations. The model was parameterized for the preim-
pact situation, and then run for the situation after the land reclamation and the 
increase in winter mortality were determined. The match of observed and pre-
dicted increase in winter mortality was strikingly good [66]. 

2.6.2 Stream Fish Models 

Railsback and coworkers developed a suite of stream fish ABMs (mainly cut-
throat trout Oncorhynchus clarki [67–73]; see also the precursor model of Van 
Winkle et al. [74]). The models were developed to predict the effects of river 
management on fish populations. Fish adapt to changes in flow caused by dams 
and water diversions by moving to different habitat. Thus, to predict how fish 
populations react to new flow regimes it was necessary to know how fish se-
lect habitat. The trout model of Railsback and Harvey [70] uses daily time steps, 
with stream habitat represented as rectangular cells. The section of a stream rep-
resented in the model would usually comprise about 200m consisting of about 
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100 cells (the number of cells varies because of varying water levels). Within 
a day, individual fish carry out the following actions: spawn, move, feed, and 
grow. Mortality could occur within each of these steps and model runs cover a 
time span of years or decades. 

In the model, trout based their daily decision on the projection of current 
habitat conditions for 90 days into the future [67]. Railsback and Harvey [71] 
show that this “state-based, predictive” theory of habitat selection is, in con-
trast to alternative theories, capable of reproducing a set of six patterns ob-
served in reality (“pattern-oriented modeling,” [16, 75]). In a management 
application, the trout IBM was used to predict the population-level conse-
quences of stream turbidity (Harvey and Railsback, unpublished manuscript): 
over a wide range of parameter values, the negative effects of turbidity on 
growth (and consequently, reproduction) outweighed the positive effects on 
predation risk. 

3 Advantages and Drawbacks of the ABM Approach 

3.1 Advantages 

Assuming that we have the option to make an ABM, what are the key ad-
vantages of this approach in ecotoxicology? The most important characteristic 
of ABMs is that we deal explicitly with spatiotemporal factors, and this coupled 
with the simple fact that toxicants are rarely distributed evenly in space and 
time in the real world is a major step forward in realism. 

However, this is only half of the story. ABMs integrate the informa-
tion in heterogeneous environments with the behavior of the agents, since 
ABMs pose a mechanistic approach. This is clearly demonstrated by the sky-
lark and mechanical weeding example where integration of the management, 
weather, and skylark ecology and behavior provided the necessary under-
standing of the system to prescribe nondamaging weeding practices. This in-
tegration also allows the consideration of multiple stressors (example 2). Here 
again, the fact that the ABM integrated the impacts of different stressors with 
the animal ecology and behavior gave rise to important population-level re-
sponses. While consideration of multiple stressors might not be straightfor-
ward from a regulatory perspective, it is an area where ABMs could make a 
major contribution. 

Probably the best example of the integrational power of ABMs is the vole ex-
ample (example 3), which shows the use of an ABM as a virtual laboratory al-
lowing a very wide range of factors to be modified separately or in unison and 
their impacts compared. This example also illustrates the point about flexibil-
ity in ABMs. The problem definition in the vole example required incorpora-
tion of individual-based genetic transfer of information due to the epigenetic 
impact of the pesticide, which in isolation could have been achieved using tra-
ditional population genetic approaches. However, this was further complicated 
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by the behavioral ecology and individual-level impact of the pesticide. These 
factors include strong territorial behavior, high fecundity, and local habitat-de-
pendent dispersal in a structurally complex and variably permeable (to dispers-
ing voles) landscape, together with spatiotemporal variation in the distribution 
of the stressor and variable phenotypic and toxicological responses at the indi-
vidual level. 

It is hard to imagine a non-ABM approach that could integrate all of these as-
pects in a natural way and yet still provide a simple intuitive experimental sys-
tem for manipulation and testing. This type of “virtual laboratory” approach has 
a huge potential in increasing our understanding of biological systems and their 
responses to toxic stressors. In fact, these approaches are already being used to 
tackle theoretical population ecology problems in spatially heterogeneous envi-
ronments [76]. 

When used to evaluate policy changes, ABM results may often contraindicate 
a reductionist approach (as shown with the ALMaSS examples earlier). In the real 
world where so many factors interact it would be common sense to consider the 
changes in farm management that would result from any policy change, and the 
use of ABMs should be no different. Although ABMs can become very large and 
complex they are not capable of simulating systems to such a degree that a sin-
gle model can encompass all ecological and socioeconomic aspects. However, in-
tegration of a range of multidisciplinary models so that inputs to ABMs are as 
realistic as possible is achievable. For example, Dalgaard et al. [77] linked socio-
economic, nitrogen-budgeting, hydrological, and ecological models together to 
assess land management scenarios. The flexibility of the complex ABM approach 
facilitates this process. 

Information-rich systems such as the Army Risk Assessment Modeling Sys-
tem (ARAMS) [78] would be ideal candidates to take advantage of agent-based 
technology. This system already has a wildlife exposure module that uses a sim-
ple area use factor to determine exposure, but could be augmented with realistic 
animal movements and responses to remediation measures. 

Another often overlooked advantage of an ABM approach is that the mech-
anistic detail forces the researcher to consider the system of study from an-
other angle, and perhaps in greater detail than hitherto undertaken. This has 
the very real benefit of providing a framework for storing current knowledge 
and identifying areas where research is needed because information is cur-
rently lacking. 

3.2 ABMs Versus More Aggregated Population Models 

When considering the advantages and drawbacks of ABMs for ecotoxicolog-
ical research we are thinking primarily of population-level effects. A common 
point of contention is whether ABMs are better than simple population models. 
This point comes up repeatedly at conferences (e.g., see [79]) and therefore we de-
vote a little space to it here. 

The question of whether the one type of model is better than the other misses 
the real point of models, which is to create a representation of a system that al-
lows investigation of the properties of the system and, in some cases, prediction 
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of future outcomes. There is nothing innately better about an ABM than, for ex-
ample, a matrix model of population growth; the two types of model are different 
and meant for different purposes. A matrix model [80] is a mathematical repre-
sentation of the current state of the population. Unless its parameters are allowed 
to vary, it cannot be used for prediction, but only for projection as to whether 
the population will grow or decline. An ABM, on the other hand, can make pre-
dictions because its components alter their states and behaviors in response to 
changing input variables. 

This does not mean that the ABM is better than a matrix model. The ABM 
cannot be parameterized using the same parameters as the matrix model; it can-
not be constructed as quickly as a mathematical model, and it is always more 
difficult to understand. Choice of model type depends on the resources avail-
able and the purpose of the analysis, and it is even less clear cut as we move up 
the continuum of increasing realism from scalar population models to spatially 
structured models such as metapopulation models. Here, the purposes of the 
two model types may overlap, but several factors affect choice of model type. 
There may be constraints of data availability that dictate a simple model struc-
ture, or other constraints such as on development time, available computational 
power, or even technical ability, which would dictate a simpler model. If such 
constraints are not important, then there is a common sense link between the 
accuracy of a model and the degree to which it represents reality (i.e., its real-
ism), but at some point the generality of the model will be reduced as we make 
the model too specific. Tradeoffs exist between the accuracy of the model, the 
resources required to build it, and the desired generality [81]. There is no one 
solution to this problem; each application must be evaluated in its own right. 
The criteria, however, used for choosing a certain model should be made ex-
plicit in any application. 

3.3 Drawbacks 

3.3.1 Presumed Drawbacks 

Some commonly heard arguments against increasing realism and therefore 
complexity in models, and by extension to increasing realism in risk assessment 
are as follows: 

Increasing realism decreases generality. This argument probably has its 
roots with Levins [81], although it is a common general principle. To determine 
whether this is a drawback or not depends on how general we want our model to 
be. If our question is specific then a general model is likely to be imprecise (e.g., 
the use of TER and fixed threshold values for all species in pesticide regulation to 
predict risk in example 1). In ecotoxicology “general” models are unsatisfactory 
because there is no general target/nontarget organism, mode of action, or route 
of exposure. When constructing ABMs generality is not the aim per se; here we 
usually try to capture the essence of a specific system or class of systems, rather 
than a generality. However, generalities can be achieved if we evaluate our spe-
cific model over a sufficiently wide range of conditions. In principle, the explora-
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tion of carefully defined scenarios in ABMs could provide a sensitivity analysis 
of the probabilities of adverse effects as well as general rules. For example, in the 
vole (example 3) interactions between the different landscape structural factors 
could be evaluated in order to create general rules about pesticide impacts and 
habitat connectivity. 

Adding detail makes the creation and testing of general ecological principles 
difficult. Not to be confused with a criticism of adding unnecessary detail, this is 
related to the generality argument, but is fundamentally flawed in that it as-
sumes that we need generalities, that is, simplifications, before developing and 
testing theories. Surely theories are best derived from patterns emerging from 
as many varied and detailed observations as possible [16]. So given enough ex-
amples of specific systems (such as realistic ABMs) to experiment with, greater 
insight into general theories or even new paradigms may develop. This goes to 
the heart of the promise of complexity science and ought not to be perfunctorily 
dismissed. 

Detailed models are unnecessarily complex. Naturally adding detail to a 
model without good reason would be foolish, because every additional detail 
causes additional work. So, as for other models the principle of parsimony holds 
for ABMs. We might use patterns to get ideas about optimal model complexity 
(see [75]), but ultimately it is the task of model analysis to see how much a model 
can be simplified while keeping its potential to serve its purpose. However, if 
we consider complexity in the same way, complexity has a price in terms of in-
creased work in adding model details, but a distinct benefit in terms of richness, 
which we can utilize for testing, validation, and prediction [19]. 

Increasing realism leads to a loss of precision. This argument is based upon 
a traditional statistical approach to modeling. In a mathematical model the error 
in the prediction is related to the error terms in the parameter inputs in a pre-
dictable manner, and this can be propagated or compounded in complex mod-
els. While true of a mathematical construct this concept does not necessarily 
hold for complex systems in which checks and balances stabilize the outputs. 
It is especially untrue of models constructed using a pattern-oriented approach 
(see later), whereby error propagation is constrained by the form of model test-
ing [82]. In fact, biological systems in general have sloppy parameter spaces, 
and focus should, therefore, be on predictions rather than parameter values and 
their errors [83]. This is incidentally also one of the reasons why these models 
do not result in deterministic chaos, which is another commonly held, but mis-
informed belief. 

3.3.2 Real Drawbacks 

There are, however, a number of much more significant drawbacks when con-
sidering building ABMs. The drawbacks of constructing and using an ABM ap-
proach, especially a comprehensive approach like ALMaSS, can be summed by 
the phrase “When you can change anything you have to consider everything.” In 
considering “everything” you need both to be able to generate plausible mecha-
nisms for interactions that must all be defined and to locate or generate data to 
support the parameterizing of these. In building or modifying the model the in-
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teractions must be considered again since what on the face of it may be a simple 
change can, in fact, have far-reaching consequences. The same is true of build-
ing a scenario after the model is finished; simply accepting default values may 
be counterproductive, for example, applying a reductionist approach to pesticide 
limitation as in examples 2 and 4. 

The difficulties of model construction are already mentioned earlier. The com-
plexity of the system means that the technical demands placed on the developer 
are higher than those typically placed on the ecological modeler. These demands 
are comparable to the technical skills required by other specialist branches of nat-
ural sciences such as biostatistics or molecular ecology, the difference being that 
there are few schools of computational biology, and so suitably qualified staff 
may be hard to find. This may be a major drawback to actually implementing an 
ABM approach. 

Perhaps the biggest drawback to the increased use of ABM models in scientific 
disciplines in general is simply the fact that they are new. This means that ABMs 
lack some important characteristics compared with other modeling approaches, 
these being a rigorous theoretical basis and a standardized approach to construc-
tion, testing, and communication of models. In fact, the emergence of theory is 
a rapidly developing area under the auspices of complexity science. Complexity 
science aims to describe, explain, and control the collective objects and phenom-
ena emerging at a particular spatiotemporal scale from the simpler interactions of 
their components at a finer scale. The search for a general theory to simplify un-
derstanding of complex systems is, however, elusive. For example, one general 
theory that might have been useful to describe the emergent patterns of multi-
agent systems is the theory of self-organized criticality [84]. However, this gen-
eral theory seems not to have fulfilled its original promise and is perhaps better 
viewed as a way of sketching the essential structure of a system [85]. Seen in this 
light, ABMs might fulfill the role of filling in the mechanistic details in system 
functioning while the search for unifying principles continues at a higher level of 
organization. 

Development of methods for communication and testing of ABMs has 
started, but is still in its infancy. There is a widely held view that models of this 
complexity are difficult, if not impossible, to validate. However, one emerging 
approach to validation is pattern-oriented modeling [75], which includes as a 
main element inverse modeling for parameterization [82,86] whereby multiple 
field data patterns are used to simultaneously filter combinations of parameter 
values and model structures in order to achieve the twin aims of testing the be-
havior of the agents in the model and of reducing parameter uncertainty. The 
greater the number of real-world patterns that can be simulated concurrently, 
the greater the confidence in the model, and typically the smaller the possible 
parameter space. Pattern-oriented modeling is a new approach and so exam-
ples are few and far between (e.g., [42, 87, 88]), and as yet no structured pro-
tocols exist for carrying out an analysis. However, the basic approach is well 
described [89] and would be easily adaptable to an ecotoxicological problem, 
especially where large-scale field data are available from monitoring studies or 
field trials. So rather than being seen as a drawback, the novelty of pattern-ori-
ented modeling could be seen as a challenge and an opportunity to develop the 
science and use of ABMs further. 
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Difficulty in communication of ABMs is a major drawback to their acceptance 
and general accessibility to nonspecialists. This seems paradoxical to some extent 
since good ABM construction practice is to use the ecological system to be mod-
eled as the primary metaphor [16]. It follows then that explaining the model to 
ecologists ought to be relatively simple. This can indeed be the case at a super-
ficial level, but description of the detailed choices made in construction and pa-
rameterization is far from simple. The two most critical sources of model docu-
mentation are the written model description and the source code; however, for 
ABMs these documents can be very large and are not usually easy to read. One 
approach suggested is to standardize the description such that once a reader has 
encountered a number of such descriptions familiarity increases transparency. 
This is the concept behind the ODD protocol (overview, design concepts, and de-
tails) of Grimm et al. [24] and Polhill et al. [90]. 

The idea of the ODD protocol is to define a fixed sequence in which differ-
ent levels and elements of a model are described to allow the reader a quick over-
view of what the model is and what it does, that is, its structure and processes, 
without having to consider any detail at first. Then, important concepts under-
lying the design are discussed, for example, how adaptive behavior was repre-
sented, and how and why stochasticity was included. Finally, details of the mod-
el’s implementation are provided. It can be useful, or even necessary, to present 
the actual code by which a certain process was represented. Thus, the separation 
of “overview” and “detail” takes into account that some readers are more inter-
ested in the overall structure and rationale of the model, for example, the ecotox-
icologist, while others want to know the details of the model’s implementation, 
for example, if they have to assess the model as a reviewer for a scientific journal 
or a regulatory authority. ODD seems to gain ground in the literature but still is 
in its infancy and under development [14]. It can be difficult to apply it to ABM 
frameworks such as ALMaSS or FEARLUS [90] because the distinction between a 
specific model and the framework is not always easy to draw. 

4 The Future of ABMs in Ecotoxicology 

The examples of ABMs in ecotoxicology demonstrate the utility of the ABM 
approach and highlight that the system response is not easily predictable in ad-
vance due to the complex nature of the systems under study. If we do not include 
multiple stressors we can underestimate risks (example 2), and without evaluat-
ing the landscape structure and details of the toxicology of the stressor we also 
risk inaccurate prediction of the population impact (example 3). Even socioeco-
nomic factors cannot be ignored in any but the most experimental of scenarios 
(example 4). It seems that almost all factors are important, and that is probably 
the cause for concern. 

All is not lost however. If ABMs can be used to demonstrate that these effects 
are important, they can also be used to investigate the way these factors inter-
act and thus increase our understanding of the system. In doing so and adding to 
the examples here, one could imagine an ABM/ecotoxicology utopia where se-
ries of representative landscapes were continually updated as agricultural prac-
tices change, and farmers responded to socioeconomic drivers and altered their 
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management in response to these and weather variables. Aquatic and terrestrial 
environments would be combined in such a simulation, and surface and ground 
water flow of pesticides and fertilizers would be modeled. Entire suites of nontar-
get species could be modeled in these landscapes and whenever a new pesticide 
or policy change was to be tested it could be done against a well-documented 
comprehensive simulation of a real system with all the complexities of multiple 
stressors, varying crop coverage and farmer behavior, and landscape structure. 

This would be a far cry from testing whether a TER value was less than 5, 
and while it might sound far fetched the technology to accomplish it already 
exists. Models of all basic subcomponents of the system exist, and hardware is 
easily capable of running such a system. For instance, ALMaSS can be run on a 
standard PC with one processing core while research computing facilities now 
exist with computers having >11,000 parallel processor cores [91]. What would 
be needed would be the resources and the will to construct and maintain such 
a model. On the other hand, it is important to keep in mind also that simpler 
ABMs and matrix and differential equation models all have their place. Ideally, 
such simpler models will be more or less directly linked to more complex ABMs 
such as the ALMaSS models to achieve a kind of “theoretical validation” of the 
complex model. 

Even without embarking on such a project, the fact that it can now be feasibly 
imagined suggests that the future of ABMs in ecotoxicology is rosy, and naturally 
much can be achieved with the models we already have. It is our hope then that, 
as in other scientific disciplines, ABM development in ecotoxicology is going to 
be swift and exciting. 
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