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Abstract: Aerobic incubation methods have been widely used to assess soil nitrogen

(N) mineralization, but standardized protocols are lacking. A single silt loam soil

(Catlin silt loam; fine-silty, mixed, superactive, mesic, Oxyaquic Arguidoll) was
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subjected to aerobic incubation at six USDA-ARS locations using a standardized

protocol. Incubations were conducted at multiple temperatures, which were

combined based on degree days (DD). Soil water was maintained at 60% water-

filled pore space (WFPS; constant) or allowed to fluctuate between 60 and 30%

WFPS (cycle). Soil subsamples were removed periodically and extracted in 2 M

potassium chloride (KCl); nitrate (NO3) and ammonium (NH4) concentrations in

extracts were determined colorimetrically. For each location, the rate of soil

organic-matter N (SOMN) mineralization was estimated by regressing soil

inorganic N (Ni) concentration on DD, using a linear (zero-order) model. When all

data were included, the mineralization rate from four datasets was not statistically

different, with a rate equivalent to 0.5 mg N kg21 soil day21. Soil incubated at two

locations exhibited significantly higher SOMN mineralization rates. To assess

whether this may have been due to pre-incubation conditions, time-zero data were

excluded and regression analysis was conducted again. Using this data subset,

SOMN mineralization from five (of six) datasets was not significantly different. Fluc-

tuating soil water reduced N-mineralization rate at two (of four) locations by an

average of 50%; fluctuating soil water content also substantially increased variability.

This composite dataset demonstrates that standardization of aerobic incubation meth-

odology is possible.

Keywords: mineralization, nitrogen, soil organic matter

INTRODUCTION

There are numerous methodological approaches to estimating the amount of

nitrogen (N) mineralized from soil organic-matter N (SOMN), crop

residues, or applied amendments. Field experiments vary in scale from

enclosed microplot cyclinders containing less than 1 kg of soil (Eghball

2000; Hatch, Jarris, and Pakinson 1998) to field-scale assessments of crop

N response (Fox and Piekielek 1984; Fox, Myers, and Vallis 1990;

Mulvaney et al. 2001). Laboratory approaches are similarly variable,

especially in the time required to implement. These range from rapid,

simple chemical extractions (Gianello and Bremner 1986; Keeney and

Bremner 1966) to aerobic incubations of 100- to 300-days duration (Griffin

and Honeycutt 2000; Honeycutt, Potaro, and Halteman 1991; Stanford and

Smith 1972).

Aerobic incubation often serves as the validation phase for more rapid

chemical or biological methods. Most aerobic incubation experiments have

common features, including maintenance of optimal soil water status, con-

trolled (and usually constant) temperature, and periodic sampling over time

to estimate N transformation rate(s). Although there have been several stan-

dardized protocols published (Bundy and Meisinger 1994; Robertson et al.

1999), there is significant variation in the details of aerobic incubations,

including leached vs. nonleached samples (Honeycutt, Zibilske, and

Clapham, 1988; Wienhold and Halvorson 1999); field-moist vs. dried and

T. S. Griffin et al.258



ground soil (Cabrera and Kissel 1988a), homogenized soil vs. undisturbed soil

cores (Griffin and Honeycutt 2000; Marion and Black 1987), and differences

in the duration of incubation, all of which influence the rate and extent of N

mineralization.

Honeycutt et al. (2005) recently described an aerobic incubation protocol

that was used by USDA-ARS scientists at six U.S. locations in a nationally

coordinated project to predict manure N availability. Although the primary

focus was to assess the effect of soil type, temperature, soil water, and

manure N characteristics on N availability (Griffin, Honeycutt, and He

2002; Honeycutt, Griffin, and He 2005), it represents the first effort to

assess the standardization of aerobic incubation methods across sites. Signifi-

cantly, a common soil from Illinois (Catlin silt loam; fine, silty, mixed, super-

active, mesic, Oxyaquic Argiudoll; Table 1) was incubated at each location as

a control, offering a unique opportunity to compare SOMN mineralization

rates from a single soil incubated at different locations. The results of this

comparison are reported here.

MATERIALS AND METHODS

The incubation protocol is described in detail in Honeycutt et al. (2005), and

applications of this protocol are published in Griffin, Honeycutt, and He

(2002) and Honeycutt, Griffin, and He (2005). The core treatment across

locations included a combination of two to four locally relevant incubation temp-

eratures (Table 2), with soil incubated at constant soil water content (60%water-

filled pore space,WFPS). All locations had 18 and 258C incubation temperatures

in common. Four locations also contributed data for soil that was subjected to

repeated cycles of drying to 30% WFPS and rewetting to 60% WFPS.

For each temperature–soil water combination, 250 g of air-dried Catlin

silt loam soil was placed in triplicate 1-L glass jars, and water was added to

Table 1. Characteristics of Catlin silt loam soil used in

incubation experiments at six USDA-ARS locations

Parameter Value

Soil pH 7.0

CEC (meq 100 g21) 20.1

Total C (g kg21) 32.7

Total N (g kg21) 1.8

K (kg ha21 equiv.) 771

P (kg ha21 equiv.) 47

Sand (g kg21) 220

Silt (g kg21) 630

Clay (g kg21) 150
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bring soil water content to approximately 50% WFPS. The soil was gently

packed to a density of 1.2 gcm23 and pre-incubated for a minimum of 7

days The jars were capped except for 1 h d21 for aeration. Each jar was

pre-incubated and incubated at the same temperature.

At the start of the incubation period (t ¼ 0), water was added to

increase soil water to 60% WFPS in all jars, regardless of soil water

treatment. A single 1.5-cm-diameter core was taken through the soil layer

in each jar. From this soil sample, a 5-g subsample was weighed, dried at

1058C, and reweighed to measure gravimetric soil water content. Another

5-g subsample was extracted in 50 mL 2 M potassium chloride (KCl) for

60 min, then either centrifuged or filtered to obtain a clear extract. The

extract was either analyzed immediately for ammonium (NH4)þ nitrate

(NO3) or frozen until analysis. All locations maintained a complete set of

soils with soil water content maintained at 60% WFPS by weighing and

adding water at 1 to 3-day intervals for the duration of the incubation. At

four locations, another set of jars was allowed to slowly dry from 60 to

30% WFPS. When these jars reached the 30% WFPS target, they were

rewetted to 60% WFPS and immediately sampled for inorganic N (Ni) as

described previously. The corresponding constant soil water treatment was

sampled at the same time. The length of the incubation period was equal

to four drying–rewetting cycles and varied considerably by location and

temperature (see Results and Discussion).

Soil inorganic N concentration for each location was standardized across

temperatures using the degree day (DD) or thermal unit approach of

Honeycutt, Zibilske, and Clapham (1988) and Griffin and Honeycutt (2000).

Preliminary evaluation of soil Ni concentration indicated that N mineralization

was a linear function of DD; thus, mineralization rate (Nmin) was estimated as

the slope of regression Equation (1);

Niconc: ðmg kg�1 soilÞ ¼ Aþ Nmin � DD ð1Þ

Table 2. List of treatments included for aerobic incubation of Catlin silt loam soil at

six USDA-ARS locations

Location

Incubation temperatures

included

Soil water treatments

included

Alabama 11, 18, and 258C Constant

Maine 11, 18, and 258C Constant and cycling

Mississippi 18 and 258C Constant

Nebraska 1 11, 18, 25, and 328C Constant and cycling

Nebraska 2 11, 18, 25, and 328C Constant and cycling

Oregon 11, 18, and 258C Constant and cycling
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where A is soil Ni concentration at t ¼ 0, and Nmin is mineralization rate. This

was done for each replicate individually, resulting in three estimates of

N-transformation rate for each location. Analysis of variance (ANOVA)

was then used to identify significant differences in Nmin between locations.

Where significant differences existed, a least significant difference (LSD)

was calculated at 5% level of probability. This was first done using all data

points from each location and then was repeated, excluding the t ¼ 0 data

to remove potential residual differences due to processing and pre-incubation

at the six locations.

RESULTS AND DISCUSSION

The length of the incubation period, for each combination of temperature and

location, was not predetermined in the incubation protocol. Rather, it was

equal to the time required to complete four drying–rewetting cycles in the

cycling soil water treatment, with the desired outcome being a relatively

slow drying of the soil in this treatment. As discussed in Honeycutt et al.

(2005), this was accomplished by drilling three equally spaced holes in the

lids of jars in the cycling soil water treatment (as opposed to leaving the

jars uncovered, which results in rapid soil drying). Clearly, incubation temper-

ature was expected to impact the soil drying rate and thus the length of the

incubation. As shown by Griffin, Honeycutt, and He (2002), a sandy loam soil

included in this same incubation experiment dried to 30% WFPS in 27, 18,

and 12 days at incubation temperatures of 11, 18, and 258C, respectively
(Figure 1).

Temperature effects on mineralization of SOMN can easily be standar-

dized by the application of thermal units or DD, as has been shown

numerous times (Griffin and Honeycutt 2000; Griffin, Honeycutt, and He

2002; Honeycutt 1994; Honeycutt, Zibilske, and Clapham 1988; Honeycutt,

Potaro, and Halteman 1991; Honeycutt, Clapham, and Leach 1994). The

application of DD to N mineralization is shown in Figure 2, from the incu-

bation of the Catlin silt loam soil at the Maine location. In this case, net N min-

eralization is a linear function of DD (R2 ¼ 0.83), similar to the results of

Addiscott (1983), Dendooven, Merckx, and Vlassak (1995) and Mary et al.

(1999). Although some of the datasets used here exhibited slight curvilinear-

ity, no attempt was made to apply the standard statistical model of Stanford

and Smith (1972) (Equation 2).

Ni conc: ðmg kg�1 soilÞ ¼ N0 � ð1� eð�k�DDÞÞ ð2Þ

This model allows the simultaneous estimation of a mineralization rate

constant (k) and the size of the potentially mineralizable N pool (N0).

Although there are numerous examples of this exponential model being

applied to relatively short incubations (Groot and Houba 1995; Robertson
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et al. 1988), in all likelihood none of the incubations reported here were suffi-

ciently long to reliably estimate these two parameters, as discussed by Molina

Clapp, and Larson (1980) and Cabrera and Kissel (1988b). There was only one

incubation that was longer than 168 days (177 days at the Alabama location)

that is considered minimal for applying the model of Stanford and Smith

Figure 2. Cumulative net N-mineralization from Catlin silt loam soil incubated at

three temperatures in Orono, Maine.

Figure 1. Average drying rate of sandy loam soil at three incubation temperatures

(from Griffin, Honeycutt, and He 2002).
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(1972). However, because this incubation was conducted at 118C, it was
equivalent to only 78 days at a temperature of 258C.

The difference in drying rate between locations was larger than expected,

presumably because of differences in ambient relative humidity, which would

directly affect soil drying rate. This resulted in substantial differences in the

length of the incubation period across locations, even at the same incubation

temperature. At 258C, the time required for completion of four drying–

rewetting cycles varied from 27 to 93 days for incubations conducted in

Oregon and Mississippi, respectively (Figure 3).

Analysis of variance on net N-mineralization rate estimates indicated that

there were significant differences between some locations. When all data

points from the constant soil water treatment were included (Figure 4),

there were two locations (Alabama and Mississippi) that had an average net

mineralization of 0.040 mg N kg21 soil DD21, and the other four locations

(which were not significantly different from each other) had an average net

mineralization rate of 0.0197 mg N kg21 soil DD21. These would be approxi-

mately equivalent to rates of 1.00 and 0.50 mg N kg21 soil day21, respect-

ively, at a constant temperature of 258C.
The net mineralization rates shown in Figure 4 are similar to previous

reports where SOMN mineralization followed zero-order kinetics. For

example, Addiscott (1983) found that arable soil had a net mineralization

rate of 0.40 mg N kg21 soil day21 during aerobic incubation at 258C, with
higher rates resulting from manure application or long-term grass stands.

Figure 3. Differences in sampling intervals and duration of aerobic incubation at four

locations.
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Hassink (1994) found that net mineralization rates for short-term grass stands

(1–2 years) ranged from 0.38 to 1.14 mg N kg21 soil day21.

There are no extant comparisons of net N-mineralization rates for a single

soil, estimated from aerobic incubations conducted at different locations. It is

possible that the higher net mineralization rates at two locations resulted from

differences in the pre-incubation period. All locations initiated the pre--

incubation using air-dried soil, and a flush of N (and carbon) mineralization

would be expected upon rewetting (Birch 1964; Cabrera 1993; Franzluebbers

et al. 2000). If the flush of N mineralization was not completed by the end of

the pre-incubation period, it would result in more rapid apparent net N min-

eralization. To account for this possibility, we conducted the same regression

analysis (to estimate net N-mineralization rate), excluding the original t ¼ 0

data; this has the effect of lengthening the pre-incubation period by 175 to 480

DD, depending on location and incubation temperature. As before, the

mineralization rate (Nmin) was estimated for each replicate � temperature

combination at each location, and differences were identified by ANOVA.

The results of this comparison are shown in Figure 5. The mineralization

rate from Nebraska 1 (0.0079 mg N kg21 soil DD21) is significantly lower

than three other locations (Alabama, Maine, and Mississippi). There are no

significant differences among the other five locations, with an average net

N-mineralization rate of 0.0216 mg N kg21 soil DD21, equivalent to

0.54 mg N kg21 soil day21 at a constant temperature of 258C. The fact that

the estimates of net N-mineralization rate from Alabama and Mississippi

locations are now similar in magnitude to three other locations (and approxi-

mately half of the previous estimate when all data were used) would seem to

implicate differences in pre-incubation conditions. The cause of the lower

Figure 4. Net N-mineralization rate of Catlin silt loam soil incubated at six USDA-

ARS locations.
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estimates from Nebraska 1 location (including or excluding t ¼ 0 data) is

not clear.

Four of the six locations (Maine, Nebraska 1, Nebraska 2, and Oregon)

contributed data for both constant and cycling soil water treatments. These

treatments were initially included in the protocol of Honeycutt et al. (2005)

based on previous reports of mineralization flushes occurring when dry soil

is rapidly wet to field capacity (Birch 1964; Cabrera 1993; Franzluebbers

et al. 2000). Two substantial differences between our protocol and some of

these earlier reports are the rate and extent of the drying; our soil was dried

relatively slowly, and only to 30% WFPS (rather than to air-dry status). As

pointed out by Griffin, Honeycutt, and He (2002), the dry–wet cycles

implemented in this protocol did not result in a noticeable flush of N

mineralization from applied swine slurry. Honeycutt, Griffin, and He (2005)

drew similar conclusions for dairy manure N, using the same protocol. The

impact of these drying–wetting cycles on mineralization of SOMN is

mixed, as shown in Figure 6. At two locations (Nebraska 1 and Oregon), fluc-

tuating soil water during the incubation had no significant effect on estimates

of net N-mineralization rate. At the other two locations (Nebraska 2 and

Maine), the net N-mineralization rate was reduced by 40 to 60% as a result

of repeated drying and rewetting cycles. This reduction in net N mineraliz-

ation from SOM is in agreement with numerous previous reports, including

Cassman and Munns (1980), De Neve and Hofman (2002), and Sierra

(1997), where soil water content was reduced to levels that might be

expected under field conditions. It should also be noted that the experimental

Figure 5. Net N-mineralization rate of Catlin silt loam soil incubated at six USDA-

ARS locations, excluding data from time ¼ 0 extraction to account for pre-incubation

effects.
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variability in the cycling soil water treatment was three- to four-fold greater

than in the constant soil water treatment.

CONCLUSIONS

Because aerobic incubation methods are widely used not only for evaluating

soil N transformations but also for carbon and phosphorus cycling in soils, it

is important to develop and test standardized methods. This standardization,

like that of most soil-testing strategies, allows results to be compared from

different locations and also allows larger datasets to be compiled. As was

demonstrated with this study, it is possible to arrive at similar N-mineralization

rate estimates from multiple locations. The similarity in N-mineralization rate

across five of six locations is encouraging, given that incubations were

conducted at multiple temperatures and with two soil water treatments as

part of the experimental design. Additionally, the experimental design

resulted in substantial differences in the duration of the incubations, while

still resulting in similar N-mineralization rate estimates.
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