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Effect of Oxygen Management on Culture Performance of
Channel Catfish in Earthen Ponds

EUGENE L. TORRANS*
U.S. Department of Agriculture, Agricultural Research Service,

Thad Cochran National Warmwater Aquaculture Center, Catfish Genetics Research Unit,
Post Office Box 38, Stoneville, Mississippi 38776, USA

Abstract.—Aeration allows for higher feeding rates and increased production of channel catfish
Ictalurus punctatus in intensive and semi-intensive aquaculture systems. However, the effect of
specific dissolved oxygen (DO) concentrations on various production parameters remains unknown.
The purpose of this 2-year study was to determine the effect of daily minimum DO concentration
on channel catfish production. Six 0.1-ha ponds were each equipped with three 0.37-kW (0.5-hp)
aerators and one 0.37-kW circulator. Dissolved oxygen concentrations were monitored and recorded
with a commercial oxygen monitor that also controlled aeration. During both years, aeration in
the high-oxygen treatment was initiated when the DO concentration dropped below 5.0 mg/L
(mean, 64% saturation from May to September); aeration in the low-oxygen treatment was initiated
when the DO concentration dropped below 2.5 mg/L (32% saturation; 2001) or 1.5 mg/L (19%
saturation; 2002). The minimum DO concentrations resulting from this aeration protocol differed
somewhat from aerator set points. In the low-oxygen treatment, delaying aeration until the DO
concentration dropped below 2.5 mg/L reduced feed consumption by 6% relative to the high-
oxygen treatment. Other production parameters were not significantly different. In 2002, when
aeration was delayed until the DO concentration dropped below 1.5 mg/L, the low-oxygen treatment
group exhibited reductions in food consumption (45% less than consumption by the high-oxygen
treatment), average fish weight (31% less), and net production (54% less). Even at the high feeding
rates of 2002 (maximum of 680 kg · ha21 · d21; 44,066 kg/ha total in one pond), other water quality
variables were acceptable. Net production in the high-oxygen treatment in 2002 averaged 23,547
kg/ha, a potential record for channel catfish in earthen ponds. Neither the feed conversion ratio
nor survival was significantly different between treatments in either year. While these results
cannot be directly extrapolated to large commercial ponds, it appears that increased aeration may
increase production well above current commercial levels.

During the past 30 years, average production
rates of channel catfish Ictalurus punctatus in com-
mercial ponds have increased from 1,130 kg/ha
(1,000 lb/acre) to 3,400–6,800 kg/ha (3,000–6,000
lb/acre). Some individual farmers are producing as
much as 13,608 kg/ha (12,000 lb/acre) on a whole-
farm basis (George Smelley, Harvest Select Cat-
fish, personal communication). This increase in
production is due largely to the higher stocking
and feeding rates made possible by increased aer-
ation.

Swingle (1959) recommended a maximum safe
feeding rate of 34 kg · ha21 · d21 in unaerated
ponds. At this feeding rate, dissolved oxygen (DO)
provided by wind action and photosynthesis of the
algal bloom is normally sufficient to meet the ox-
ygen demands of the fish, the bloom, and the sed-
iment, and emergency mechanical aeration is rare-
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ly needed to keep the fish alive through the night
(Tucker et al. 1979). Tucker and Boyd (1978) sug-
gested that 2,500–3,000 kg/ha of channel catfish
may be produced annually in unaerated ponds
without serious risk of oxygen depletion.

As farmers increased fish stocking and feeding
rates in an effort to grow more fish, problems with
low DO concentrations increased in frequency and
severity and emergency aeration was required
more frequently (Tucker et al. 1979; Boyd et al.
1980). When most ponds on a farm required emer-
gency aeration on a nightly basis (in the late 1970s
and early 1980s), farmers permanently installed
more-efficient electric aerators in each pond
(Busch et al. 1984). These aerators are normally
activated at night or in response to periodic DO
measurements and are turned off in the morning
when the DO concentrations begin to increase
from photosynthesis.

Channel catfish feeding and production rates
have increased approximately in proportion to aer-
ation rate. Increased aeration reduces the frequen-
cy and magnitude of oxygen depletion events, al-
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lowing higher feeding rates (Hollerman and Boyd
1980). Most commercial channel catfish ponds
have 3.5–4.7 kW/ha (1–2 hp/acre) of permanently
installed electric paddlewheel aerators for routine
aeration (USDA 1997), and additional portable
tractor-powered units are kept for emergency use.

While laboratory research indicates that channel
catfish respiration, food consumption, growth, and
feed conversion ratio (FCR) are reduced at con-
stant below-saturation DO concentrations (An-
drews et al. 1973; Andrews and Matsuda 1975;
Raible 1975; Buentello et al. 2000), the effects of
fluctuating DO concentrations, which are typical
in eutrophic channel catfish ponds in the summer,
are not well known. Carlson et al. (1980) dem-
onstrated that channel catfish consume less food
and exhibit reduced growth when held at mean
constant DO concentrations than when held at di-
urnally fluctuating DO concentrations. However,
the range of DO concentrations used in that study
was much narrower (2.0–4.9 mg/L) than the rang-
es normally encountered in intensively managed
warmwater channel catfish ponds (Hargreaves and
Steeby 2000).

In lieu of better data on the response of channel
catfish to highly variable DO concentrations, most
management strategies used since the early days
of channel catfish farming (e.g., periodic DO mea-
surements, aeration, water exchange, reduction in
feeding rates, and use of algicides) have been
aimed at preventing catastrophic oxygen-related
fish kills and minimizing visible fish stress. Chan-
nel catfish mortality may normally be expected in
ponds when the DO concentration falls below 1
mg/L (Moss and Scott 1961; Chowdhury 1971;
Durborow et al. 1985). Channel catfish raised in
ponds exhibit reduced feed intake on afternoons
after episodes of acute (visible) oxygen stress
(Tucker et al. 1979). Pond studies have indicated
reduced feed consumption (Hargreaves and Steeby
2000) or feed conversion (Lai-fa and Boyd 1988)
when DO concentration falls to 2.0 mg/L or less.
However, pond studies in which specific minimum
DO concentrations are maintained have not been
conducted.

Given the dynamic pond environment and the
lack of applied data upon which to base aeration
decisions, it is no surprise that oxygen manage-
ment plans vary widely among channel catfish
farms. Some farmers routinely begin aeration be-
fore the DO concentration falls to 4 mg/L. Other
farmers set a DO concentration of 2 mg/L as the
threshold to begin aeration. Most farmers begin
aeration at some point between those two extremes

(Tucker and Robinson 1990) and turn on additional
electric aerators and eventually tractor-powered
aerators if the DO concentration continues to fall.

The purpose of this 2-year study was to deter-
mine the effect of daily minimum DO concentra-
tion on feed consumption, feed conversion,
growth, and production of channel catfish grown
in earthen ponds. Additionally, the impacts of min-
imum DO concentration on other water quality
variables were examined.

Methods

Production studies were conducted in 2001 and
2002 at the U.S. Department of Agriculture
(USDA), Agricultural Research Service (ARS),
Catfish Genetics Research Unit at Stoneville, Mis-
sissippi. Six 0.1-ha ponds with a 1.2-m average
depth were used in the study. During both years,
ponds were stocked before fish began to actively
feed in the spring and were completely harvested
in the fall after feeding had ceased.

Each pond was treated with 1.9 L of Aquashade
(Applied Biochemists, Alpharetta, Georgia) and
0.95 L of 11–37–0 liquid fertilizer during filling.
Water levels were maintained throughout the study
by a 6/3 water management system to minimize
water exchange (Cathcart et al. 1999). Both al-
kalinity and hardness exceeded 200 mg/L and did
not differ significantly between treatments during
either year.

Each pond was equipped with a Royce Model
9300 oxygen analyzer connected to a Model 95
oxygen sensor (Royce Instrument Corp., New Or-
leans, Louisiana). The oxygen sensors were air-
calibrated once daily. The sensors and analyzers
were used for data collection via radio link to a
desktop computer and were used to control three
0.37-kW (0.5-hp) paddlewheel aerators (Southern
Machine Welding, Inc., Quinton, Alabama) in each
pond. Aerators were activated individually as stip-
ulated by the experimental design. Dissolved ox-
ygen concentration, water temperature, and aerator
status were continuously monitored and recorded
every 20 min throughout the study. Additionally,
one 0.37-kW vertical pump aerator (Kasco Marine,
Inc., Prescott, Wisconsin), which was mounted
horizontally under a float, was run continuously
as a circulator in each pond to minimize temper-
ature and oxygen stratification (Busch and Good-
man 1981; Tucker and Steeby 1995). The circu-
lator and aerators were positioned to create coun-
terclockwise circulation in the pond when oper-
ating.

Rock salt (Cargill, Inc., Minneapolis, Minne-
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TABLE 1.—Mean weights and numbers (6SEs) of channel catfish stocked in earthen ponds on March 12 (2-year-old
‘‘large fish’’) and March 13, 2001 (1-year-old ‘‘small fish’’). None of the variables differed significantly between
treatments (ANOVA).

Variable

Treatment

Low oxygen High oxygen

Large fish stocked (kg/ha) 5,652 6 56 5,818 6 61
Large fish stocked (number/ha) 15,072 6 104 14,973 6 10
Small fish stocked (kg/ha) 708 6 0 708 6 0
Small fish stocked (number/ha) 40,000 6 0 40,000 6 0
Total weight of fish stocked (kg/ha) 6,359 6 56 6,526 6 61
Total fish stocked (number/ha) 55,072 6 104 54,973 6 10

sota) was added to raise chloride concentrations
to 100 mg/L as a prophylaxis against nitrite-
induced methemoglobinemia (Tomasso et al.
1980). Based on weekly chloride measurement,
additional salt was added to individual ponds to
maintain a minimum chloride concentration of 100
mg/L (Brunson 1997).

Once daily, fish were fed all they would con-
sume in 10 min. Feeding frequency was increased
from once per week to twice per week, then every
other day, and then daily as water temperature and
feeding response increased through the spring.
Feeding frequency decreased similarly in the fall
as water temperatures decreased. Fish were fed a
28%-protein floating feed in 2001; a 32%-protein
feed was used in 2002 (Delta Western Catfish Feed,
Indianola, Mississippi).

Dead fish were collected daily. Fish diagnosed
with Edwardsiella ictaluri (the causative agent of
enteric septicemia of catfish [ESC]) were fed a
32%-protein commercial feed containing Romet-
30 (0.28 g of sulfadimethoxine/kg of feed and 0.06
g of ormetroprim/kg of feed) for 5 d; fish diag-
nosed with Flavobacterium columnare were fed a
32%-protein commercial feed containing oxytet-
racycline (1.13 g/kg) for 10 d (Delta Western Cat-
fish Feed).

Water quality data were analyzed with the
repeated-measures analysis of variance (ANOVA)
procedure in SAS/STAT Analyst Application (SAS
Institute 1999a, 1999b); repeated measures were
taken on replicate ponds at approximately weekly
intervals. The covariance structure, autoregressive
of order 1, was used in the repeated-measures mod-
el. Mean comparisons were made with a least-
significant-difference test. Production data were
analyzed by use of ANOVA with a significance
level of 0.05 unless otherwise stated.

2001 study.—Ponds were filled with well water
during the week of March 5–9 and were stocked
on March 12 (Table 1) with 2-year-old USDA103

channel catfish (15,000 fish/ha) and again on
March 13, 2001, with 1-year-old USDA103
fingerlings (40,000 fish/ha). These fish came from
an experimental line currently maintained at the
USDA-ARS Catfish Genetics Research Unit; this
line was recently released to the industry by Mis-
sissippi State University under the name
NWAC103 (New catfish broodstock moved to
growers 2001). Two size-groups were used to sim-
ulate the mixed-size culture system currently used
by most commercial farmers. To control aquatic
macrophytes, each pond was also stocked on April
17 with 10 grass carp Ctenopharyngodon idella
averaging 0.8 kg.

A high-oxygen treatment was randomly as-
signed to three ponds; three paddlewheel aerators
in each pond operated sequentially when the DO
concentration dropped below 5.0, 4.5, and 4.0 mg/
L, respectively. A low-oxygen treatment was as-
signed to three ponds, and the three aerators in
each pond operated sequentially as DO concentra-
tion dropped below 2.5, 2.3, and 2.0 mg/L. Indi-
vidual aerators were turned off automatically when
the DO concentration increased above the actua-
tion set points.

Ponds were sampled weekly for chloride, pH,
ammonia, and nitrite. Chloride was determined by
means of the silver nitrate method (Hach Co.,
Loveland, Colorado). Total ammonia nitrogen
(TAN) was determined with the phenate method,
and nitrite-nitrogen (NO2-N) was determined by
use of diazotization (Boyd and Tucker 1992). Un-
ionized ammonia nitrogen (NH3-N) was calculated
as a function of TAN, temperature, and pH (Em-
erson et al. 1975).

Market-size fish (larger specimens of the 2-year-
old age-class) were selectively harvested on Au-
gust 29 and again on October 25 with a 4.8-cm
(1.875-in) stretch-mesh net that retained fish larger
than approximately 0.6 kg (1.3 lb). Ponds were
completely harvested on November 6–8.
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FIGURE 1.—Minimum daily dissolved oxygen (DO) concentrations and mean daily temperature in experimental
channel catfish ponds in 2001. Values for DO are daily means of the lowest daily DO concentration in three 0.1-
ha ponds per treatment; temperature is the mean of 72 daily measurements recorded from one representative pond.

TABLE 2.—Monthly mean (6SE) water temperature,
minimum dissolved oxygen (DO) concentration, and per-
cent oxygen saturation in experimental channel catfish
ponds (three replicates/treatment) in 2001. Measurements
were taken on pond water returning to the aerators, prior
to aeration. Mean percent oxygen saturation (in parenthe-
ses) is based on the mean temperature, which was mea-
sured in one representative pond. Within a row, oxygen
values followed by different letters are significantly dif-
ferent (ANOVA; P # 0.05).

Month
Temperature

(8C)

DO (mg/L) (% saturation)

Low-oxygen
treatment

High-oxygen
treatment

Mar 12.3 6 0.5 11.1 6 2.2 (104) 9.3 6 0.1 (87)
Apr 20.4 6 0.5 6.3 6 0.8 (70) 6.3 6 0.2 (70)
May 26.0 6 0.3 3.0 6 0.1 (37) y 4.7 6 0.0 (58) z
Jun 29.1 6 0.3 2.6 6 0.1 (34) y 4.4 6 0.0 (57) z
Jul 32.0 6 0.3 2.4 6 0.0 (33) y 4.3 6 0.1 (59) z
Aug 29.8 6 0.3 2.3 6 0.0 (30) y 4.4 6 0.1 (58) z
Sep 26.0 6 0.6 3.2 6 0.2 (40) y 5.0 6 0.1 (62) z
Oct 19.3 6 0.5 5.1 6 0.4 (55) 5.9 6 0.2 (64)
Nov 18.6 6 0.5 6.0 6 0.1 (64) 6.0 6 0.1 (64)

2002 study.—Ponds were filled with well water
during the week of February 11–15 and were
stocked on February 25–26 with 1,485 kg/ha of 1-
year-old USDA103 channel catfish. These 12–20-
cm (total length [TL]) graded fingerlings had an
average weight of 37 g (82 lb/1,000 fish), resulting
in a stocking rate of 40,000 fish/ha. The channel
catfish had been vaccinated as fry during the pre-

vious year with AQUAVAC-ESC (Intervet, Inc.,
Millsboro, Delaware).

The three aerators in each high-oxygen treat-
ment pond were actuated sequentially as the DO
concentration dropped below 5.0, 4.9, and 4.8 mg/
L. The three aerators in each low-oxygen treatment
pond were actuated when the DO concentration
dropped below 1.5, 1.4, and 1.3 mg/L.

Chloride, pH, ammonia, nitrite, chlorophyll a (a
measure of phytoplankton biomass; Lloyd and
Tucker 1988), nitrate (Boyd and Tucker 1992), sus-
pended solids (fixed, volatile, and total), Secchi
disk visibility, alkalinity, and hardness (American
Public Health Association et al. 1998) were de-
termined weekly.

Harvest began on November 4 (252 d after
stocking) and was completed in 3 d.

Results

2001 Study

Oxygen.—The intended treatment (different
minimum DO concentrations) was effectively ap-
plied to the ponds (Figure 1). From May to Sep-
tember, monthly mean water temperature averaged
higher than 258C and the minimum DO concen-
tration in the high-oxygen treatment was signifi-
cantly higher than that of the low-oxygen treat-
ment (Table 2). Mean monthly minimum DO con-
centration ranged from 4.3 to 5.0 mg/L in the high-
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FIGURE 2.—Average (6SE) daily feed administered to experimental channel catfish ponds in 2001. Feed values
are monthly means of three replicate ponds per treatment; temperature is the mean value for one representative
pond.

oxygen treatment versus 2.3–3.2 mg/L in the
low-oxygen treatment (59% versus 35% satura-
tion), a mean difference of 1.9 mg/L, during those
months. There were no significant differences be-
tween treatments in March, April, October, and
November, months in which water temperature av-
eraged less than 218C. Due to the low water tem-
peratures, only 12.3% of the season’s feed was
given in those 4 months (Figure 2).

Feed.—Feed consumption in both treatments
ranged from less than 23 kg · ha21 · d21 in March
and November to over 138 kg · ha21 · d21 in July
and August (Figure 2). The highest monthly feed-
ing rate (161 kg · ha21 · d21) was observed in the
high-oxygen treatment in July, the month with the
highest mean water temperature.

While the minimum daily DO concentration av-
eraged 1.9 mg/L lower in the low-oxygen treat-
ment than in the high oxygen treatment from May
to September (from Table 2), there were no sig-
nificant differences in feed consumption during
any individual month (Figure 2). However, fish in
the low-oxygen treatment consumed significantly
less feed overall (6.3%; Table 3) than fish in the
high-oxygen treatment (20,139 versus 21,501 kg/
ha; P 0.05).

Production.—There were no significant differ-
ences in net production, survival, or FCR between
treatments (Table 3). Survival did not differ sig-
nificantly between treatments but was negatively
correlated with average weight (Figure 3; r2 5

20.89, P # 0.005). Thus, the slightly larger av-
erage fish weight in the high-oxygen treatment
ponds may be due at least in part to the slightly
lower survival in that treatment.

Most observed mortality was due to ESC; 69.9%
(data not shown) of observed mortality occurred
during June, when water temperatures were in the
optimum range for this disease. Many fish of the
larger size-class died during this period. These fish
had been harvested during the previous fall after
feeding had ceased, were stored in a pond over
winter, and were restocked in the study ponds be-
fore feeding began in the spring of 2001. They
were in visibly poor condition when stocked in the
spring of 2001. The loss of these large fish ac-
counts for a large part of the poor FCR.

Aeration hours.—Maintaining higher oxygen
levels required significantly more aeration. The
high-oxygen treatment used significantly more
aeration every month from April to October and
160% more overall than did the low-oxygen treat-
ment (Table 4). To put this in perspective, the
2,735-kilowatt-hours (kW-h)/ha aeration in the
high-oxygen treatment during August, the month
of peak aeration treatment, would require each of
the three 0.37-kW paddlewheel aerators present in
each 0.1-ha pond to run for an average of 7.9 h/
d. By contrast, the three aerators in each low-
oxygen treatment pond would each need to run an
average of 3.3 h/d during the same month.

The high-oxygen treatment used an average of
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TABLE 3.—Average (6SE) weight, gross production, net production, survival, and feed conversion ratio of channel
catfish in 0.1-ha earthen ponds (three ponds/treatment) in 2001. Within a row, values followed by different letters are
significantly different (ANOVA; P # 0.05).

Variable Low-oxygen treatment High-oxygen treatment

Partial harvest (kg/ha) 7,740 6 474 8,060 6 389
Partial harvest average weight (kg) 0.82 6 0.02 y 0.90 6 0.01 z
Final harvest (kg/ha) 5,643 6 173 5,333 6 247
Final harvest average weight (kg) 0.21 6 0.01 y 0.23 6 0.0 z
Gross production (kg/ha) 13,383 6 305 13,393 6 304
Gross production average weight (kg) 0.37 6 0.02 0.41 6 0.01
Net production (kg/ha) 7,023 6 249 6,868 6 243
Survival (%) 66.3 6 2.1 59.2 6 2.3
Feed administered (kg/ha) 20,139 6 87 y 21,501 6 273 z
Feed conversion ratio 2.87 6 0.11 3.13 6 0.09

FIGURE 3.—Actual survival (number of fish recovered) versus average weight of channel catfish harvested from
experimental ponds in 2001.

8,041 kW-h/ha of aeration during the year, in con-
trast to 3,096 kW-h/ha for the low-oxygen ponds.
At a cost of $0.11 per kilowatt-hour, this would
add $0.12 versus $0.05 per kilogram to the cost
of fish in the high- and low-oxygen treatments,
respectively. On a commercial farm, these extra
hours of operation would add additional mainte-
nance and capital equipment costs as well.

Water quality.—Most water quality variables
followed the same general seasonal trend as water
temperature and feed consumption, but there was
great variation on any sample date. Total ammonia
nitrogen, un-ionized ammonia nitrogen, and

nitrate-nitrogen (NO3-N) did not differ signifi-
cantly between the high- and low-oxygen treat-
ments (Table 5). Un-ionized ammonia was gen-
erally less than 0.05 mg/L; the highest concentra-
tion determined for any single sample during the
year was 0.14 mg/L on August 10. This was well
below the concentration shown to have an effect
on channel catfish food consumption or growth
(Hargreaves and Kucuk 2001).

While not biologically significant, nitrite-
nitrogen was significantly higher in the high-
oxygen treatment than in the low-oxygen treatment
(Table 5). Nitrification is an aerobic process (Bru-
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TABLE 4.—Aeration levels (kilowatt-hours [kW-h]/ha;
mean 6 SE) in experimental channel catfish ponds (three
ponds/treatment) in 2001. Temperature is the mean month-
ly temperature (8C) measured in one representative pond.
Within a row, values followed by different letters are sig-
nificantly different (ANOVA; P # 0.05).

Month

Aeration

Low-oxygen
treatment

High-oxygen
treatment Temperature

Mar 0 6 0 0 6 0 12.3
Apr 39 6 16 y 120 6 6 z 20.4
May 274 6 45 y 755 6 152 z 26.0
Jun 439 6 103 y 1,000 6 106 z 29.1
Jul 875 6 87 y 1,963 6 217 z 32.0
Aug 1,160 6 48 y 2,735 6 55 z 29.8
Sep 317 6 48 y 1,284 6 190 z 26.0
Oct 1 6 1 y 182 6 68 z 19.3
Nov 0 6 0 2 6 2 18.6
Total 3,096 6 245 y 8,041 6 390 z

TABLE 6.—Monthly mean (6SE) water temperature,
minimum dissolved oxygen (DO) concentration, and per-
cent oxygen saturation in experimental channel catfish
ponds (two replicates/treatment) in 2002. Measurements
were taken on pond water returning to the aerators, prior
to aeration. Mean percent oxygen saturation (in parenthe-
ses) is based on the mean temperature, which was mea-
sured in one representative pond. Within a row, oxygen
values followed by different letters are significantly dif-
ferent (ANOVA; P # 0.05).

Month
Mean tempera-

ture (8C)

DO (mg/L) (% saturation)

Low-oxygen
treatment

High-oxygen
treatment

Mar 13.3 6 0.7 9.8 6 0.1 (93) 9.8 6 0.0 (93)
Apr 21.7 6 0.8 6.4 6 0.1 (73) 6.5 6 0.1 (74)
May 24.4 6 0.4 4.2 6 0.1 (51) y 5.4 6 0.1 (65) z
Jun 28.9 6 0.2 1.6 6 0.1 (21) y 4.7 6 0.0 (61) z
Jul 31.5 6 0.1 2.0 6 0.1 (27) y 4.1 6 0.3 (55) z
Aug 30.0 6 0.3 1.3 6 0.1 (17) y 4.0 6 0.1 (53) z
Sep 26.7 6 0.5 1.8 6 0.0 (20) y 4.6 6 0.1 (58) z
Oct 20.9 6 0.6 2.8 6 0.5 (31) 4.7 6 0.0 (53)
Nov 13.0 6 0.7 6.1 6 0.1 (58) 5.5 6 0.3 (52)

TABLE 5.—Water quality variables (mean 6 SE; N and maximum value in parentheses) for experimental channel
catfish ponds (three ponds/treatment) in 2001. Measurements were taken at approximately weekly intervals throughout
the study. The last column indicates the results of a repeated-measures ANOVA testing for significant differences
between treatments (NS 5 not significant).

Variable Low-oxygen treatment High-oxygen treatment P

Total ammonia nitrogen (mg/L) 0.38 6 0.04 (78, 2.31) 0.37 6 0.05 (78, 1.65) NS
Un-ionized ammonia nitrogen (mg/L) 0.017 6 0.003 (50, 0.141) 0.022 6 0.004 (51, 0.144) NS
pH 7.96 6 0.04 (50, 8.61) 8.01 6 0.03 (51, 8.50) #0.01
Nitrite-nitrogen (mg/L) 0.19 6 0.02 (84, 0.94) 0.24 6 0.03 (84, 0.90) #0.01
Nitrate-nitrogen (mg/L) 0.57 6 0.04 (30, 1.08) 0.53 6 0.06 (30, 1.10) NS

ne et al. 2003), and the increased aeration in the
high-oxygen treatment ponds probably facilitated
the transformation of ammonia (which was slightly
but not significantly decreased in the high-oxygen
treatment) to nitrite. Nitrite-nitrogen peaked in
August and September but never exceeded 0.94
mg/L (measured on August 30). This is less than
10% of the allowable concentration based on the
chloride concentrations that were maintained (To-
masso et al. 1980; Brunson 1997; Durborow et al.
1997).

The pH differed significantly between treat-
ments, averaging 8.01 in the high-oxygen treat-
ment versus 7.96 in the low-oxygen treatment. The
slightly higher pH values in the high-oxygen treat-
ment may be due to a greater loss of CO2 to the
atmosphere in ponds that received more aeration
(Hargreaves and Brunson 1996).

2002 Study

Fish in two ponds experienced high mortality in
June. One pond in the low-oxygen treatment had
an equipment failure that resulted in an oxygen
depletion event; one pond in the high-oxygen treat-

ment had a serious outbreak of ESC. Since the
known fish loss in both ponds exceeded 75% of
initial stocking, it was decided at that time to drop
them from the production study. While the sur-
viving fish in both ponds were fed for the rest of
the study, data from those two ponds were included
only in the correlation analysis of survival versus
average weight.

Oxygen.—Monthly mean minimum DO concen-
trations in the low-oxygen treatment ranged from
1.3 to 2.0 mg/L (17–27% saturation) from June to
September, months in which the mean water tem-
perature averaged 258C or higher (Table 6). These
values were somewhat higher (except for August)
than the aeration set point, because there were a
number of days in which the DO concentration
never dropped low enough for aeration to com-
mence (Figure 4). With the exception of 1 week
in early July, when aerator set points were raised
to high-oxygen treatment set points in response to
initial symptoms of proliferative gill disease, days
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FIGURE 4.—Minimum daily dissolved oxygen (DO) concentration and mean daily temperature in experimental
channel catfish ponds in 2002. Values for DO are daily means of the lowest daily DO concentration in two 0.1-
ha ponds per treatment; temperature is the mean of 72 daily measurements recorded from one representative pond.

when aeration was not required usually corre-
sponded with a drop in water temperature. From
June to September, the mean minimum DO con-
centration in the high-oxygen treatment averaged
2.7 mg/L greater than that of the low-oxygen treat-
ment (57% versus 21% saturation).

The 11.2 kW/ha of aeration was not able to
maintain the minimum DO concentration as high
as desired in the high-oxygen treatment during
July and August, when the mean water temperature
was 308C or higher (Figure 4). The minimum DO
concentration in the high-oxygen treatment aver-
aged 4.1 mg/L in July and 4.0 mg/L in August
(55% and 53% saturation) (Table 6), whereas the
values were 4.3 and 4.4 mg/L (59% and 58% sat-
uration) for those same months in 2001 (Table 2).
This difference was presumably due to the ex-
tremely high feed input to the high-oxygen treat-
ment ponds (discussed later). As in 2001, there
were no significant differences in minimum DO
concentration between treatments in March, April,
October, or November of 2002, months in which
water temperature averaged less than 228C.

Feed consumption.—Fish in the high-oxygen
treatment ate significantly more feed every month
from July to September (Figure 5). Overall feed
consumption was 168 kg · ha21 · d21 (42,331 kg/ha
total) based on the 252 d that fish were exposed
to the high-oxygen treatment; feed consumption

was 92 kg · ha21 · d21 (23,247 kg/ha) for the low-
oxygen treatment (Table 7).

The greatest food consumption for an individual
pond on a single day was 680 kg/ha in the high-
oxygen treatment and 436 kg/ha in the low-oxygen
treatment (data not shown). The greatest monthly
food consumption in both treatments occurred in
August (Figure 5): average monthly consumption
was 328 kg · ha21 · d21 (10,177 kg/ha total) in the
high-oxygen treatment and 166 kg · ha21 · d21

(5,156 kg/ha) in the low-oxygen treatment (P #
0.05). From July to September, the three peak feed-
ing months, feed consumption averaged 282
kg · ha21 · d21 for the high-oxygen treatment versus
130 kg · ha21 · d21 for the low-oxygen treatment (P
# 0.05).

Production.—Net production in 2002 averaged
23,547 kg/ha in the high-oxygen treatment versus
10,830 kg/ha in the low-oxygen treatment (Table
7; P , 0.05). This is the highest net channel catfish
production yet reported in earthen ponds. Mean
fish weight, although not significantly different,
averaged 760 g in the high-oxygen treatment and
520 g in the low-oxygen treatment.

Fish survival in the two replicates used per treat-
ment did not differ significantly between treat-
ments (Table 7). However, analysis of covariance
of all three replicates per treatment showed a sig-
nificant difference (P # 0.05) in the regression of
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FIGURE 5.—Average (6SE) daily feed administered to experimental channel catfish ponds in 2002. Feed values
are monthly means of two replicate ponds per treatment; temperature is the mean value for one representative pond.

TABLE 7.—Average (6SE) weight, net production, survival, and feed conversion ratio of channel catfish in 0.1-ha
earthen ponds (two ponds/treatment) in 2002. Within a row, values followed by different letters are significantly different
(ANOVA; P # 0.10).

Variable Low-oxygen treatment High-oxygen treatment

Net production (kg/ha) 10,830 6 1,728 y 23,547 6 283 z
Mean weight (g) 520 6 90 760 6 60
Survival (%) 62 6 18 83 6 6
Feed administered (kg/ha) 23,247 6 1,727 y 42,331 6 1,775 z
Average feeding rate (kg · ha21 · d21) 92 y 168 z
Feed conversion ratio 2.15 6 0.19 1.80 6 0.05

survival against mean weight in the two treatments
(Figure 6).

Feed conversion.—The mean FCR in 2002 was
poorer in the low-oxygen treatment (2.15) than in
the high-oxygen treatment (1.80; Table 7); how-
ever, this difference was not significant. Some oth-
er studies have found a poorer FCR as well as
reduced feed consumption at lower DO concen-
trations (Andrews et al. 1973; Lai-fa and Boyd
1988). At least a part of the difference seen in
these studies was due to wasted feed resulting from
feeding fish a fixed percentage of their body weight
(Andrews et al. 1973) rather than feeding to sa-
tiation. However, as feeding rates become pro-
gressively reduced (either from management re-
strictions or water quality induced reductions in
voluntary feed consumption), a larger portion of
the diet is utilized for maintenance rather than for
growth and one would expect a poorer FCR to
result. While the trends in these data support that
principle, the differences in FCR observed in this
study were not statistically significant.

Aeration hours.—The high-oxygen treatment
used over six times the amount of aeration (16,439
kW-h/ha) than was used by the low-oxygen treat-
ment (2,593 kW-h/ha) (Table 8; P # 0.10). At a
cost of $0.11 per kilowatt-hour, this would add
$0.08 per kilogram to the cost of fish in the high-
oxygen treatment versus $0.03 per kilogram to the
cost of fish in the low-oxygen treatment. The aer-
ation required was significantly different between
treatments during every month from April to Oc-
tober.

The large difference in aeration between treat-
ments was due primarily to two factors. First, aer-
ator efficiency (kg of oxygen transferred per kW-
h of aeration) decreases linearly as DO concen-
tration (and oxygen saturation) increases, since ox-
ygen transfer is proportional to the difference in
partial pressure of oxygen between the water and
the atmosphere. Thus, under the assumption of
equal total pond respiration rates, the maintenance
of DO at 5.0 mg/L would require over three times
as much aeration as maintenance at 1.5 mg/L be-
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FIGURE 6.—Actual survival (number of fish recovered) versus average weight (g) of channel catfish harvested
from experimental ponds in 2002. Data were included from two ponds (one per treatment) that were dropped from
the production study because of high mortality.

TABLE 8.—Aeration levels (kilowatt-hours [kW-h]/ha;
mean 6 SE) in experimental channel catfish ponds (two
ponds/treatment) in 2002. Temperature is the mean month-
ly temperature (8C) measured in one representative pond.
Within a row, values followed by different letters are sig-
nificantly different (ANOVA; P # 0.10).

Month

Aeration

Low-oxygen
treatment

High-oxygen
treatment Temperature

Mar 0 6 0 0 6 0 13.3
Apr 0 6 0 y 152 6 50 z 21.7
May 23 6 14 y 542 6 57 z 24.4
Jun 422 6 31 y 2,129 6 213 z 28.9
Jul 766 6 176 y 3,679 6 843 z 31.5
Aug 635 6 223 y 4,019 6 864 z 30.0
Sep 585 6 120 y 3,764 6 358 z 26.7
Oct 163 6 83 y 2,118 6 398 z 20.9
Nov 0 6 0 20 6 10 13.0
Total 2,593 6 577 y 16,439 6 2,679 z

cause of reduced transfer efficiency in the high-
oxygen treatment. Second, total pond respiration
rates, although not measured directly, were un-
doubtedly different between the two treatments.
The greater feed input to the high-oxygen treat-
ment ponds presumably resulted in a higher total
pond oxygen demand, further increasing the need
for aeration.

Water quality.—Fish in the high-oxygen treat-
ment consumed 82% more feed than fish in the
low-oxygen treatment in 2002 (calculated from Ta-

ble 7), and this impacted many of the water quality
variables measured. Total ammonia nitrogen, un-
ionized ammonia nitrogen, and volatile solids did
not differ significantly among treatments over the
season; however, all other variables did differ sig-
nificantly among treatments (repeated-measures
ANOVA: P # 0.05 or P # 0.01; Table 9).

Most variables exhibited the same general sea-
sonal trends demonstrated by temperature and feed
input, increasing through the growing season and
decreasing in the fall as temperatures dropped and
feed input was reduced. However, there was great
variation both among sample dates and among rep-
licate ponds on given dates.

Total ammonia nitrogen increased through the
spring and into the summer as feed input increased,
reaching high mean values on July 24 of 4.0 mg/
L in the high-oxygen treatment and 2.6 mg/L in
the low-oxygen treatment. The highest values mea-
sured in individual ponds were 4.7 mg/L in the
high-oxygen treatment and 4.4 mg/L in the low-
oxygen treatment (Table 9). However, over the
course of the season, TAN averaged slightly (but
not significantly) lower in the high-oxygen treat-
ment than in the low-oxygen treatment. This trend,
observed in both years, indicates an increased ni-
trification rate resulting from the higher DO con-
centrations (Avnimelech et al. 1986), increased
volatization resulting from increased mechanical
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TABLE 9.—Water quality variables (mean 6 SE; N and maximum value in parentheses) for experimental channel
catfish ponds (two ponds/treatment) in 2002. Measurements were taken at approximately weekly intervals throughout
the study. The last column indicates the results of a repeated-measures ANOVA testing for significant differences
between treatments (NS 5 not significant).

Variable Low-oxygen treatment High-oxygen treatment P

Total ammonia nitrogen (mg/L) 1.26 6 0.12 (60, 4.36) 1.20 6 0.11 (60, 4.70) NS
Un-ionized ammonia nitrogen (mg/L) 0.05 6 0.01 (58, 0.16) 0.06 6 0.01 (58, 0.18) NS
pH 7.92 6 0.03 (58, 8.76) 8.00 6 0.02 (58, 8.70) #0.01
Nitrite-nitrogen (mg/L) 0.35 6 0.04 (60, 1.47) 0.56 6 0.06 (60, 3.16) #0.01
Nitrate-nitrogen (mg/L) 0.30 6 0.04 (60, 1.73) 0.53 6 0.09 (60, 3.99) #0.05
Chlorophyll a (mg/L) 342 6 32 (54, 1,045) 439 6 39 (54, 1,040) #0.01
Secchi visibility (cm) 16.7 6 0.5 (54, 26) 15.0 6 0.4 (54, 25) #0.05
Total suspended solids (mg/L) 113 6 5 (54, 233) 140 6 6 (54, 257) #0.05
Fixed solids (mg/L) 72 6 4 (54, 152) 96 6 5 (54, 195) #0.05
Volatile solids (mg/L) 42 6 3 (54, 91) 45 6 2 (54, 101) NS

aeration (Weiler 1979), and/or an increased am-
monia utilization by the denser phytoplankton
bloom (Hargreaves and Tucker 1996).

Un-ionized ammonia also increased through the
season, peaking in September at mean concentra-
tions of less than 0.15 mg/L in both treatments.
While this variable did not differ between treat-
ments over the season (P $ 0.05; Table 9), mean
un-ionized ammonia did average slightly higher in
the high-oxygen treatment even though average
TAN was slightly lower in that treatment. This was
due to the higher pH (P # 0.01; Table 9) in the
high-oxygen treatment throughout the season. The
higher pH in the high-oxygen treatment probably
resulted from the greater aeration, which removes
free CO2, thus raising the pH (Hargreaves and
Brunson 1996) and increasing the proportion of
un-ionized ammonia (Emerson et al. 1975). The
highest un-ionized ammonia values measured in
individual ponds were 0.18 mg/L in the high-
oxygen treatment and 0.16 mg/L in the low-oxygen
treatment (Table 9). These are well below the con-
centrations shown to have an effect on channel
catfish food consumption or growth (Hargreaves
and Kucuk 2001).

Peaks in nitrite-nitrogen concentration usually
occurred 1 week after peaks in TAN (ponds were
only sampled once per week). Nitrite-nitrogen dif-
fered significantly between treatments over the
season (P # 0.01; Table 9), and this was expected
in ponds that received more aeration (Hollerman
and Boyd 1980). The highest values measured in
individual ponds were 3.16 mg/L in the high-
oxygen treatment and 1.47 mg/L in the low-oxygen
treatment. While these values are high enough to
be of interest, they are well below the tolerance
level of channel catfish based on the chloride con-
centrations that were maintained (Tomasso et al.
1980; Brunson 1997; Durborow et al. 1997).

Chlorophyll a was significantly higher in the
high-oxygen treatment (mean, 439 mg/L) than in
the low-oxygen treatment (342 mg/L; Table 9).
Chlorophyll a is normally light-limited in inten-
sive eutrophic channel catfish production ponds,
which diurnally stratify. However, it does appear
that the phytoplankton bloom in these ponds,
which were continually circulated and thoroughly
mixed, could still respond to increased nutrient
input. The denser phytoplankton bloom in the
high-oxygen treatment was at least partly respon-
sible for the low (relative to feed input) ammonia
concentrations.

The high-oxygen treatment ponds were more
turbid and had significantly lower Secchi disk vis-
ibility and significantly more total suspended sol-
ids than the low-oxygen ponds (Table 9). Non-
volatile (fixed) suspended solids were significantly
higher in the high-oxygen treatment overall, while
volatile suspended solids were not significantly
different between the two treatments. The sixfold
higher aeration in the high-oxygen treatment was
expected to yield higher total suspended solids and
fixed solids and a reduced Secchi visibility (Thom-
forde and Boyd 1991; Teichert-Coddington and
Green 1993); however, the fact that volatile solids
were not significantly different between treatments
cannot be explained.

Feed consumption versus minimum DO concen-
tration.—In both years of the study, a high-oxygen
treatment was established in which aeration was
initiated when the DO concentration dropped be-
low 5.0 mg/L. These treatments were used as con-
trols (maximum feed consumption) against which
response to the low-oxygen treatment of the same
year could be compared. When the minimum DO
concentration was allowed to fall to 2.5 mg/L be-
fore initiating aeration (resulting in a mean min-
imum May–September DO concentration of 2.7
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mg/L or 35% saturation; Table 2), this produced
only a 6.3% reduction in feed consumption in 2001
(Table 3). In 2002, when the DO concentration in
the low-oxygen treatment was allowed to decrease
to 1.5 mg/L before initiating aeration (resulting in
a mean minimum June–September DO concentra-
tion of 1.7 mg/L or 21% saturation; Table 6), feed
consumption was reduced by 45.1% (Table 7).

Conclusions

Channel catfish are tolerant of the low DO con-
centrations that are common in eutrophic warm-
water aquaculture ponds. While exposure to a con-
stant DO concentration as high as 60% saturation
negatively affects channel catfish oxygen con-
sumption (Andrews and Matsuda 1975), feed con-
sumption, and growth (Andrews et al. 1973; Raible
1975; Carlson et al. 1980; Buentello et al. 2000),
this study demonstrated that channel catfish can
tolerate periodic exposure to low oxygen concen-
trations in a diurnally cycling pond environment
without a reduction in culture performance.

Maintaining DO concentrations above 2.5 mg/
L (32% saturation) would be energy inefficient due
to the poor oxygen transfer of existing surface aer-
ators, and the gains in fish production would be
insignificant. However, allowing the DO to de-
crease below that concentration results in increas-
ingly poor fish performance. When the DO con-
centration was allowed to decline to 1.5 mg/L
(19% saturation) before aeration was initiated, vol-
untary feed consumption was reduced by 45.1%.

Although Andrews et al. (1973) observed a re-
duction in feed efficiency when fish were exposed
to constant low DO (2.9 mg/L at a 26.68C test
temperature), that was not observed in this study
(Tables 3, 7). While the mean FCR of the low-
oxygen treatment was slightly poorer than that of
the high-oxygen treatment (2.15 versus 1.80 in
2002; Table 7), the difference was not significant.
However, it is likely that if minimum DO concen-
trations were allowed to decrease further (or if a
constant low DO concentration was maintained, as
in the Andrews et al. 1973 study), feed consump-
tion would be reduced even more than was ob-
served in this study and feed conversion could be
affected, as a greater portion of the feed consumed
would be required for maintenance.

Reduced feed consumption resulting from lower
DO concentrations means a significantly reduced
growth rate even if FCR is not affected. At the
higher stocking rates used in 2002, the difference
in growth due to reduced feed consumption was
350 g (0.8 lbs) at a similar survival: density ratio

(calculated from Figure 6). In addition to produc-
ing a greater standing crop, faster growth would
allow harvest of fingerlings stocked in the spring
after only one season of growth rather than after
two growing seasons, which is typical of existing
commercial farms. This increased growth rate
would eliminate the risks and losses incurred from
holding sub-marketable fish at high densities over
winter and through the following spring.

If aeration is not initiated before the DO con-
centration has fallen to 2.5 mg/L or if there are
not enough aerators available to maintain DO con-
centrations in the 2.2–2.5 mg/L range, both feed
consumption and production will be negatively af-
fected. Both of those aeration conditions were met
in this study; thus, it appears we may not yet have
reached the limit to fish production possible in
earthen ponds, as has been speculated (Brune et
al. 2003).

A maximum feeding rate of 120 kg · ha21 · d21

in channel catfish ponds with 3.73 kW/ha (2 hp/
acre) of aeration permanently installed has been
recommended (Auburn University and Natural Re-
sources Conservation Service 2002; Brune et al.
2003). In this study, a monthly average feeding
rate as high as 328 kg · ha21 · d21 (Figure 5; high-
oxygen treatment, August 2002) was achieved, in-
dicating that a continued relationship exists be-
tween feed input and aeration up to 11 kW/ha (6
hp/acre).

While the relationship between increased aera-
tion and increased feeding and production rates
determined in this study should apply in large
ponds, the specific results of this production study
conducted in 0.1-ha ponds cannot be directly ex-
trapolated to large commercial ponds. The small
ponds used in this study were thoroughly circu-
lated and destratified, which may have had a pos-
itive impact on water quality. Similar mixing in a
large commercial pond would be difficult to
achieve, and thus the effect of higher feeding rates
on water quality cannot be predicted. Although
commercial production rates may be increased far
above that currently seen, actual production
achieved on individual farms will be a function of
risk tolerance, management skills, and economic
factors such as cost of electricity and feed and the
market price of channel catfish.
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