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Abstract

Penicillium expansum and Colletotrichum acutatum cause blue mould

and bitter rot of apples during storage which results in significant

economic losses. Resistance to these pathogens in commercial apple

cultivars has not been documented in the literature. An apple

germplasm collection, from the centre of origin in Kazakhstan, is

maintained in Geneva, New York. This collection represents a more

diverse apple gene pool than commercial cultivars and was evaluated

for resistance to the pathogens that cause blue mould and bitter rot.

Resistance reactions were skewed towards susceptibility for both fungi

and comprised the majority of accessions examined. However,

resistance to P. expansum was confirmed in select accessions over

multiple years. Maturation patterns and quality indices for soluble

solids and acidity, which may also affect susceptibility, were highly

variable and represent the genetic diversity of the germplasm collec-

tion. Resistance in four accessions to C. acutatum and two accessions

resistant to both P. expansum and C. acutatum are reported here for

the first time. Data from this study will serve as a foundation for

conventional apple breeding programmes and molecular genetics

investigations to provide resistance against blue mould and bitter rot

in commercial apple varieties.

Key words: blue mould — bitter rot — wild apple germplasm

Domesticated apples (Malus · domestica Borkh.) are the

fourth most important fruit crop in the world following citrus,
grapes and bananas (Janick 2003). They are consumed
worldwide and touted as �health� food because of their high
levels of antioxidants and phenolics (i.e. quercetin, catechin,

phloridizin and chlorogenic acid) (Boyer and Liu 2004).
Numerous studies have correlated the consumption of apples
with a reduced risk for some cancers, heart disease, asthma

and diabetes (Boyer and Liu 2004). The genus Malus is
composed of �27 wild species of which Malus sieversii Lebed.
has been identified as the distant ancestor of the domesticated

apple (Ponomarenko 1987, 1992, Way et al. 1990, Morgan and
Richards 1993, and Juniper et al. 1999). Samples from wild
forest stands of M. sieversii located in Kazakhstan were
collected in the 1990s by USDA scientists, which resulted in

the �Kazakh� collection of apple germplasm seedlings and
clones (Forsline et al. 2003). This collection is located at the
USDA/ARS Plant Genetic Resources Unit on the campus of

Cornell�s New York Agricultural Research station in Geneva,
New York, and represents a wide variety of horticultural traits
(i.e. forms, colours and tastes) and polymorphisms.

Economic losses because of postharvest decay of apples
have been estimated to exceed $4.4 million per year in the
United States (Rosenberger 1997). Blue mould of apples

caused by Penicillium expansum was found during multiyear
market surveys to be the most damaging postharvest pathogen
(Cappellini et al. 1987). Penicillium expansum modulates its

host environment through the production of organic acids to
lower ambient pH which provides the optimal environment for
cell wall degrading enzymes (i.e. polygalacturonase) to operate

(Yao et al. 1996 and Prusky et al. 2004). Bitter rot, caused by
Colletotrichum acutatum, is also an important apple pathogen
that occurs both pre- and postharvest in the mid-Atlantic and
southern United States (Biggs and Miller 2001). This disease is

especially problematic in the field during hot and humid
conditions and may result in 50–80% losses in unsprayed
orchards (Camilo et al. 1988, Jones and Aldwinckle 1991).

Colletotrichum acutatum is capable of latent infection which
occurs during storage and also results in significant economic
losses (Struble and Keitt 1950, Barkai-Golan 2001). Virulence

mechanisms of C. acutatum involve ammonia production to
increase host tissue pH while concomitantly facilitating opti-
mal activity of pectate lyase (Prusky et al. 2001).

There are reports detailing the lack of resistance to both blue
mould and bitter rot in commercial varieties (Cappellini et al.
1987, Spotts et al. 1999, Biggs and Miller 2001, and Janisiewicz
and Peterson 2004). Therefore, it is possible that through

intense cultivation and breeding, the gene or genes for
resistance to postharvest decay pathogens were lost via a
genetic bottleneck. However, a recent study detailing the

preliminary evaluation of the wild apple germplasm from the
�Kazakh� collection in Geneva, NY, showed that it contains
accessions with resistance to blue mould (Janisiewicz et al.

2008). Therefore, the objectives of this study were to: (i)
examine the distribution of resistance to both P. expansum and
C. acutuatum from the Kazakh germplasm collection on a

large scale over multiple years, (ii) focus on identification of
accessions with resistance to both pathogens, and (iii) deter-
mine if overlapping resistance occurs to these decay pathogens
in wild apple species.

Materials and Methods

Fruit: Apples were harvested from Elite trees (clonally propagated

from budwood collected in Kazakhstan) which were identified by PI
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number and from seedling trees (grown from seeds collected from elite

trees in open pollinated forests in Kazakhstan). Trees were identified

with the GMAL number and letter extension for individual seeds of

fruit from an elite accession. Details of orchard lay out and tree

spacing have been detailed previously by Janisiewicz et al. (2008).

Investigations for resistance included other wild Malus species from

areas of Eastern Europe like Macedonia where accession PI 369855

was collected and from the Caucasus of the former Soviet Union where

accession GMAL 4487.i was obtained. For all accessions, the harvest

dates were established based on bloom time, visual observations from

multiyear data and starch accumulation patterns. Approximately 120

fruit were harvested from each accession and were used for pathogen

inoculations and maturity-related evaluations. Fruit were placed in

labelled bags and kept in cardboard boxes at 20�C overnight. The

following morning they were transported to the Agricultural Research

Center in Beltsville, MD, and to the Appalachian Fruit Research

Station in Kearneysville, WV.

Estimation of fruit maturity for harvest: Preceding each harvest, five

fruit were tested from each accession to estimate maturity using the

iodine starch test on a 1–9 point scale developed for �Golden Delicious�
apple fruit (Smith et al. 1979). Fruit were selected for harvest with

starch values >3 but <6. However, in a limited number of cases, some

accessions were harvested with starch scores as low as 2.5 and as high

as nine because of disparities between starch patterns and fruit

maturity which have previously been documented by Janisiewicz et al.

(2008).

Determination of fruit maturity and quality indicators: For each

accession, CO2 and ethylene production from a 5 to 12 fruit sample

(�200–300 g) were measured every 6 h during a 7-day period at 20�C
using an automated flow-through system (Izumi et al. 1996, Janis-

iewicz et al. 2008). Apple accessions were categorized into five

maturity stages: preclimacteric, preclimacteric/climacteric, climacteric,

climacteric/postclimacteric and postclimacteric. These categories were

based on relative amounts and changes in patterns observed for both

ethylene and CO2 evolution during the time between pathogen

inoculation and decay evaluations. Soluble solids content and

titratable acidity were measured on juice extracts from 3 to 10 fruit

of each accession. Fruit samples were macerated in an electric blender

and the juice separated from the pulp by squeezing through two layers

of cheesecloth. Soluble solids content of the juice samples were

measured using a digital, temperature compensated refractometer

(model PR-101; Atago Co,. Habashi-Ku, Tokyo, Japan). Titratable

acidity for each accession was determined by titrating 10 ml of juice

sample with 1.0 M KOH to pH 8.2 and expressed as % malic acid

(Mitcham and Kader 1996).

Pathogens: Penicillium expansum (MD-8) and Colletorichum acuta-

tum (CA-1) isolates were isolated from decayed apples. Both fungi

were cultured on potato dextrose agar (PDA). Aqueous conidial

suspensions were prepared as previously described by Janisiewicz et al.

(2008).

Fruit inoculation: For each pathogen and conidial concentration, 20

apples per accession were placed in a fruit tray and wounded at the

equator to a depth of 3 mm with a 6-penny nail. Each wound was

inoculated with 50 ll of conidial suspension (1 · 103 or 1 · 104 per ml)

of either P. expansum or C. acutatum. The inoculated fruit were

incubated at 22�C for 5 days for P. expansum and 6 days for

C. acutatum and then evaluated for decay development by assessing

incidence and severity (lesion diameter) of decay. A total of 452

accessions were inoculated with P. expansum (148 in 2007, 186 in 2008,

and 118 in 2009) and were evaluated for decay. A total of 271

accessions were inoculated with C. acutatum (175 in 2008 and 96 in

2009) and were also evaluated for decay. Decay evaluations for both

pathogens were evaluated on 163 accessions in 2008 and 72 accessions

in 2009. Based on incidence of decay, the accessions were divided into

three categories: resistant = no decay at 1 · 103 and 1 · 104 per ml,

moderately resistant = no decay at 1 · 103 per ml, and suscepti-

ble = decay evident at both 1 · 103 and 1 · 104 per ml.

Weather data: Weather data were obtained from the New York State

Agricultural Experiment Station for temperature and rainfall and

mean monthly values were calculated (Kazakh apple bloom to harvest)

from April to October 2007–2009.

Results

From 2007 to 2009, a total of 452 accessions were evaluated
for maturity, quality indices and blue mould development

incited by P. expansum. The distribution of reactions was
skewed towards susceptibility (i.e. decay evident at conidial
concentrations of 103 and 104 per ml) for each year and 350 of

the 452 or 77.4% of the accessions tested were susceptible
(Figs 1a and 3c). However, 18.3% (83 accessions) were
moderately resistant (no decay at 103 per ml) and 4.2% (19

accessions) were resistant (no decay at 103 and 104 per ml)
(Fig. 1a). Accessions exhibiting resistance to P. expansum were
all M. sieversii except GMAL 4487.i (M. orientalis) and PI
369855 (M. sylvestris) (Table 1 and Fig. 3b). Collection sites

for wild apple accessions and their corresponding GPS
coordinates are located in Table 1 and indicate that 11
accessions were collected from site 6, 2 accessions each from

sites 9 and 11 and 1 accession each from sites 12 and 5. The
resistant Kazakh accessions had soluble solids ranging from
7.3% to 20.1% and titratable acidity values ranging from

0.22% to 2.65% malic acid (Table 1). Fruit size among
accessions ranged from 12.8 to 2.6 times smaller than the
standard 100-count �Golden Delicious� apple fruit (Table 1).
Maturity, as determined via ethylene and CO2 production
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Fig. 1: Distribution of resistance categories from wild apple accessions
with various levels of resistance against (a) Penicillium expansum and
(b) Colletotrichum acutatum
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rates, during decay evaluations was also variable, but only one
accession (GMAL 3547.n) was harvested and evaluated in the

preclimacteric stage. Nine accessions were climacteric, five
were going into the climacteric stage, and three were beginning
to senesce during decay evaluation (Table 1).

Apples from Kazakh accessions harvested from 2008 to
2009 were also evaluated for maturity, quality indices and
bitter rot caused by C. acutatum. The overall distribution of
reactions to C. acutatum was skewed for susceptibility

(Fig. 1b). Of 271 accessions, 4 (1.4%) were resistant, 11
(4.0%) moderately resistant and 256 (94.4%) were susceptible
to C. acutatum (Fig. 3d). Collection sites for wild apple

accessions and their corresponding GPS coordinates are listed
in Table 2 and indicate that 2 accessions were collected from
site 6 and one from site 3 from Kazakhstan. There were three

M. sieversii, one M. sylvestris species that were resistant and
which had soluble solids ranging from 9.3% to 11.6% and
titratable acidity from 1.0% to 1.8% malic acid (Table 2).

Fruit size among the accessions varied from 12.0 to 4.5 times
smaller than 100-count �Golden Delicious� apple fruit (Ta-
ble 2). Fruit maturity, as measured via ethylene and CO2

production rates, indicated that three accessions were going

into the climacteric state and one was deemed climacteric
during decay analysis (Table 2).

Resistance to P. expansum was examined over a two- or

three-year period (2007–2009) for accessions that initially
showed no decay (resistant). One of the six accessions tested
(GMAL 3688.h) performed consistently during 2008 and 2009

with no decay at either concentration (Table 3). Repeat
analysis of accessions GMAL 3547.n and GMAL 3625.a had
no decay evident at a conidial concentration of 103 per ml.

However, low incidence was observed at 104 per ml for both
accessions and GMAL 3547.n specifically had only a single
lesion (5% decay incidence). Accessions GMAL 3635.i,
GMAL 3689.i and GMAL 3689.p performed in a similar

manner from year to year as they had lower incidence and
severity of decay at 103 vs. 104 per ml.

Average temperatures for all 3 years revealed similar trends
from April to October 2007 through 2009. April and October
had the lowest mean temperatures and July consistently had

the highest (Fig. 2a). However, rainfall patterns did vary from
year to year with 2008 and 2009 having similar patterns. Mean
rainfall for June through August 2007 was lower for the same
time frame than in 2008 and 2009 (Fig. 2b).

A total of six accessions had overlapping levels of resistance
to both bitter rot and blue mould in 2008 and 2009. Two
accessions evaluated in 2009 (PI 369855, M. sylvestris and

GMAL 3689.h, M. sieversii) were resistant to both P. expan-
sum and C. acutatum (Table 4, Fig. 3a,b). One accession
harvested in 2009 (GMAL 3625.a) was resistant to P. expan-

sum and moderately resistant to C. acutatum. However, the
bulk of overlap occurred in 2009, where four accessions were
moderately resistant to both pathogens (Table 4). The remain-

ing fruit that were inoculated with both pathogens in 2008
were susceptible except 35 accessions. Two of the exceptions
included were moderately resistant to C. acutatum and sus-
ceptible to P. expansum, and 33 were resistant or moderately

resistant to P. expansum but susceptible to C. acutatum.
Accessions inoculated in 2009 with both fungi were mostly
susceptible. However, six were resistant or moderately resis-

tant to P. expansum and were also susceptible to C. acutatum.
Conversely, three accessions were resistant or moderately
resistant to C. acutatum and susceptible to P. expansum.

Discussion

Results from this study have demonstrated resistance against
P. expansum or C. acutatum in apple fruit from select wild
apple fruit accessions. Resistance against both pathogens has

not been identified in domesticated apples (Spotts et al. 1999

Table 1: Resistant accessions from the wild apple germplasm of elite (PI) and seedlings (GMAL) to Penicillium expansum1

Accession
Collection

site2
Latitude,
longitude Year Malus spp.

Soluble
sugars (%)

Titratable
acidity (%)

Fruit
size3 Estimated maturity

GMAL 3635.i 9 47.26, 81.58 2007 sieversii 9.7 0.2 6.2 Climacteric/postclimacteric
GMAL 3689.e 6 42.89, 69.88 2007 sieversii 11.2 1.3 6.2 Climacteric
GMAL 3689.i 6 42.89, 69.88 2007 sieversii 8.6 1.2 10.5 Climacteric
GMAL 3689.p 6 42.89, 69.88 2007 sieversii 10.2 1.5 10.5 Climacteric
PI 613981 6 42.89, 69.88 2007 sieversii 11.0 1.7 5.1 Climacteric
GMAL 3688.h 6 42.89, 69.88 2008 sieversii 10.8 1.3 6.2 Climacteric
GMAL 3685.d 6 42.89, 69.88 2008 sieversii 11.1 1.2 5.8 Preclimacteric/Climacteric
GMAL 4317.f 12 42.33, 70.37 2008 sieversii 12.0 1.3 6.9 Preclimacteric/Climacteric
GMAL 3687.e 6 42.89, 69.88 2008 sieversii 11.4 1.5 4.8 Preclimacteric/Climacteric
GMAL 3688.j 6 42.89, 69.88 2008 sieversii 10.6 1.0 4.6 Climacteric
GMAL 3691.j 6 42.89, 69.88 2008 sieversii 12.6 0.2 5.6 Preclimacteric/Climacteric
GMAL 4487.i –4 44.45, 40.21 2009 orientalis 8.6 2.6 12.8 Climacteric
GMAL 3684.a 6 42.89, 69.88 2009 sieversii 9.6 0.6 3.7 Climacteric/postclimacteric
GMAL 3625.a 9 47.26, 81.57 2009 sieversii 7.3 1.1 4.7 Climacteric
GMAL 4286.c 11 42.70, 70.27 2009 sieversii nd nd nd nd
GMAL 4304.d 11 42.66, 70.25 2009 sieversii 20.1 0.3 2.6 Climacteric/postclimacteric
GMAL 3547.n 5 45.40, 80.40 2009 sieversii 10.5 1.5 5.1 Preclimacteric
PI 369855 –5 –6 2009 sylvestris 10.3 1.8 12.0 Climacteric
GMAL 3689.h 6 42.89. 69.88 2009 sieversii 11.6 1.4 5.0 Preclimacteric/climacteric

1These 19 wild apple accessions were found to be resistant to P. expansum of the 452 evaluated.
2Information on specific collection sites can be found in Janick (2003) or online at http://www.ars-grin.gov/npgs/acc/acc_queries.html
3Data for fruit size is presented as fold smaller than a typical 100-count �Golden Delicious� apple fruit.
4Seed collected on 26 July 1998 in the Caucasus of the Former Soviet Union.
5Specific collection site is unknown, but seed was collected in Macedonia in 1971.
6Longitude and latitude for specific collection site is not known.
nd, Not determined.
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and Biggs and Miller 2001) and also has not been reported for

other wild apple species. Distribution of reactions against blue
mould (2007–2009) and bitter rot (2008–2009) was skewed
towards susceptibility (Fig. 1a,b). The tendency of wild apple
fruit for susceptibility to postharvest pathogens may be

because of the lack of selection pressure for resistance to fruit
decay which may enhance seed propagation. Under favourable
conditions that occur in mountain regions, renewal by seed is

minimal and accounts for only 10–15% of the total amount of
apple stand growth. The majority of wild apple stands spread
vegetatively (Dzhangaliev 2003).

Variability in maturity patterns, levels of soluble solids and
titratable acidity, fruit size and differences in resistance levels
to blue mould and bitter rot confirm the diversity that is
represented in the Kazakh collection (Dzhangaliev 2003).

Apples are a climacteric fruit that undergo changes in ethylene
and CO2 production, texture, skin colour, acidity, cuticular
waxes and aromatic compounds (Kidd and West 1924, Knee

1993). Many environmental factors (e.g. temperature, water

stress, light, etc.) impact the maturity, quality and resistance of
apple fruit. To effectively evaluate the resistance level of each
accession, we avoided testing fruit in the preclimacteric stage.

Only one of the 19 accessions that was resistant to P. expan-
sum was determined to have remained in the preclimacteric
stage of development during decay evaluation and was likely

harvested immature (Table 1). Therefore, this accession should
be re-evaluated to determine if the resistance was the result
of the maturity of the fruit or because of genetic factor(s)
maintaining resistance. Fruit from all other resistant

(d)

(b)(a)

(c)

Fig. 3: Bitter rot and blue mould decay development on (a) GMAL
3689.h inoculated with 50 ll of 104 per ml conidial suspension of
Colletotrichum acutatum (resistant) is also resistant to Penicillium
expansum. (b) PI 369855 inoculated with 50 ll of 103 per ml conidial
suspension of C. acutatum (resistant) is also resistant to P. expansum.
(c) GMAL 4051.a inoculated with 104 per ml conidial suspension of
P. expansum (susceptible). (d) GMAL 3616.b inoculated with 104 per
ml conidial suspension of C. acutatum (susceptible)

Table 2: Resistant accessions from the wild apple germplasm collection of elite (PI) and seedling (GMAL) apples to Colletotrichum acutatum

Accession
Collection

site
Latitude,
longitude Year Malus spp.

Soluble
sugars (%)

Titratable
acidity (%)

Fruit
size1 Estimated maturity

PI 369855 –2 –3 2009 sylvestris 10.3 1.8 12.0 Climacteric
GMAL 3689.h 6 42.89, 69.88 2009 sieversii 11.6 1.4 5.0 Preclimacteric/climacteric
GMAL 3709.c 3 43.12, 76.80 2009 sieversii 10.3 1.0 4.5 Preclimacteric/climacteric
GMAL 3690.l 6 42.89, 69.88 2009 sieversii 9.3 1.2 5.8 Preclimacteric/climacteric

1Data for fruit size is presented as fold smaller than a typical 100-count �Golden Delicious� apple fruit.
2Specific collection site is unknown, but seed was collected in Macedonia in 1971.
3Longitude and latitude for specific collection site is not known.
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Fig. 2: Weather data from the New York State Agricultural Exper-
iment Station located in Geneva, New York. (a) Mean monthly
temperatures from April through October 2007–2009. (b) Mean
monthly rainfall from April through October 2007–2009
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accessions were evaluated during decay at the climacteric stage

of development, i.e. were mature ripening fruit, which indicates
that maturity was not a major factor affecting disease
resistance in these accessions. Accessions which exhibited
resistance in the climacteric or postclimacteric stage are

excellent candidates for future studies as their resistance is
more likely because of genetic than maturity factors. Addi-
tional evidence which suggests that resistance to postharvest

pathogens involves a genetic component may be supported by
the observation that �57.8% of the resistant accessions was
collected from a single site (#6) in Kazakhstan. Site numbers 6,

11, 12 are approximately 40 km from each other and together
account for �73.6% of the resistant accessions that were
analysed. This observation may also be useful in targeting

specific additional accessions from the Kazakh collection for
resistance to postharvest pathogens as this trait seems to be
clustered in a specific geographical area.

Analysis of resistant accessions over multiple years was

conducted in this study to determine the �durability� of resistance
under varying environmental conditions from 2007 to 2009 for
blue mould. However, not all resistant accessions were retested

because of the presence of strong biennial fruiting which has
been previously demonstrated for the Kazakh collection (Jan-
isiewicz et al. 2008). Of the multitude of environmental factors

that may account for the variability in resistant accessions
(temperature, drought and nutrition), it appears that varying
amounts of rainfall may be responsible for exerting differential
effects on apple fruit resistance. In 2008 and 2009, the level of

rainfall was higher than in 2007, early in the season during
flowering and fruit development (Fig. 3b). Evidence for early
water stress impacting susceptibility to bitter pit, corking

disorders and insect reductions has been previously demon-

strated (Sharples 1973, Goode 1975, Lotter et al. 1985, Fran-

sesconi et al. 1996). Therefore, higher precipitation levels in
2008 and 2009 may have impacted disease resistance in four of
the six accessions that were re-evaluated during those years.
However, not all accessions responded in a similar manner

during 2008 and 2009, which suggests that other environmental
and/or genetic factors may be either enhancing or reducing the
overall resistance levels in wild apple fruit.

We tested P. expansum-resistant accessions against C. acut-
atum to determine the specificity of resistance to another
economically important apple fruit pathogen. Results from

this study showed that in most cases, if an accession was
resistant to blue mould, it was susceptible to bitter rot and vice
versa. However, resistance to both P. expansum and C. acut-

atum occurred in six accessions evaluated from the Kazakh
apple germplasm collection. Two of the six accessions tested
were resistant to both pathogens, one was resistant to
P. expansum and moderately resistant to C. acutatum, and

the remaining three were moderately resistant to both patho-
gens (Table 4). Different virulence mechanisms for these two
fungal plant pathogens (P. expansum and C. acutatum) has

been previously demonstrated and may explain why overlap
for resistance was limited (Prusky et al. 2001, 2004). Both of
these fungal pathogens have distinct mechanisms for modu-

lating the host environment to facilitate decay and increase
virulence. Penicillium expansum causes host acidification
through production of gluconic and citric acids in the host
tissue, thereby lowering the pH for optimal production of

polygalacturonase (Prusky et al. 2004). In contrast, the bitter
rot pathogen, C. acutatum, secretes ammonia to increase host
pH that favours pectate lyase enzyme production (Prusky

et al. 2001). A possible explanation for the observed resistance

Table 3: Multiple year comparisons of Penicillium expansum-resistant apple accessions from wild apple collection

Accession

2007 2008 2009

Incidence
(%)

Lesion size
(mm)

Incidence
(%) Lesion size (mm)

Incidence
(%) Lesion size (mm)

103 1 104 103 104 103 104 103 104 103 104 103 104

GMAL 3635.i 0 0 0 0 5 15 0.1 (1.3) 0.3 (2.6) 0 85 0 8.5 (4.4)
GMAL 3689.i 0 0 0 0 nd nd nd nd 5 60 0.3 (1.3) 4.8 (4.1)
GMAL 3689.p 0 0 0 0 nd nd nd nd 25 70 0.3 (0.6) 2.0 (2.4)
GMAL 3688.h nd nd nd nd 0 0 0 0 0 0 0 0
GMAL 3625.a 0 20 nd nd nd nd nd nd 0 0 0 0
GMAL 3547.n nd nd nd nd 0 5 0 0.1 (1.5) 0 0 0 0

1Conidial suspensions of Penicillium expansum are indicated as concentrations of either 103 or 104 per ml.
Mean values for incidence and lesion size are indicated, and standard deviation is shown in parenthesis.
nd, Not determined.

Table 4: Wild apple accessions with resistance to both Penicillium expansum and Colletotrichum acutatum

Accession Species P. expansum C. acutatum

PI 369855 sylvestris Resistant1 Resistant
GMAL 3689.h sieversii Resistant Resistant
GMAL 3625.a sieversii Resistant Moderately resistant2

GMAL 3999.a sieversii Moderately resistant Moderately resistant
GMAL 3683.g sieversii Moderately resistant Moderately resistant
GMAL 3684.l sieversii Moderately resistant Moderately resistant

1Resistant is defined as no decay when inoculated with a conidial suspension of 103 and 104 per ml.
2Moderately resistant is defined as no decay when inoculated with a conidial suspension of 103 per ml, and decay evident at 104 per ml.
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to both pathogens may be because of increased accumulation
of preformed defence compounds (i.e. benzoic acid) in apple
fruit which have been shown to coincide with resistance to
decay caused by Nectria galligena (Seng et al. 1985). However,

we cannot rule out other preformed or induced resistance
mechanisms in the Kazakh apple accessions which are inter-
esting topics to pursue for future study.

Data from this study for the first time document resistance
to both bitter rot and blue mould within specific accessions of
the Kazakh apple germplasm collection located in Geneva,

NY. This information will be useful to apple breeders in
selecting accessions with resistance to one or both pathogens
to use in crossing with commercial cultivars to obtain decay-
resistant breeding lines.
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