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Abstract:

Long-term data from the Hubbard Brook Experimental Forest in New Hampshire show that air temperature has increased by
about 1 °C over the last half century. The warmer climate has caused significant declines in snow depth, snow water equivalent
and snow cover duration. Paradoxically, it has been suggested that warmer air temperatures may result in colder soils and
more soil frost, as warming leads to a reduction in snow cover insulating soils during winter. Hubbard Brook has one of the
longest records of direct field measurements of soil frost in the United States. Historical records show no long-term trends
in maximum annual frost depth, which is possibly confounded by high interannual variability and infrequency of major soil
frost events. As a complement to field measurements, soil frost can be modelled reliably using knowledge of the physics of
energy and water transfer. We simulated soil freezing and thawing to the year 2100 using a soil energy and water balance
model driven by statistically downscaled climate change projections from three atmosphere-ocean general circulation models
under two emission scenarios. Results indicated no major changes in maximum annual frost depth and only a slight increase
in number of freeze–thaw events. The most important change suggested by the model is a decline in the number of days
with soil frost, stemming from a concurrent decline in the number of snow-covered days. This shortening of the frost-covered
period has important implications for forest ecosystem processes such as tree phenology and growth, hydrological flowpaths
during winter, and biogeochemical processes in soil. Published in 2010 by John Wiley & Sons, Ltd.
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INTRODUCTION

Soil freezing is an important below-ground perturba-
tion, having implications for the hydrology, biology and
chemistry of ecosystems. Seasonally frozen ground is a
widespread phenomenon, occurring over approximately
55% of the exposed land surface in the Northern Hemi-
sphere (Zhang et al., 2004). Soil frost is often considered
problematic, and the heaving associated with it can have
adverse effects, such as uplifting planted seedlings and
compromising the integrity of roads and structures. How-
ever, there are also benefits of frozen soil, for example
it can improve accessibility and minimize disturbance
during logging operations. In forest ecosystems, results
from long-term observations and shorter-term experi-
ments have shown that soil freezing can have a profound
effect on ecosystem processes by damaging fine roots
(Tierney et al., 2001; Cleavitt et al., 2008) and altering

* Correspondence to: John L. Campbell, USDA Forest Service, Northern
Research Station, Durham, NH 03824, USA.
E-mail: jlcampbell@fs.fed.us
† This article is a US Government work and is in the public domain in
the USA.

litter decomposition (Sulkava and Huhta, 2003), nutrient
leaching (Boutin and Robitaille, 1994; Fitzhugh et al.,
2001; Fitzhugh et al., 2003) and trace gas fluxes (Groff-
man et al., 2006). Additionally, soil frost can alter hydro-
logic flowpaths, particularly in agricultural areas where
hard, impenetrable ‘concrete’ frost forms (Shanley and
Chalmers, 1999; Iwata et al., 2008).

Because soil freezing is controlled by meteorological
variables (e.g. temperature, snow depth, soil moisture),
future changes in climate may alter the depth and dura-
tion of frozen ground. Recent climate projections for
the northeastern United States indicate that air temper-
atures may increase by 2Ð1–5Ð3 °C during this century,
depending on both the models and emission scenarios
used (Hayhoe et al., 2008). While precipitation is more
uncertain, projections indicate that winter precipitation is
likely to increase by 12–30% with a greater proportion
falling as rain rather than snow. These changes in cli-
mate are expected to decrease snow pack depth and snow
cover duration. Paradoxically, it has been suggested that
warmer air temperatures in the future may result in colder
soil temperatures (and more soil frost) as there will be
less snow cover insulating soils during winter (Isard and

Published in 2010 by John Wiley & Sons, Ltd.



2466 J. L. CAMPBELL ET AL.

Schaetzl, 1998). This hypothesis is supported by snow
depth manipulation experiments, which have shown that
frost depth increases when snow is removed (Boutin and
Robitaille, 1994; Groffman et al., 2001; Decker et al.,
2003). However, in all of these experiments, snow depth
was altered in the absence of warmer air temperatures,
raising questions about how well these studies represent
conditions associated with actual climate change (Henry,
2008).

Despite the important role of soil frost events in for-
est ecosystems, there has been little research on how soil
freezing is affected by climate change. It is difficult to
evaluate long-term trends in soil frost because available
records are sparse and the methods used to measure soil
frost are not always reliable (see review by French et al.,
2006). Soil temperature is often used to approximate frost
depth; however, subtle changes in temperature with depth
make it difficult to interpolate the location of the frost
line, and solute concentrations and water content can
influence soil freezing (Banin and Anderson, 1974; Mar-
ion, 1995). Consequently, routine measurements of soil
frost are exceedingly rare. One of the longest field records
of soil frost comes from the Hubbard Brook Experimen-
tal Forest (HBEF) in New Hampshire, where technicians
have made manual, tactile frost depth measurements con-
sistently since 1956 (Bailey et al., 2003).

Soil freezing can also be modelled using knowledge
of the physical processes affecting snowpack formation,
surface heat exchange and freeze–thaw properties of soil
water (DeGaetano et al., 1997; Kennedy and Sharrot,
1998; Lin and McCool, 2006). Development of soil
freezing modelling capabilities at ecosystem research
sites could open the door for retrospective analyses
of ecological responses to wintertime soil conditions.
These models can also be run with climate projections
from statistically downscaled atmosphere-ocean general
circulation model (AOGCM) output (Plummer et al.,
2006; Hayhoe et al., 2007) to provide an indication of

how soil frost might respond to future changes in climate
(Venäläinen et al., 2001; Henry, 2008). Here, we used
long-term data from the HBEF to: (1) examine historical
trends in winter climate, snow and soil frost; (2) evaluate
the accuracy of soil frost predictions from a soil water
and energy balance model and (3) test the hypothesis
that future climate change will lead to colder soils and
increased soil frost depth due to decreasing snow cover.

METHODS

Study site

The HBEF (43°560N, 71°450W) is a 3160-ha bowl-
shaped valley in the White Mountain National Forest
in central New Hampshire (Figure 1). Elevations range
from 222 m, where Hubbard Brook crosses the eastern
boundary of the Experimental Forest, to 1015 m on Mt
Kineo on the southwest rim of the basin. The climate
is cool, humid and continental with average monthly
air temperatures ranging from �9 °C in January to
18 °C in July. Average annual precipitation is 1400 mm
and is distributed fairly evenly throughout the year.
A snowpack usually persists from late December until
mid-April, with a peak depth in March. Vegetation is
predominantly northern hardwood (Fagus grandifolia
Ehrh., Acer saccharum Marsh., Betula alleghaniensis
Britt.) with coniferous species (Picea rubens Sarg., Abies
balsamea (L.) Mill.) occurring at higher elevations and
on steeper slopes. Spodosols are the dominant soil type;
Typic Haplorthods derived from glacial basal till. They
have a sandy loamy texture and are well drained and
shallow, with bedrock occurring at a depth of 1–2 m.

Field measurements

Snowpack measurements have been made weekly at
the HBEF (stations 1–22) for various time periods since
1956; however, only stations 2 and 17 have continu-
ous long-term records (52 and 42 years, respectively).

Figure 1. Site map of the Hubbard Brook Experimental Forest showing the network of numbered hydrometeorological stations

Published in 2010 by John Wiley & Sons, Ltd. Hydrol. Process. 24, 2465–2480 (2010)
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Snow depth and snow water equivalent (SWE) are mea-
sured using standard methods (Soil Conservation Ser-
vice, 1984) at ‘snow courses’ that are associated with
hydrometeorological stations and are numbered accord-
ingly (Figure 1). The snow courses are located under the
forest canopy far enough away from rain gage clearings
so that the edge effects are negligible. A ‘snow course’
consists of a transect of 10 points spaced at 2-m inter-
vals. Each week, snow depth is recorded at each point,
and a core of the snowpack is collected and weighed to
determine SWE. The following week, an undisturbed par-
allel transect, 2-m from the previous transect, is used. In
cases where a snow sampling point falls on an obstruc-
tion such as a tree or boulder, the measurement is made
at a representative adjacent location where snow depth is
not greatly affected by the obstruction (e.g. not in a tree
well). Snow measurements begin when at least 2Ð54 cm
(1 inch) of snow falls and remains on the ground, and
end when the snowpack melts.

Manual measurements of soil frost are made weekly
at a single point adjacent to snow courses (stations 2,
9, 17, 19, 22). The longest records are from stations
2 and 17 (47 and 38 years, respectively) where frost
depth has been measured every winter except 1965–1969
and 1973. The same method of measurement has been
used consistently over the entire record at all sites. Field
technicians probe through the snowpack with a pole. If
the ground feels frozen they dig a snow pit, exposing
the surface of the forest floor. A hatchet is used to cut
through the frozen soil and the frost line is determined
by tactile estimation. Frost depth values reported refer to
the distance between the surface of the forest floor and
the maximum depth of frozen soil.

Air temperature and precipitation are measured at a
number of hydrometeorological station clearings
(Figure 1). Since the inception of the HBEF in the
mid-1950s, air temperature has been measured with
hygrothermographs housed in standard shelters (Steven-
son screens). Air temperature has been measured at seven
locations, four of which have long-term records (stations
1, 6, 14 and 22 have 52, 47, 43 and 51 years of data,
respectively). Precipitation at the HBEF is measured with
a network of 25 rain gages distributed throughout the
area of the experimental watersheds (Figure 1). Seven
are weighing rain gages, which record precipitation vol-
ume continuously, whereas the others are standard gages
that are measured weekly. Daily precipitation for a stan-
dard gage is determined by prorating its weekly total
using daily totals from the nearest recording gages. Rain
gages are installed 2Ð5 m off the ground to remain above
the deepest snow, and have Alter shields to reduce wind
effects. During winter, anti-freeze is added to the gages
to melt new snow.

In addition to temperature and precipitation, field
measurements of solar radiation and wind were needed
for model input. These climate observations are used
to define heat and water fluxes into the system. Solar
radiation and wind have been measured at the HBEF
Headquarters building (Figure 1) following protocols

described by Bailey et al. (2003). Measurements are
made in a clearing unobstructed by topographic features.
The solar radiation sensor is mounted at a height of
2Ð5 m off the ground. Before 1981, solar radiation
was measured with a bimetal recording pyranograph
(actinometer). Since that time, a silicon cell pyranometer
has provided hourly data. The older model pyranograph is
still used as backup and provides comparable data. Wind
speed is measured with an anemometer mounted 3 m
off the ground. Wind data were recorded continuously
with a strip chart until 1981 when the weather station at
headquarters was replaced with an automated datalogging
system.

Model description

Soil frost was simulated using the simultaneous heat
and water (SHAW) model (Flerchinger and Saxton,
1989). The model was developed specifically for simulat-
ing soil freezing and thawing, but has been used in a vari-
ety of other applications including studies of snowpack
accumulation and snowmelt (Flerchinger et al., 1994;
Flerchinger et al., 1996), soil temperature and moisture,
(Flerchinger et al., 1998; Hymer et al., 2000; Flerchinger
and Hardegree, 2004; Flerchinger et al., 2006) and evapo-
transpiration (Flerchinger and Pierson, 1991; Preston and
McBride, 2004). SHAW simulates heat and water transfer
within a one-dimensional profile extending from the top
of the forest canopy to a user-defined, lower soil bound-
ary layer. An energy balance approach is used, whereby
interrelated transfers of heat, liquid water, water vapour
and solutes occur across ecosystem layers including the
forest canopy, snowpack, litter and soil strata. The direc-
tion, quantity and transformation of energy flow across
layers are determined by energy balance equations based
on the law of conservation of energy. Major processes
captured by the model include transpiration through a
multi-species canopy, snowpack accumulation and melt,
soil evaporation, fluxes of soil water and solutes, and
detailed characterization of soil freezing and thawing. In
the model, a soil layer is considered frozen if it con-
tains ice. Ice content for each layer is determined by the
soil moisture content and temperature, taking the freezing
point depression into account. Frost depth is computed by
interpolating ice content over depth within the soil layer
of maximum frost. Frost depths are reported as the dis-
tance from the soil surface to the bottom of the frost layer
and do not account for top-down thawing.

Required SHAW model parameters include those
related to the site, vegetation, litter layer and soil
(Table I). Climate inputs for the model consist of daily
minimum and maximum air temperature, dew point tem-
perature, total daily wind run (km), precipitation and
average solar radiation. A sensitivity analysis conducted
by Flerchinger (1991) indicated that soil freezing simula-
tions from the model are most sensitive to air temperature
and snow depth. Simulated frost depth was also poten-
tially sensitive to the slope, litter layer thickness, soil
thermal conductivity, soil bulk density and surface rough-
ness. Accuracy of the measurements made herein for

Published in 2010 by John Wiley & Sons, Ltd. Hydrol. Process. 24, 2465–2480 (2010)



2468 J. L. CAMPBELL ET AL.

Table I. SHAW model parameters

Parameter Unit Value Reference

Site
Latitude deg., min. 43, 57
Longitude deg., min. �71, 44
Elevation m 561
Slope % 33Ð5
Aspect Deg. 149
Time of solar noon h 11Ð8
Measurement height m 22

Vegetation
No. of species
simulated

1

Height of species m 20 Bormann and
Likens, 1979

Leaf dimension m 0Ð10 Federer, 2002
Dry plant biomass kg/m2 24 Siccama et al., 2007
Leaf Area Index m2/m2 5Ð0 Rhoads et al., 2004
Effective rooting
depth

m 0Ð73 Federer, 2002

Leaf albedo 0Ð25 Birkebak and
Birkebak, 1964

Transpiration
threshold

°C 0

Min. stomatal
resistance

s/m 350 Federer, 1977

Resistance exponent 5 Flerchinger, 2000
Crit. leaf water
potential

m �150 Federer, 1977

Leaf resistance kg/m3/s 8Ð0 ð 105 Federer, 2002
Root resistance kg/m3/s 1Ð6 ð 106 Federer, 2002

Litter
No. litter nodes 1
Litter cover % 100
Albedo of litter 0Ð16 Federer, 1971
Dry mass of litter kg/ha 1200 Federer, 1983
Thickness of litter cm 1 Federer, 1982
Litter resistance s/m 50 000 Flerchinger, 2000

Soil
No. of soil nodes 7
Air entry potential m �0Ð2 Clapp and

Hornberger, 1978
Ksat cm/hr 2Ð5 Hong et al., 2005
Sand/Silt/Clay % 60/30/10 Lovett and Reuth,

1999
Soil layer 1 2 3 4 5 6 7

Node depth m 0Ð04 0Ð11 0Ð18 0Ð30 0Ð47 0Ð65 0Ð82 Federer, 2002
Pore size

distribution index
6 3Ð5 7 5 5 5 5 Federer, 2002

Bulk density kg/m3 130 1034 769 848 954 1034 1405 Federer, 2002
Sat. vol. moisture

content
vol./vol. 0Ð90 0Ð61 0Ð71 0Ð68 0Ð64 0Ð61 0Ð47 Federer, 2002

Organic matter % 70 5 14 14 8 8 4 Johnson et al.
1991a,b

slope, litter layer thickness and soil bulk density were
well within the perturbations explored by Flerchinger
(1991), and thermal conductivity can be accurately esti-
mated within the model from soil texture and density.
Input surface roughness is applicable only when no plant
cover is present as the roughness parameters are esti-
mated within the model for plant cover. Soil freezing
simulations were reportedly not very sensitive to solar
radiation because solar radiation is typically minimal dur-
ing the freeze/thaw season and because of the offsetting

influence of simulated cloud cover and incoming long-
wave radiation.

Model application

To allow validation against the measured soil frost
record at Hubbard Brook, the SHAW model was run for
station 2 using climate data for the last 30 years (1979
through 2008). While some climate data date back to
the mid-1950s (e.g. temperature and precipitation), we
focused on the last 30 years of measurement based on

Published in 2010 by John Wiley & Sons, Ltd. Hydrol. Process. 24, 2465–2480 (2010)
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Table II. Description and definition of model performance measures

Measure Abbreviation Description Mathematical definitiona

Mean absolute error MAE Average of the absolute difference between
simulated and observed values

1
N

∑N
iD1 jPi � Oij

Mean absolute error
percent

MAEP Average absolute error expressed as a percent
of the measured mean

(
MAE

O

)
Ð 100

Mean bias error MBE Average of the difference between simulated
and observed values

1
N

∑N
iD1�Pi � Oi�

Mean bias error percent MBEP Average mean bias error expressed as a
percent of the measured mean

(
MBE

O

)
Ð 100

a O, observed value; P, simulated value; O, mean of observed values; N, number of observations.

the completeness of all the climate data needed to run
the model (i.e. solar radiation, wind, relative humidity).
Nearly all climate inputs were available directly from
site-level measurements, with the exception of dew point
temperatures which were calculated using vapour pres-
sure in a modified version of Tetens’ equation (Tetens,
1930). Model performance was evaluated through the
comparison of predicted and observed soil frost with
correlation coefficients, mean absolute error and mean
bias error (MBE) expressed in real values and as a per-
cent. Mean absolute error is the average of the abso-
lute difference between simulated and observed val-
ues and is therefore a positive value, whereas MBE
is the average of the difference between simulated
and observed values and can be negative or positive
(Table II).

For simulation of future soil freezing and thawing, we
used climate change projections generated for the north-
eastern United States by Hayhoe et al. (2007, 2008) using
three-coupled AOGCMs and two scenarios of future
emissions. The AOGCMs used were the Geophysical
Fluid Dynamics Laboratory Model (GFDL, Delworth
et al., 2006), the Hadley Centre Coupled Model, version
3 (HadCM3, Pope et al., 2000), and the Parallel Climate
Model (PCM, Washington et al., 2000). All AOGCM
model output was available from the Intergovernmen-
tal Panel on Climate Change Fourth Assessment Report
database (IPCC, 2007). Each model was run under two
future greenhouse gas emission scenarios (A1FI and B1),
for a total of six climate simulations. The A1FI (higher)
and B1 (lower) emissions scenarios correspond to poten-
tial atmospheric CO2 concentrations of 970 and 550 ppm,
respectively, by 2100 (Nakicenovic et al., 2001). This is
roughly equivalent to more than a tripling (A1FI) and
doubling (B1) of atmospheric CO2 concentrations relative
to pre-industrial levels. The resulting monthly ensemble
AOGCM forecasts were bias corrected, downscaled to
1/8° horizontal resolution, and disaggregated to a daily
time interval (Hayhoe et al., 2007). For the present study,
climate projections were extracted for the coordinates that
best match the location of Hubbard Brook. Simulated pre-
cipitation from all three models was approximately 20%
lower than measured values for the period 1979–2008,
likely due to local effects of mountainous topography.
Following Ollinger et al. (2008), projected precipitation

amounts for Hubbard Brook (HB) were scaled upwards
by 20% to account for this discrepancy.

SHAW simulations were run on a daily time step
from 2009 through the end of the 21st century using the
downscaled climate simulations. Because there is more
uncertainty in how future precipitation will change com-
pared to future air temperature (Hayhoe et al., 2007), we
conducted an additional set of SHAW model simulations
using detrended precipitation. Future winter precipitation
for each scenario was detrended by calculating the Sen
slope (as described in the next section) for 2009–2099
and decreasing the daily winter (Dec–Mar) precipitation
values accordingly. The model was then rerun using these
new daily precipitation input values, while keeping all
other climate input and model parameters the same. This
allowed us to determine the extent to which changes in
predicted soil and snowpack conditions were driven by
changes in precipitation versus changes in temperature.

Statistical trend analysis

Temporal past and future trends in climate and
soil frost at Hubbard Brook were evaluated using the
non-parametric Mann-Kendall test, which is commonly
applied to analyses of long-term hydrometeorological
data (Kendall, 1938; Helsel and Hirsch, 1992). One of
the advantages of this test is that it is rank-based, making
it suitable for non-normally distributed data, data con-
taining outliers and non-linear trends such as those often
encountered in long-term hydrometeorological research.
A p value of <0Ð10 was used to indicate statistical sig-
nificance. The slope for each trend was calculated as the
median of all possible pair-wise slopes (Sen, 1968), and is
referred to here as the Sen slope. The percent change over
the period of record was calculated by multiplying the
Sen slope by the number of years that data were collected.
Long-term trends were only analysed at stations with
more than 40 years of data, which is the minimum sample
size suggested for the Mann-Kendall normal approxima-
tion test (Gilbert, 1987). All annual values reported in
this manuscript are based on October 1 water year (e.g.
WY 1993 is from 1 October 1992 through 30 Septem-
ber 1993). The unit cm-days used throughout this article
refers to the annual sum of daily values and is therefore
a cumulative metric of snow depth, SWE and soil frost

Published in 2010 by John Wiley & Sons, Ltd. Hydrol. Process. 24, 2465–2480 (2010)
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Figure 2. Long-term trends in average annual (A) and winter (B) air temperature at stations 1, 6, 14 and 22 (m D Sen slope). Winter is defined as
December through March

depth. The number of snow cover events is defined as
the number of times that the snowpack forms and dissi-
pates during the year. The number of freeze–thaw events
refers to the number of times that the soil freezes and
completely melts during the year.

RESULTS

Historical climate trends

Average annual air temperature increased significantly
for various periods of measurement at the four stations
evaluated, with Sen slopes ranging from C0Ð017 to
C0Ð028 °C per year (Figure 2A). The smallest increase
was at station 1 amounting to 0Ð9 °C over 52 years of
measurement and the greatest increase was at station
22 amounting to 1Ð4 °C over 51 years. Increases in
winter (December through March) temperature were
also significant at all four weather stations. Winter
temperature changed to a greater degree than mean
annual temperature, with slopes ranging from C0Ð029 to
C0Ð036 °C per year.

Twelve of the seventeen rain gages evaluated showed
significant increases in annual precipitation over the
full period of their measurement records (Table III).
Significant increases occurred at all rain gages with 48 or
more years of data. The other rain gages evaluated (rain
gages 9–17) had fewer years of data (43 to 44 years)
and did not all show significant trends in precipitation,
although all had positive Sen slopes. Increasing trends at
stations with the longest records were influenced by an
extended period of drought in the 1960s, although similar
low precipitation years are found throughout the record
(e.g. 1957, 1988, 1995, 2001; Figure 3). Significant
precipitation increases ranged from C0Ð67 cm per year at
station 6 (C32 cm total over 48 years of measurement)
to C0Ð37 cm per year at station 11 (C16 cm total over
44 years of measurement). If the same time period
(1966–2008) is evaluated at all rain gages, all stations
still show increases in precipitation, but only 6 of the 17
stations show significant increases and the stations that
show significant increases do not appear to be influenced
by position in the basin. Winter precipitation comprised
approximately one-third of annual precipitation. There

Published in 2010 by John Wiley & Sons, Ltd. Hydrol. Process. 24, 2465–2480 (2010)
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Table III. Meteorological station descriptions, average annual precipitation (cm) and change in annual and winter (December through
March) precipitation per year (cm). Sen slope p values are shown in parentheses and significant trends (˛ D 0Ð10) are indicated in

boldface

Station Elevation
(m)

Aspecta

(deg.)
Initial Water

year
Tot. Water

years.
Avg. annual
precipitation

 annual
precip/year (p value)

Avg. winter
precipitation

 winter
precip/year (p value)

1 490 130 1957 52 134 +0·54(0·005) 41 C0Ð01(0Ð950)
2 560 170 1957 52 136 +0·62(0·003) 42 C0Ð05(0Ð473)
3 720 171 1957 52 131 +0·45(0·008) 39 C0Ð01(0Ð900)
4 560 261 1957 52 133 +0·59(0·003) 41 C0Ð05(0Ð453)
5 670 204 1959 50 137 +0·42(0·024) 43 0Ð00(0Ð967)
6 750 130 1961 48 137 +0·67(0·002) 42 C0Ð07(0Ð307)
7 600 176 1961 48 138 +0·57(0·002) 42 C0Ð05(0Ð472)
8 510 106 1961 48 138 +0·62(0·001) 42 C0Ð07(0Ð419)
9 760 169 1965 44 143 C0Ð35(0Ð103) 44 �0Ð09(0Ð270)
10 670 141 1965 44 146 +0·45(0·038) 46 �0Ð09(0Ð327)
11 550 173 1965 44 141 +0·37(0·099) 43 �0Ð07(0Ð347)
12 620 315 1966 43 146 C0Ð44(0Ð107) 45 �0Ð06(0Ð439)
13 770 15 1966 43 146 +0·45(0·044) 44 �0Ð04(0Ð630)
14 730 343 1966 43 147 +0·43(0·072) 45 �0Ð12(0Ð254)
15 770 309 1966 43 148 C0Ð35(0Ð194) 46 �0Ð16(0Ð107)
16 860 243 1966 43 149 C0Ð38(0Ð202) 47 �0Ð19(0Ð137)
17 890 63 1966 43 148 C0Ð38(0Ð202) 47 �0Ð17(0Ð180)

a Degrees clockwise from north.

Figure 3. Annual precipitation (cm) at the four stations with the longest records (52 years)

were no significant trends in winter (December through
March) precipitation at any of the rain gages over the
measurement period.

Changes in the snowpack were observed at both
measurement locations (stations 2 and 17). Station 2,
which has the longest record, showed significant declines
in all snow metrics (Table IV). Maximum snow depth
declined by 25 cm, SWE declined by 7 cm, and snow
cover duration declined by 21 days over 53 years of
measurement. At station 17 (43 years of data), only
cumulative SWE showed significant declines; however,
Sen slopes for all other snow metrics were negative.

Annual maximum frost depth showed no significant
trends at station 2 or 17 (Figure 4) and there were no
significant trends in the number of days with soil frost.
At station 2, which is warmer and at a lower elevation

than station 17, soil frost was present during 62% of the
years it was measured and reached a maximum depth of
26 cm. At station 17, soil frost was present during 76% of
the years and reached a maximum depth of 25 cm. There
was a strong positive relationship for annual maximum
soil frost depth between stations 2 and 17 (r2 D 0Ð52,
p value D 0Ð000), with greater depths on average at the
colder, higher elevation station 17.

Model evaluation

SHAW model results were evaluated by compar-
ing predicted versus measured values for the period
when adequate data were available (WY 1979 to 2008;
Table V, Figure 5). The model captured a greater fraction
of the variability in measured cumulative snowpack depth
and cumulative SWE (r2 D 0Ð83 and 0Ð80, respectively)
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Table IV. Measured annual means and change per year in snow metrics at station 2 (WY 1956–2008) and station 17 (WY
1966–2008). Sen slope p values are shown in parentheses and significant trends (˛ D 0Ð10) are indicated in boldface

Item Station 2 Station 17

mean (SD) /year (p value) mean (SD) /year (p value)

Maximum snow depth (cm) 72(25) −0·48(0·043) 106(31) �0Ð24(0Ð586)
Cumulative snow depth (cm-days) 5067(2373) −60(0·004) 9363(3674) �74(0Ð107)
Maximum SWE (cm) 19(7) −0·14(0·033) 28(9) �0Ð15(0Ð201)
Cumulative SWE (cm-days) 1279(669) −15(0·011) 2398(997) −26(0·024)
Snow-covered days (days) 119(22) −0·39(0·044) 147(19) �0Ð22(0Ð384)

Figure 4. Maximum annual soil frost depth (cm) measured at stations 2 and 17

Table V. Evaluation of model fit for WY 1979–2008 at station 2 for snow, snow water equivalent, and soil frost expressed as annual
maximum values (cm) and annual cumulative sum of daily values (cm-days). The model was run using measured climate input

values

Item O
(SD)

P
(SD)

r2

(p value)
MAE MAEP MBE MBEP

Maximum snow depth (cm) 65Ð0(21Ð9) 69Ð5(22Ð3) 0Ð52(0Ð000) 13 19 4 7
Cumulative snow depth (cm-days) 4134(2220) 3526(2059) 0Ð83(0Ð000) 919 22 �608 �15
Maximum SWE (cm) 16Ð5(6Ð6) 15Ð5(6Ð5) 0Ð72(0Ð000) 3 19 �1 �6
Cumulative SWE (cm-days) 1043(661) 897(575) 0Ð80(0Ð000) 255 24 �146 �14
Maximum soil frost depth (cm) 5Ð8(7Ð5) 5Ð4(6Ð6) 0Ð47(0Ð000) 4 65 0 �7
Cumulative soil frost (cm-days) 227(352) 261(394) 0Ð48(0Ð000) 182 80 34 15

O, mean annual observed value; P, mean annual simulated value; r2, coefficient of determination; MAE, mean absolute error; MAEP, mean absolute
error percent; MBE, mean bias error; MBEP, mean bias error percent.

compared to maximum annual snow depth and maximum
SWE (r2 D 0Ð52 and 0Ð72, respectively). However, the
mean absolute error percent for the cumulative snowpack
depth and SWE (22 and 24%, respectively) was greater
than maximum annual snow depth and SWE (19% for
both). Predictions of soil frost showed greater disagree-
ment with observations than did predictions of snow-
pack. The model accounted for slightly less than half
of the variability in measured cumulative soil frost and
annual maximum frost depth, with higher mean absolute
error (65 and 80%, respectively) compared to the snow-
pack measurements. For all the snowpack and soil frost
measurements evaluated, the MBE ranged from �15 to
C15%.

Future climate trends

Six climate projections developed for the HBEF were
used as model input for future snowpack and soil frost
simulations. These climate projections were developed
by statistically downscaling AOGCM output. The climate
projections showed significant increases in mean annual
air temperature for all scenarios, ranging from 1Ð8 to
8Ð2 °C for 2009–2099 (0Ð02–0Ð09 °C per year; Table VI).
For all three models, the higher emissions CO2 scenarios
(A1FI D 970 ppm by 2100) produced greater increases
in temperature than the lower emissions scenario (B1 D
550 ppm by 2100). For each of the two CO2 scenar-
ios, the HADCM3 model produced the greatest increase
in temperature, the PCM model produced the least, and
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Figure 5. Comparison of modelled (solid lines) and measured snow water equivalent (solid circles) and soil frost depth (hollow circles) at station 2
for WY 1979–2008

the GFDL model was intermediate. Winter temperatures
also increased significantly for all scenarios and had Sen
slopes that were similar to those for annual temperatures.
Predicted precipitation was more variable than air tem-
perature, but increased under all scenarios. Four of the
six scenarios showed significant increases in annual pre-
cipitation, ranging from 14 to 30 cm (0Ð15–0Ð33 cm per
year) or a 10 to 22% increase over the period from 2009
to 2099. The same four scenarios also showed signifi-
cant increases in winter precipitation ranging from 6 to
20 cm (0Ð07–0Ð22 cm per year) or a 14 to 40% increase
for 2009–2099.

All snowpack metrics we investigated showed pat-
terns that are consistent with declining future snow-
pack (Table VI). Predicted maximum annual snowpack
depth decreased significantly in four of the six scenar-
ios, amounting to a reduction of 31–47 cm from 2009
to 2099 (0Ð34–0Ð52 cm per year) or 6–10 cm SWE
(0Ð07–0Ð11 cm per year). Cumulative snow depth and
SWE also showed significant decreases in four of the
six scenarios. Under all scenarios, snow cover duration
decreased significantly from 2009 to 2099 and from 20
to 79 days (0Ð22–0Ð87 days per year), while the num-
ber of snow cover events increased significantly (by
2–3 events per year) under three of the six scenarios
(Table VI).

Changes in projected future soil frost during 2009–
2099 were less apparent than changes in projected snow-
pack. A significant change in projected maximum annual
soil frost depth occurred in just one of the scenar-
ios examined (GFDL B1) and showed a decline of
4Ð5 cm over 91 years (0Ð05 cm per year; Table VI).
Cumulative soil frost declined significantly under two
scenarios, amounting to a 32 to 77% decrease in the
mean for 2009–2099 (1Ð8 to 2Ð6 cm-days per year).
The number of days per year when soil frost was
present decreased significantly in five of the six sce-
narios, ranging from 21 to 55 fewer days during
2009–2099 (0Ð23–0Ð60 days per year). The number of
annual freeze–thaw events increased by 1–3 events per
year over the same period (Table VI). As a separate
analysis, the model was run using detrended winter
precipitation to evaluate whether projected changes in
snow and soil frost were driven by changes in pro-
jected precipitation or changes in projected tempera-
ture (Table VII). While there were minor differences
with respect to results shown in Table VI, the snow-
pack and soil frost projections resulting from detrended
precipitation followed the same overall pattern as model
runs conducted using the original AOGCM precipitation
projections.
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DISCUSSION

Changes in climate at Hubbard Brook

Past and projected future changes in temperature and
precipitation provide clear evidence that the climate at the
HBEF is changing. Although mean annual temperature
is variable, all locations evaluated showed an upward
trend, ranging from 0Ð017 to 0Ð028 °C per year over
the last half century. These changes are consistent with
trends that have occurred throughout the northeastern US
region over the same time period (Keim et al., 2003;
Trombulak and Wolfson, 2004; Hayhoe et al., 2007). The
range of air temperature among stations at the HBEF
was about 2Ð5 °C, arising primarily from differences in
elevation and aspect (Table III; Figure 2A). Projected
increases in future average annual air temperature ranged
from 0Ð02 to 0Ð09 °C per year (Table VI), with the higher
emission scenarios producing greater increases and lower
emission scenarios producing increases that are consistent
with trends observed over the recent past. Winter air
temperatures at the HBEF have warmed from 0Ð026 to
0Ð036 °C per year since measurements began in the mid-
1950s (Figure 2B), which is 0Ð008 to 0Ð018 °C per year
more than the increase in annual air temperatures. This
pattern of increasing winter temperatures is consistent
with observed trends across the greater northeastern
US region (Burakowski et al., 2008). In contrast, the
downscaled climate model projections indicate nearly
identical changes in annual versus winter air temperatures
for 2009 through 2099.

Annual precipitation volume increased over the avail-
able measurement periods at most of the HBEF’s
hydrometeorologic stations (Table III). These changes
were not significant at some of the rain gages with shorter
records (i.e. 43–44 years) and trends at longer-running
stations were influenced by an extended period of drought
in the 1960s (Figure 3) (Namias, 1966).

Despite projections that winter precipitation will
increase dramatically over the next century, historical
data show no indication of this trend at the HBEF
(Table III) or elsewhere in the region (Hayhoe et al.,
2007). The past increase in annual precipitation is not
a result of changes in winter precipitation, but rather
arises from a precipitation increase that is fairly evenly
distributed among the other seasons (Hayhoe et al.,
2007). Modelled changes in annual average precipita-
tion were consistently lower than the observed trends
during 1957–2008, and in two cases (GFDL B1; PCM
A1FI) were not significant (Tables III and VI). In contrast
to historical trends, winter precipitation is projected to
increase and contributes to projected increases in annual
precipitation volume.

Observed patterns of snowpack and soil frost

Changes in climate have led to a reduction in the
snowpack at the HBEF (Table IV). At station 2, all
metrics we investigated showed significant snowpack
declines. The record at station 17 is 10 years shorter
than the record at station 2, and only showed significant

declines in cumulative SWE. However, the direction
and extent of change for the other snow metrics were
comparable to station 2. Similar trends in snow depth and
SWE from snow courses in Maine have been reported
by Hodgkins and Dudley (2006), with nearly 80% of
sites evaluated showing significant declines. Changes in
the number of snow-covered days have been evaluated
for the greater northeastern United States by Burakowski
et al. (2008) who reported an average regional decrease
of 3Ð6 days per decade for 1965–2005, comparable to
the 3Ð9 days per decade decrease at station 2 in our study
over a slightly longer time period (1956–2008).

The absence of a significant trend in winter precipi-
tation at the HBEF suggests that the recent decline in
snowpack has not been caused by changes in precipitation
volume. Other factors that could contribute to declining
snowpack include enhanced snowmelt associated with
warmer winter air temperatures, changes in the propor-
tion of precipitation falling as snow, or changes in other
meteorological variables such as solar radiation, relative
humidity and wind speed. Across the greater New Eng-
land region, there has been a decrease in the proportion
of winter precipitation falling as snow (Huntington et al.,
2004; Burakowski et al., 2008). Similar trends have not
been observed at the HBEF, although precipitation type
(i.e. rain, snow, mix) has only been recorded since 1979,
and its determination is prone to subjectivity.

While observed changes in climate and snowpack
might be expected to influence soil frost, we observed
no changes in measured maximum annual soil frost
depth since measurements began. The few studies that
have examined long-term patterns of soil frost have
generally shown declines in maximum annual depth
in response to climate change (Frauenfeld et al., 2004;
Zhao et al., 2004; Hirota et al., 2006). However, most
of these studies have been conducted in colder regions
of the world that typically experience deeper and more
consistent soil frost. At the HBEF, soil frost was absent
approximately 1 in every 3 years, depending largely
on early winter air temperatures and the timing and
amount of snowfall. The high interannual variability in
maximum soil frost depth reduces the ability to detect
trends (Figure 4). Some of the variability in observed soil
frost depth, as well as some of the disagreement between
predicted and observed values, could be due to the
errors associated with the manual soil frost measurement
method. Measurements are conducted at just a single
point at each location at weekly time intervals and rely
on a subjective determination of whether or not the
ground feels frozen. Alternative methods such as soil
frost tubes (Ricard et al., 1976) and temperature probes
also have limitations and can produce erroneous results.
While many different approaches to measuring seasonally
frozen ground have been introduced (e.g. time domain
reflectometry (Baker et al., 1982), ground penetrating
radar (Steelman and Endres, 2009), electrical resistivity
(French et al., 2006), all have drawbacks, highlighting
a need for more sophisticated approaches and sensors.
Despite limitations, soil frost depth has been measured at
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the HBEF with the same method for 47 years and results
have internal consistency. For instance, during periods
when soil frost was present, recorded measurements did
not change radically from week to week (Figure 5). In
addition to this temporal consistency, there was also
spatial consistency. A comparison of soil frost depth
at stations 2 and 17 showed a significant relationship
(r2 D 0Ð52, p value D 0Ð000) for years when it was
measured at both stations, and the synchrony between
stations suggests that the method is capturing the major
frost events (Figure 4).

Simulated soil frost: sources of error and future
projections

Snowpack and soil frost were simulated with the
SHAW model for the last 30 years using climate input
data from the HBEF (Figure 5). Model performance
was evaluated by comparing modelled and measured
values (Table V). The SHAW model did a reasonably
good job of capturing snowpack development and abla-
tion (Figure 5, Table V), although in some instances, the
model had difficulties discerning rain versus snow when
air temperatures were near the freezing point. For exam-
ple, during WY91 and WY92, the model over-predicted
snowfall at the beginning of the winter because it incor-
rectly identified precipitation events as snow rather than
rain. Because snowpack keeps soils insulated, erroneous
prediction of early season snowpack during these two
years caused the model to predict an absence of soil
frost when, in reality, there was comparatively deep frost,
reaching a maximum of nearly 20 cm. This example
highlights the importance of adequately simulating snow
depth at the beginning of winter when soil frost forms, to
minimize error propagation throughout the winter. Diffi-
culties differentiating between rain and snow are more
of a limitation for retrospective analyses, and should not
inhibit evaluation of future trends, provided that there is
an equal probability of mistaking a rainfall event for snow
as a snowfall event for rain. In our analysis, although the
mean absolute error was high (19–80%), particularly for
soil frost metrics (Table V), the MBE was low for all
metrics (�15 to C15%). These results indicate that the
model did not bias estimates of snow or soil frost and
suggest that it can be useful for evaluating the general
nature of future trends.

The SHAW model was run through the end of the 21st
century using statistically downscaled climate projections
for the site. Future snow predictions generated by SHAW
showed strong declines over the 2009–2099 period, as
indicated by nearly all snow metrics for most of the
scenarios. Our simulations suggest that snowpack depth
could decrease by as much as 67% and that the number
of snow-covered days could decrease by as much as
70% by the century’s end. Such drastic changes in the
snowpack have broad implications for ecosystem services
such as winter recreation and tourism, water supply and
forest products. Additionally, because many plants and
animals require snow cover, changes of this magnitude
may affect species composition and biodiversity. Changes

in snowcover may also generate feedbacks that amplify
or diminish change by altering factors such as surface
albedo and trace gas exchange (Tranter and Jones, 2001;
Groffman et al., 2006; Qu and Hall, 2007).

Colder soils in a warmer world?

One of the major objectives of this study was to
evaluate how a warmer climate would affect future
soil frost since it is an important regulator of many
ecological processes during winter. It has been suggested
that soil frost could increase in response to climate
change because there would be less snow insulating soils
during winter, thereby exposing soil to cold winter air
temperatures. Our results indicate that the response is
more complex and suggest that declining snowpack will
not lead to increased soil frost if the decline is associated
with warmer air temperatures, but may actually result
in a reduction in the number of days during which
soil frost occurs. Our simulations under projected future
climate produced no significant upward or downward
trend in maximum annual frost depth for 2009–2099,
except for one lower emissions scenario (GFDL B1),
which showed a significant decline. The lack of strong
trends in projected frost depth is consistent with field
measurements during the last half century at the HBEF.
Consistent among modelling studies is the finding that
climate change significantly shortens the duration of
frozen ground (Venäläinen et al., 2001; Henry, 2008).
Our modelling analyses showed that the period of frozen
ground decreased substantially, by 0Ð09 to 0Ð6 days/year
under the scenarios we examined. A plausible explanation
for the lack of trend in soil frost depth is that even though
reductions in snow depth expose the soil to cold winter air
and increase the probability of freezing, frost penetration
is limited by warmer air temperatures and a shorter winter
season. Hence, under future climate scenarios, soil is not
exposed to prolonged periods of extremely cold weather,
necessary for developing deep soil frost.

SHAW model results also showed projected increases
in the number of annual freeze–thaw events (Table VI).
Freeze–thaw events are influenced by the number of
snow cover events, which were also projected to increase.
Increases in freeze–thaw events were reported in a mod-
elling study that examined soil temperatures at sites
across Canada through 2050 (Henry, 2008). However,
the increases projected in our study were comparatively
minor (0Ð01–0Ð03 events per year through 2099). Surpris-
ingly few freeze–thaw events occur at the HBEF, with
the modelled mean for 1979–2008 averaging four events
per year. Freeze–thaw events can enhance ecological pro-
cesses such as litter decomposition, mineralization and
trace gas fluxes (Schimel and Clein, 1996; Matzner and
Borken, 2008). However, past studies have often used
unrealistically extreme temperatures and rates of freez-
ing and thawing relative to those that occur naturally in
the field (Lipson et al., 2000; Henry, 2007).

Precipitation is a potentially important factor influenc-
ing snowpack depth and hence, soil frost. Venäläinen
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et al. (2001) attributed simulated declines in frost depth
through 2100 in northern Finland to a 30% projected
increase in winter precipitation. In southern Finland,
where precipitation was projected to increase by a
much smaller amount, the probability of frozen ground
increased significantly. Precipitation is highly spatially
and temporally variable and there is uncertainty about
how it might change in the future. Although climate
model projections for the HBEF suggest that winter pre-
cipitation will increase during the 21st century, there has
been no evidence for such a trend over the past half
century. If winter precipitation does not increase as pro-
jected, future declines in the snowpack may be greater
than those shown in Table VI. However, model runs with
detrended winter precipitation (Table VII) were very sim-
ilar to model runs without detrended precipitation, sug-
gesting that the increase in precipitation volume did not
have a major influence on the overall trends in snow and
soil frost. These results suggest that future increases in
precipitation are less important than other factors, such as
increases in air temperature, in regulating the snowpack
and soil frost.

CONCLUSIONS

It has been widely reported in the literature that climate
change in temperate regions could cause an increase in
soil frost, but few data or analyses have been presented
to support these suppositions. Our results from long-term
frost depth measurements at the HBEF suggest negligible
changes in maximum annual frost depth over the past
half century. Further, simulations using a soil energy and
water balance model suggest little change over the period
from 2009 to 2099, when projected declines in winter
snowpack are associated with warmer air temperatures.
Our simulations indicate that the number of freeze–thaw
events will increase slightly in response to climate change
depending on the climate models and emission scenarios
used. The most important change in soil frost is a
projected shortening of the period of frozen ground,
coincident with a shorter period of snow cover. Future
research should focus on how fewer days with frozen
ground might affect factors such as phenology of plants
and organisms, hydrologic flow paths, nutrient cycling
and trace gas exchange fluxes. The lack of automated
field methods for measuring soil frost is currently a
barrier for monitoring change. Advances in technology
may improve trend detection and will enhance our ability
to more fully evaluate soil frost models.
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Venäläinen A, Tuomenvirta H, Heikinheimo M, Kellomäki S, Peltola H,
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