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ABSTRACT

HiMag, an accession of tall fescue (Festuca arundinacea Schreb.), was

selected for high magnesium (Mg) concentration in leaves to reduce

grass tetany risk to ruminants. However, the mechanism for enhanced

Mg uptake in HiMag leaves has not been determined. The objective

was to investigate if increasedMg uptake inHiMag could be explained

by differences in elemental distribution among plant parts, root
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characteristics, or organic acid concentrations compared to its

parental cultivars, ‘‘Kentucky 31’’ (KY31) and ‘‘Missouri 96’’

(MO96). The study was conducted on a surface-irrigated calcareous

Portneuf silt loam (coarse-silty, mixed, mesic, Durinodic Xeric

Haplocalcid). Vegetation and soil cores of 7.6-cm diameter were

sampled to a 45-cm soil depth in 15-cm increments.Mass and ash were

determined for leaves, crowns, and roots. Leaf area, root length, root

area, root length density, elemental concentration, and uptake

[potassium (K), calcium (Ca), Mg, sodium (Na), and phosphorus

(P)], and malate and citrate concentrations also were determined. Leaf

Mg concentration was higher in HiMag than parental cultivars.

HiMag generally did not differ in crown and root elemental

concentrations from its parents. Risk of causing grass tetany,

indicated by leaf K/(CaþMg), was lower in HiMag than KY31 and

MO96 in both 1994 (P¼ 0.03) and 1995 (P¼ 0.01). Root length, area,

and mass were not related to cation concentrations in the three tall

fescue accessions, suggesting that HiMag may have an active uptake

or transport mechanism for Mg.

Key Words: Herbage; Festuca arundinacea; HiMag; Root length;

Root area; Magnesium; Calcium; Potassium; Phosphorus; Malate;

Citrate.

INTRODUCTION

Cool-season grasses provide an important forage resource through-
out temperate regions of the world. However, elemental imbalances in
herbage may lead to hypomagnesemia (commonly known as grass
tetany), a metabolic disorder in ruminant animals identified by low blood
serum Mg, which causes animal production and death losses.[1] These
losses are estimated at $400 million annually in the United States,[2] and
40% of these losses are believed to occur on the 12–14 Mha of tall fescue
(Festuca arundinacea Schreb.).[3] To help alleviate these losses, Sleper
et al.,[4] and Mayland and Sleper[5] selected a tall fescue accession,
HiMag, for reduced K/(CaþMg) and high Mg and Ca levels in herbage
of the second generation from parental cultivars, ‘‘Kentucky 31’’
(KY31)[6] and ‘‘Missouri 96’’ (MO96).[7] The ratio of K/(CaþMg) is an
index used to predict grass tetany incidence, that increases exponentially
when K/(CaþMg), calculated in moles of charge, exceeds 2.2.[8]

Despite the promise of forage cultivars with reduced tetany risk, little
is known about the mechanisms for absorption and partitioning of Mg,
Ca, and K in cool-season grasses. HiMag provided about 20% more leaf

1340 Shewmaker et al.
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Mg than its parents, KY31 and MO96, on both acidic Typic Hapludults
in Georgia[9] and a calcareous Durinodic Xeric Haplocalcid soil in
Idaho.[5] The mechanism of increased Mg uptake in HiMag is not known.
It was hypothesized that high leaf Mg concentrations were due to
differences in root characteristics, ability to absorb greater amounts of
Mg into the roots, or a difference in elemental transport. In addition,
because organic acids exuded from roots may influence the rhizoshpere to
affect ion solubility and uptake by plants,[10] it was hypothesized that
malate and citrate concentrations in HiMag may be higher than KY31
and MO96. The objective of this study was to determine if enhanced Mg
uptake in HiMag is associated with differences in elemental distribution
among plant parts, root characteristics, or root tissue malate and citrate
concentrations.

MATERIALS AND METHODS

Three tall fescue accessions: HiMag, KY31, and MO96 were sown
(4.7 kg seed ha�1) on 20 Sept. 1991 in six 7.6-m long rows spaced at 0.56m
in a randomized complete block design.[11] Accessions were free of a fungal
endophyte [(Neotyphodium coenophialumMorgan-Jones and Gams) Glen,
Bacon and Hanlin comb. nov.] that reduces cattle performance. The soil
was a surface-irrigated Portneuf silt loam (coarse-silty, mixed, mesic,
Durinodic Xeric Haplocalcid) near Kimberly, ID, USA (42�300 N and
114�80 W, elevation 1200m). This calcareous soil has an average pH of 7.7
which may allow soil P to be fixed as Ca3(PO4)2. However, soil test P levels
were adequate (Table 1). In October and again on 1 April of each year,
plants were flail-mowed to a height of 8 cm, fertilized with 56 kgNha�1 as
broadcast urea or ammonium nitrate, and then irrigated using furrows
spaced 1.1m apart.

Plant Sample Collection and Processing

Concentrations of Ca, Mg, and K were evaluated in roots, crowns,
and leaves of HiMag, MO96, and KY31 during 1994 and 1995. Malate
and citrate concentrations in root tissue were analyzed in 1994 samples.
Leaves within a 7.6-cm diameter ring centered on the row were clipped to
a 7.6-cm stubble height from two rows at randomly selected points along
the 6.7-m long row. Leaf fresh weight was recorded, and leaf area was
determined on a 10-g (1994) or 5-g (1995) subsample. After clipping
leaves, a 7.6-cm diameter core was extracted from the soil on 20 April

Root Characteristics of Tall Fescue 1341
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1994 and 24 April 1995. A second soil core was extracted 20 cm

perpendicular to the row. Cores were sectioned into crown (row center

only), 0–15 (R1), 15–30 (R2), and 30–45 cm (R3) depths. Crowns and soil

cores were covered by plastic, stored at 3�C, and washed within 3 d. Core

sections were placed on 1-mm nylon mesh screen, and soil was washed

from the root sections. Cleaned roots and crowns were rinsed with

distilled water, blotted, weighed, and placed into plastic bags. Root image

analysis was performed on one half of the R1 section in 1994 and one

quarter of the R1 section in 1995. One half of the R2 and R3 sections was

image analyzed in both years after refrigeration at 3�C. Roots for

chemical analyses, leaves, and crowns were frozen, freeze dried, weighed,

and ground in a Wiley mill to pass a 1-mm stainless steel screen.

Root Length and Area

Roots used for length and area determination were soaked for 1 h in

a 150mL solution of 135 mg methylene blue L�1 at 21�C, rinsed with

100mL deionized water, cut into 1-cm lengths, and arranged to minimize

intersections and overlapping in a glass tray with about 1-mm water

depth. Root length and area were determined using an AgVision video

camera and digitizing board.a AgVision (Decagon Devices, P.O. Box 835,

Pullman, WA) software uses a modification[12] of the line-intercept

procedure developed by Tennant.[13] Root length density was calculated

by dividing root length by core section volume. Root length ratio was

calculated by dividing large root length by small root length. Root area

ratio was calculated as the large root area divided by the small root

area. Large and small root lengths were also expressed as cmg�1 root dry

matter (DM).
The methylene blue staining procedure allowed imaging of all but the

finest roots (estimated as<0.05mm diameter). The precision of length

and area determination was high with only a 3.8% error for known

lengths and diameters of wire and black vinyl tubing repositioned with

slight overlap 10 times. However, detection of fine roots depends on light

intensity, camera height, and aperture setting. Thus, relative lengths and

areas have high precision, but absolute values are less accurate.

aMention of a trade does not imply an endorsement or recommendation by the

University of Idaho or USDA over similar companies or products not mentioned.
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Chemical Analyses

A 0.5-g subsample for each plant part was ashed in an oven at 482�C

for 10 h. Ash was dissolved with 10mL 1M HNO3, diluted to 50mL with

deionized distilled water, and filtered through Whatman No. 50 filter

paper. An aliquot was diluted with 1 gLaL�1 deionized distilled water

and analyzed for Mg, Na, and Ca by atomic absorption spectroscopy

and for K by flame emission (Perkin Elmer atomic absorption model

5000, Norwalk, CT). The LaCl is used in the dilution to reduce

chemical interference by P on Ca determination.[14] Another aliquot was

diluted with water, and P was determined colorimetrically using the

vanadomolybdate procedure.[15] Unstained roots in the R1 section of

three replications in 1994 were analyzed for malate and citrate by high

pressure liquid chromatography using an organic acid column.[16]

Twenty soil cores (2.5-cm diameter) corresponding to R1, R2,

and R3 were composited by depth for each replication on 25 March 1994.

Soil pH was determined on the saturated soil paste, and electrical

conductivity (EC) was determined on the saturated soil paste extract.[17]

Calcium and Mg cations in the extract were analyzed by atomic

absorption in a 10 gLaL�1 matrix, and Na and K were analyzed by

flame emission spectroscopy.[17]

Statistical Analyses

Each of the three accessions was replicated six times in a randomized

complete block. Physical measurements and chemical data were analyzed

with plant part as the sub-plot and year as the sub-sub-plot and analyzed

as a split-plot in time model.[18] Data were analyzed by least squares to fit

general linear models (SAS Institute Inc., SAS Campus Drive, Cary,

NC). Experimental units were accessions (main plots) obtained by

reducing row data to plot means within replications and years. Plant

samples were partitioned into roots (three soil depths), crowns, and

leaves. Significance of accessions was tested by the replication� accession

interaction, and significance of plant parts was tested by the replication�

plant part interaction. Preplanned contrasts between HiMag vs. KY31

and MO96 were conducted. Physical and chemical variables were

subjected to correlation analysis. Soil properties were subjected to

protected LSD mean separation at three soil-depth increments. All

variables were normally distributed.

1344 Shewmaker et al.
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RESULTS

Saturated soil paste extracts contained 1.8mmolMg2þL�1 and
4.0mmolCa2þL�1 and did not differ with depth (Table 1). The K
concentration decreased with depth, while Na concentration increased
with depth. Soil solution K concentration in the 30–45 cm depth was
about 32% of the 0–15 cm depth. Thus, roots growing at the lower soil
depth had considerably more favorable K/(CaþMg) and K/Mg ratios in
the soil solution than at shallower depths. A lower K/(CaþMg) ratio in
soil solution should allow for a lower grass tetany risk in the plant tissue.

In the overall analysis of the data, plant parts differed significantly
for ash, all elemental concentrations, and cation molc ratios. The
year� part interaction was significant for ash, elemental concentrations
(except for Ca and P), and cation molc ratios. As a result, separate
ANOVAs were conducted for each plant part in each year including
leaves, crowns, and roots (R1, R2, and R3 depths in the center core and
side core). For roots, accessions did not vary for any chemical or physical
characteristic in the center or side cores, thus only center core data are
presented. However, differences in both chemical and physical root
characteristics were observed across root depths. Root depth and the year
� depth interaction were significant for length, area of large and small
roots, and total root mass. The year� accession interaction was not
significant for elemental concentrations, but was significant for all
physical root characteristics except total root mass. The significant
year� accession interaction may have been caused by a differential
response of accessions to yearly differences in air and soil temperatures.
Average maximum air temperature was 17.8 during 6–20 April 1994
compared to 12.8�C during 10–24 April 1995. Average maximum 10-cm
soil temperature was 13.8�C during 6–20 April 1994 compared to 10.9�C
during 10–24 April 1995.

Leaves and Crowns

HiMag contained more Mg (P¼ 0.08), more Ca (P¼ 0.08), and a
lower K/(CaþMg) (P¼ 0.03) in leaves than the parental cultivars in 1994
(Table 2). In 1995 HiMag contained less K, more Mg and P, and lower
K/(CaþMg) and K/Mg ratios than parental cultivars. Coefficients of
variation (CV) were low for leaf concentrations of K, Ca, and Mg,
ranging from 5 to 11% for both years. Leaf mass was about fourfold
greater in 1994 than 1995. The lower leaf masses in 1995 were associated
with physiologically younger leaves because the average minimum air

Root Characteristics of Tall Fescue 1345
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temperature in the 14 d prior to sampling was 2.2�C in 1994 compared
to�1.5�C in 1995. Leaf area within the 7.6-cm diameter core averaged
12.5 (1994) and 3.0 cm2 core�1 (1995). Leaf ash averaged 119 (1994) and
103 g kg�1 dry matter (1995). Leaf K and Mg concentrations also were
greater in 1994 than 1995 for all accessions. The K/(CaþMg) and K/Mg
ratios were also higher in 1994 than 1995, but still were well below the
threshold value of 2.2 that indicates a high incidence of grass tetany.[8]

In 1994, crown ash varied among accessions, but no other elemental
concentrations varied for crowns in 1994 or 1995. HiMag crowns
contained less ash than parental cultivars in 1994, but not in 1995. Crown
mass for all accessions was higher in 1994 than in 1995 (Table 3).

Root Mass and Elemental Concentrations

Root mass varied both among depths and between years, and the year
by depth interaction was significant. The chemical analyses for roots

Table 2. Mean (n¼ 6) mass, elemental concentration, and cation molc ratios for

leaves; CV and contrast (HiMag vs. KY31 plus MO96) probabilities of three tall

fescue accessions in a 7.6-cm diameter core for 1994 and 1995. Concentrations are

expressed on a tissue dry matter basis.

Mass (g)

Concentration

K Ca Mg Na P Ratioa

(g kg�1) K/(CaþMg) K/Mg

1994

HiMag 3.17 29.1 5.74 3.12 1.44 2.74 1.39 2.94

KY31 2.87 29.7 5.31 2.87 1.60 2.89 1.53 3.26

MO96 3.81 30.7 5.19 2.74 1.44 2.82 1.63 3.50

CV (%) 11 5 9 11 28 5 10 11

Contrastb NS NS 0.08 0.08 NS NS 0.03 0.03

1995

HiMag 0.77 21.5 5.50 2.92 0.97 3.14 1.07 2.29

KY31 0.87 24.0 4.87 2.40 0.86 3.09 1.40 3.15

MO96 0.86 23.4 5.18 2.52 1.22 2.65 1.29 2.92

CV (%) 24 6 8 10 25 10 9 11

Contrastb NS 0.01 0.04 0.01 NS 0.10 0.01 0.01

aRatios are unit-less but are calculated on a molc basis.
bIndicates the P level that means of HiMag vs. its parents, KY31 and MO96, are

different by single df t test, NS¼ not significant.

1346 Shewmaker et al.
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conducted in 1994 were done with stained roots, whereas the 1995 roots
were not stained. A methods evaluation using paired samples found that
76, 65, 55, and 77% of the K, Ca, Mg, and Na conc. in the roots, respec-
tively, were present in stained compared to unstained roots (data not
shown). Dry-ashing of the stained roots resulted in almost complete
solubilization whereas digestion with nitric and perchloric acids was not
complete. This suggests that the methylene blue stain may have chelated
the cations that were adsorbed on the external root surface. The
stain solution leached 2.04, 0.78, and 0.27 gkg�1 root of K, Ca, and Mg,
respectively, whereas the rinse solution contained no significant cation conc.

Table 3. Means (n¼ 6) and root mean square errors (RMSE) for mass, ash,

elemental concentrations, and cation molc ratios for crowns and root sections

of tall fescue in a 7.6-cm diameter core in 0- to 15-cm (R1), 15- to 30-cm (R2), and

30- to 45-cm (R3) depths. Concentrations are expressed on a tissue dry matter

basis.

Mass (g)

Concentration Ratioa

Ash K Ca Mg Na P K K

(g kg�1) (CaþMg) Mg

1994 means

Crown 9.36 103.0 9.03 5.96 1.94 1.15 1.42 0.51 1.46

R1 1.86 66.5 3.66 5.67 0.89 0.92 0.97 0.28 1.30

R2 0.40 71.4 2.73 6.13 0.81 1.23 0.95 0.20 1.06

R3 0.30 66.3 2.01 7.77 0.85 1.30 0.77 0.12 0.78

1994 RMSE

Crown 2.06 7.8 1.02 0.43 0.22 0.31 0.15 0.06 0.13

R1 0.27 7.7 1.09 1.92 0.21 0.25 0.17 0.07 0.27

R2 0.06 10.9 0.51 1.85 0.14 0.29 0.14 0.04 0.18

R3 0.10 12.3 0.46 2.49 0.21 0.30 0.14 0.03 0.14

1995 means

Crown 5.35 81.5 9.75 5.00 1.54 0.58 1.84 0.67 1.97

R1 2.13 76.3 5.98 5.27 1.04 0.76 1.13 0.46 1.84

R2 0.45 90.0 5.60 6.16 1.24 1.81 1.28 0.36 1.42

R3 0.29 83.0 3.15 9.23 1.45 1.94 1.00 0.16 0.73

1995 RMSE

Crown 1.43 14.6 2.23 1.07 0.19 0.12 0.27 0.18 0.39

R1 0.48 10.5 1.48 0.90 0.13 0.15 0.21 0.15 0.52

R2 0.32 17.5 1.10 1.31 0.18 0.40 0.25 0.08 0.26

R3 0.09 20.2 1.20 2.61 0.28 0.67 0.21 0.08 0.29

aRatios are unit less but are calculated on a molc basis.

Root Characteristics of Tall Fescue 1347
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Accessions did not vary in the R1 or R2 depth increments for
elemental concentrations, cation ratios, or elemental uptake (analysis not
shown) in either 1994 or 1995. For the R3 root increment in 1994, the
K/Mg ratio for HiMag was 0.60 (contrast P¼ 0.01) compared to 0.94
for KY31 and 0.81 for MO96. In 1995 accessions did not vary for any
elemental characteristics in the R3 root increment.

Root Length and Area

Root length, area, and root length density in R1 (Table 4) were
generally 2–3 times the values for R2 and R3. Length per kg root in R1
was less than R2 and R3. For R1 roots in 1994, HiMag had greater root
length of large (>1mm diameter) roots per unit weight (9,290mkg�1)
than KY31 (7,710mkg�1) orMO96 (7,260mkg�1), but accessions did not
differ for this characteristic in 1995. The small (<1mm diameter) roots
for R1 were not statistically different among accessions in either year,
and the R2 root characteristics did not differ between HiMag and its
parents in 1994 or 1995 for either large or small roots. Accessions
generally did not vary for root length or area for either large or small
roots in the R3 depth increment in 1994 or 1995, except that HiMag
had greater length of small roots per unit weight (143,600mkg�1) than
KY31 (119,100mkg�1) or MO96 (121,600mkg�1) in 1995.

Relationships Between Chemical and Physical Characteristics

Leaf Mg conc. was not significantly correlated to any physical
measurement in HiMag, KY31, or MO96. However, leaf Mg and Ca
were positively correlated in all three accessions (Table 5). Leaf Mg also
was positively related to leaf K in KY31 and MO96 but not in HiMag.
Leaf K conc. was negatively correlated with length of small roots and
area for the R1 depth increment. This is probably because less soil K was
taken up by fewer roots at the R1 depth increment, relative to the R2
or R3 depth increments where the soil K was lower (Table 1).

Root Mg conc. in the R1 depth increment was not highly correlated
with R1 physical characteristics (r< 0.54) in the three accessions. Root
Mg in R1 was strongly correlated with root Ca in R1 (P� 0.05, df¼ 23)
for HiMag, KY31, and MO96. Root Mg conc. in the R2 depth increment
was positively correlated to R2 small root lengths and root K. Root Mg
conc. was related to large root length with an r value of 0.71 for HiMag.
Root Mg was related to root Ca in R3 for all accessions.

1348 Shewmaker et al.
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The Mg2þ and Ca2þ ions are supplied to the roots by mass flow,
whereas PO3�

4 and Kþ are supplied by diffusion.[19] If it is assumed that
300 kg water was transpired kg�1 plant dry matter and whole plant Mg
conc. of HiMag was 1.84 g kg�1, then Mg conc. needed in the soil
solution (X ) can be calculated as[19]:

X ¼ ð1:84mg Mg=g DMÞ � ðg DM=300 g waterÞ � ð1000 g=LÞ

¼ 66:1mg Mg L�1

which is equivalent to 2.8mmolMg2þL�1. As a result, the average soil
solution conc. of 1.8mmol L�1 (Table 1) would provide less Mg by mass
flow than required by the plant, suggesting some other process is
involved, i.e., an active uptake mechanism for Mg in tall fescue.

Citrate and Malate Concentrations in Roots

No significant differences for R1 roots were observed for root tissue
citrate concentrations of 0.66 (HiMag), 0.62 (KY31), and 0.47mM

Table 5. Selected Pearson correlation coefficients (r) between various chemical

and physical characteristics of three tall fescue accessions. Values of r are

significant at P¼ 0.05 (df¼ 23) if r> 0.40.

Relationship

Accession

HiMag KY31 MO96

Leaf Mg to Ca 0.77�� 0.65�� 0.80��

Leaf Mg to K 0.20 0.70�� 0.55��

Leaf K to R1 small roota length �0.69�� �0.42d �0.48d

Leaf K to R1 small root area �0.70�� �0.33 �0.45��

R1 Mg to R1 physical characteristicsb <0.40 <0.30 <0.54

R1 Mg to R1 Ca 0.89�� 0.70�� 0.93��

R2 Mg to R2 small root length 0.71�� 0.20 0.54��

R2 Mg to R2 K 0.90�� 0.75�� 0.62��

R3 Mg to R3 large rootc length 0.71�� 0.12�� 0.35��

R3 Mg to R3 Ca 0.79�� 0.83�� 0.59��

aSmall roots are defined as <1mm diameter.
bRoot length, area, and root length density; and root mass.
cLarge roots are defined as >1mm diameter.
�, ��, indicate significant F-test at P< 0.05 and 0.01, respectively.
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(MO96). There were no differences in malate concentrations of 1.51
(HiMag), 1.80 (KY31), and 1.39mM (MO96).

DISCUSSION

Leaf Mg concentration was higher in HiMag than parental cultivars,
although this difference was not highly significant (P¼ 0.08) in 1994.
Similarly, HiMag had higher concentrations of leaf Mg compared to
KY31 and MO96 on an acidic Cecil soil[9] and on the same soil as this
study.[5] Leaf Mg concentrations of HiMag, KY31, and MO96 were
greater than 2 g kg�1, which is considered a low grass tetany risk.[9]

Roots in the three depth increments evaluated in our study did
not consistently vary for Mg concentration, uptake, or K/Mg and
K/(CaþMg) ratios for any of the three tall fescue accessions. Crowns
had relatively small concentrations of K, Ca, and Mg. In 1995, 80% of
K, 64% of Ca, 75% of Mg, 56% of Na, and 77% of P were partitioned in
aboveground portions of plants. Leaf Mg concentration for HiMag was
about twice that in crowns and roots, whereas leaf Mg in KY31 and
MO96 was about 1.5 times greater than the concentrations in crowns and
roots. Sleper et al.[4] reported that high Mg and Ca concentrations in
leaves were highly heritable. Because leaf Mg concentration was greater
in HiMag than MO96 or KY31 and root concentrations were generally
not different, HiMag apparently absorbs and translocates more Mg
from roots to leaves.

The question remains whether Mg is taken up actively. Both Ca and
Mg concentrations in leaves were greater in HiMag than its parental
cultivars, while K concentrations were about the same. Thus, one could
hypothesize that HiMag has some characteristic that enhances transport
of Ca and Mg from roots to leaves. Hannaway et al.[20] reported K had
a greater depressive effect on Mg translocation to the shoot than Mg
uptake by roots in tall fescue.

Saturated paste extractable K in the 30–45 cm depth was about 30%
of that in the 0–15 cm depth in Portneuf soil (Table 1). Magnesium
uptake in plants depends on concentrations and activity of Mg in soil
solution and ability of soil to replenish Mg in the soil solution.[19]

Availability of Mg is affected by the proportion of Mg relative to soluble
and exchangeable amounts of K, Ca, Na, aluminum (Al), and manganese
(Mn).[19] Although root distributions were not different between
accessions, if a plant was able to extract more soil solution from the
30–45 cm depth, this should be advantageous because the K/Mg ratio
would be lower because of K dilution, and more Mg would be available
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to the plant relative to K. Although HiMag also contained more Ca
and Mg in leaves from plants grown on acid soils,[9] soluble cation
concentrations in the soil were not reported.

Soil test P was adequate in our study and apparently was not related
to leaf Mg concentration. Reinbott and Blevins[21] reported that applying
P fertilizers to KY31 growing in soil with low P increased Ca and Mg
concentrations in leaf tissue. However, when soil test P levels were
adequate, Wilkinson and Mayland[9] found no evidence in support of the
relationship of P fertilization to leaf Mg in tall fescue even when increased
leaf P concentration resulted from P applications.

Root length, root surface area, and root length density did not vary
consistently for accession in the three depth increments examined in our
study (Table 4). Values for root length density in our study were generally
similar to those (45,000mm�3) for KY31 reported by Beyrouty et al.[22] in
Arkansas. Mycorrhizal associations through extension of their hyphae
can increase effective root surface area.[19] Hyphae may have affected P
and Mg absorption in our study because mass flow did not supply
enough Mg to the root surface to account for the amounts in shoots.
Even if hyphae aided in the absorption of Mg into the root, mycorrhizal
associations do not explain the transport of more Mg to the leaves of
HiMag.

It was also hypothesized that HiMag might absorb more Mg2þ and
Ca2þ because of enhanced organic acid production, which could balance
the electrical charge. Charge balance theory suggests that electrical
neutrality must be maintained. Thus, for every cation absorbed either an
anion must be adsorbed or created organically in the root. Malate
exchange, influx and efflux, occurred in root cells of carrot (Daucus
carota L.) and barley (Hordeum vulgare L.).[23] No evidence was found of
enhanced citrate or malate in root tissues of the accessions, but organic
acid exudates from roots into the soil were not measured.

Most of the root characteristics examined in our study did not vary
among the three tall fescue accessions, and none of these characteristics
were consistently related to elemental concentrations within the
accessions. As a result, none of these characteristics appeared to explain
the high leaf Mg concentrations for HiMag found in this study or other
studies.[5,9] The process responsible for increased transport of Mg from
roots to leaves of HiMag may be carrier-mediated transport because it
can occur against an electrochemical or concentration gradient. Even
though our study did not conclusively identify the factor(s) responsible
for the high leaf Mg concentrations in HiMag, these results indicated that
the root characteristics measured were not responsible for the higher
concentrations in HiMag.
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CONCLUSIONS

HiMag exhibits higher leaf Mg concentrations than its parental

cultivars; however, the mechanism for increased Mg concentrations is

unknown. It was hypothesized that these high leaf Mg concentrations

were due to differences in root characteristics, ability to absorb greater

amounts of Mg into the roots, or a difference in the ability to transport

the elements. However, none of the root characteristics examined in our

study were consistently related to elemental concentrations in roots or

leaves. Although HiMag had higher leaf concentrations of Mg than its

parental cultivars, root and crown Mg concentrations did not differ

among the three tall fescue accessions. This suggests that HiMag

translocates more Mg from roots to leaves than its parents, and that

HiMag has more active transport of Mg. An experiment that measures

energy flow in respiration would probably be necessary to address the

active uptake hypothesis.
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