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a b s t r a c t

Shewanella-containing microbial fuel cells (MFCs) typically use the fresh water wild-type strain Shewa-
nella oneidensis MR-1 due to its metabolic diversity and facultative oxidant tolerance. However, S. oneid-
ensis MR-1 is not capable of metabolizing polysaccharides for extracellular electron transfer. The
applicability of Shewanella japonica (an agar-lytic Shewanella strain) for power applications was analyzed
using a diverse array of carbon sources for current generation from MFCs, cellular physiological responses
at an electrode surface, biofilm formation, and the presence of soluble extracellular mediators for electron
transfer to carbon electrodes. Critically, air-exposed S. japonica utilizes biosynthesized extracellular
mediators for electron transfer to carbon electrodes with sucrose as the sole carbon source.

Published by Elsevier Ltd.

1. Introduction

Developing carbon-neutral renewable energy sources is an
important research area for alternative power systems. Electricity
generated from fuel cells has found large scale application in all as-
pects of transportation as well as stationary power supplies (Lar-
minie and Dicks, 2003). Biological fuel cells are an alternative
technology to commercial H2/O2 proton exchange membrane fuel
cells in that they operate at ambient temperatures, in aqueous
environments, and with minimal energy input. Microbial fuel cell
(MFC) technology has rapidly advanced in the last five years with
an outpouring of both new devices and identification of microbial
strains or consortia that convert a variety of carbon sources di-
rectly into electricity (Watanabe, 2008; Harnisch and Schroder,
2009; Zhao et al., 2009). A particularly attractive facet of MFCs is
their use of many fuels, even wastewater, to generate power. This
is a welcome relief to the stringent fuel purity requirements of
most conventional proton exchange membrane (PEM) fuel cells.
However, MFCs typically suffer from low current densities (Logan

and Regan, 2006). To address this issue, new electrode materials
and/or new microbes or consortia need to be developed.

Bacteria of the groups Shewanellaceae and Geobacteraceae
are classic models in MFC research because of the breadth of
knowledge about their metabolism and versatility (Lovley, 2006;
Fredrickson et al., 2008). The compatibility of fuel types in a given
MFC is defined by the metabolism of the microorganism coupled to
extracellular electron transfer to generate electrical output but is
not necessarily linked to metal reduction (Richter et al., 2007).
Geobacter-containing MFCs generate high Coulombic efficiencies
(Call et al., 2009) but require punctilious anaerobic conditions, lim-
iting their applicability. Conversely, Shewanella-containing MFCs
can be operated with air-exposed cultures. Shewanella sp. respire
a wide range of inorganic and organic compounds through many
mechanisms, including the use of mediators, to facilitate electron
transfer outside the cell membrane (Schröder, 2007). Therefore,
Shewanella sp. can reduce solid substrates through indirect
mechanisms, unlike Geobacter sp. which require direct contact to
the electrode surface (Lovley, 2006). Shewanella sp. are an attrac-
tive bacterium for MFCs because they can biosynthesize redox
mediators and operate under diverse environmental conditions
(Fredrickson et al., 2008). Systems relying on artificial mediators
to decrease the overpotential for electron transfer are limited by
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irreversible deactivation and cost due to the periodic addition of
the mediators. However, bacterial systems that generate their
own mediators for extracellular electron transfer are feasible for
autonomous power sources.

Shewanella oneidensis MR-1 is the archetype for the genus and is
frequently used as a model in MFCs. S. oneidensis MR-1 is a fresh
water microbe and was initially isolated from Lake Oneida, New
York in the early 1980s (Myers and Nealson, 1988). Research in
both fundamental electron transfer pathways and systems analysis
has been explored but unfortunately, the bacterium is unable to
survive in high salinity environments (Fredrickson et al., 2008).
Interest in generating electricity from marine environments neces-
sitates the use of marine strains of Shewanella for electricity
production within MFCs. Recently, a study has shown that Shewa-
nella marisflavi EP1 is capable of generating power at a high ionic
strength (up to 8% NaCl) but only lactate was used as a carbon
source (Huang et al., 2010). Shewanella japonica is a marine
microbe isolated from mussels in the Sea of Japan (Ivanova et al.,
2001). In addition to metabolizing agar, S. japonica utilizes D-gal-
actose, D-fructose, glucose, and sucrose in growth experiments sug-
gesting that these carbon sources could be converted to electricity,
provided these metabolic pathways are coupled to extracellular
electron transfer processes.

One important advance that could increase the competitiveness
of MFCs in energy production applications would be the direct con-
version of polysaccharides into electricity. Only 2-3 strains of bacte-
ria (as well some spontaneous mutants of these strains) have been
described in the literature that convert glucose directly to power
within MFCs (Chaudhuri and Lovley, 2003; Biffinger et al., 2008a,b;
Zuo et al., 2008). Enterobacter cloacae was the first native strain of
bacteria shown to generate power from cellulose in a MFC (Rezaei
et al., 2009). Presently, di- and polysaccharide utilization can only
be accomplished by enhanced bacterial consortia (Ishii et al., 2008;
Ren et al., 2008). The agar-lytic capacity of S. japonica makes it a
promising candidate for generating power from polysaccharides.

This manuscript determines for the first time that S. japonica
can convert di- and polysaccharides into electrical current. The
mechanism for electron transfer is probed as well as the response
of S. japonica to a carbon electrode surface in an operating MFC. An
analysis of all these data suggests that S. japonica could be used in
MFCs utilizing polysaccharides, but the strain may be limited by
the presence of electron transfer mediators not initially present
in cultures.

2. Methods

2.1. Solutions and media

Stock solutions of sodium lactate (1.95 M), sodium acetate
(1.95 M), 1% cellobiose, sucrose (1 M), 2% starch, and sodium cit-
rate (0.5 M) were sterilized by autoclaving for 13 min at 121 �C
and adjusted to pH 7. A D-glucose (1 M) stock solution was steril-
ized with a 0.2 lm cellulose nitrate filter. Marine broth (MB) and
marine agar (MA) were used for liquid cultures and plates, respec-
tively (Difco). The solvent for each solution was Millipore 18 MX
water.

2.2. Cell culture conditions

S. japonica (ATCC: BAA-316) was grown from a single colony
isolated from MA inoculated from a �80 �C glycerol stock culture.
Stabs of S. japonica in MA were used to inoculate liquid culture
media in MFCs. Stabs were only used over a period of one month.
S. japonica was transferred to 50 mL of MB in a 125 mL flask
and incubated exposed to air at 27 �C at 100 rpm. Experimental

cultures from stabs and frozen stocks were acclimated to growth
in media by subculturing once after 30 h before being used in min-
iature MFC and voltage based screening assay (VBSA) experiments.

2.3. VBSA construction and data acquisition

Dimensions and fabrication of the VBSA were published previ-
ously (Biffinger et al., 2009). The diameter of each well was
0.8 cm with a depth of 1.3 cm. Fully assembled, each well contains
a maximum of 600 lL. The anodes were constructed from a tita-
nium metal sheet (active electrode area, 0.3 � 0.3 cm) coated with
a conductive carbon ink. The carbon ink contained 30 mg carbon
black, 300 lL 2-propanol, 300 lL 5% Nafion Solution in water,
and 2 mL of de-ionized water. The cathode system was graphite
paper in 50 mM potassium ferricyanide (dissolved in 100 mM
phosphate buffer at pH 7.0). Each experiment was completed using
a nine-well VBSA apparatus. Experiments with no addition of car-
bon source were designated as blanks and were control experi-
ments. Electrodes used for environmental scanning electron
microscopy (ESEM) imaging were removed after 100 h of opera-
tion. Voltages were measured across a 100 kX resistor (in a
nine-resistor bank made for simultaneous voltage measurements)
and were recorded with a high-resolution data acquisition module
(I/O tech, personal daq/54) every two minutes. The measured volt-
age was converted to current using Ohm’s law (Voltage = Cur-
rent*Resistance). Each set of VBSA biofilm experiments were
performed twice with each VBSA setup containing two experi-
ments per each carbon source.

2.4. Biofilm growth and staining

Overnight cultures of S. japonica and S. oneidensis MR-1 were
established by inoculating 5 mL MB or LB, respectively, from a fro-
zen stock in test tubes and were agitated in a cell culture roller.
These cultures were diluted 100-fold in the appropriate growth
medium, and 1 mL aliquots were removed for static incubation.
After three days of static incubation at room temperature
(20 �C ± 1 �C) for S. japonica or 30 �C for S. oneidensis MR-1, super-
natants were discarded, and each tube was stained with 1.25 mL
0.1% crystal violet for 30 min. Biofilms in tubes were rinsed to
remove excess stain, dried and imaged.

2.5. Miniature MFC setup and data collection

The general dimensions and setup for the mini-MFC apparatus
were described previously (Ringeisen et al., 2006). Two identical
miniature MFC systems were operated simultaneously for each
experiment. The electrodes within the fuel cell chambers were
low-density graphite felt (0.13 g, Electrosynthesis Company, Lan-
caster, NY; 0.47 m2/g) and were connected with titanium wires
to an external load. The anode and cathode chambers were sepa-
rated by Nafion�-117 (The Fuel Cell Store). Membranes were
pre-treated for 1 h each in hot de-ionized (DI) water, 3% hydrogen
peroxide, 1 M sulfuric acid, and DI water again. The anolyte and
catholyte were passed through the chambers at a flow rate of 1–
2 mL/min using a peristaltic pump. The catholyte for each fuel cell
was a 50 mM potassium ferricyanide solution in 100 mM phos-
phate buffer (pH 7.2) using uncoated graphite felt (GF) electrodes.
All fuel cells were run at 25 ± 1 �C. Fuel cells were operated simul-
taneously, inoculated from identical 50 mL cultures of S. japonica
either with or without the addition of riboflavin (1 lM). Ribofla-
vin-exposed cultures were wrapped in aluminum foil to limit
ambient light exposure. Sucrose was added to a concentration of
2 mM in each anode culture flask at 48 and 124 h into MFC opera-
tion. Samples were removed periodically through each experiment
for analysis by HPLC (Varian, Inc.) with a refractive index detector.
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The mobile phase was a 0.005 M sulfuric acid solution and the col-
umn was a PL Hi-Plex H+ ion exchange column, at 65 �C, with a
flow rate of 0.6 mL/min. Peaks for sucrose and acetate were cali-
brated using known standards.

2.6. Imaging S. japonica biofilms from the VBSA

Environmental scanning electron microscopy (ESEM) of carbon
surfaces on the titanium anodes was performed at the Naval Re-
search Laboratory, Stennis Space Center, MS (NRLSSC). Unattached
biomass was removed by washing each anode with three separate
1 mL aliquots of phosphate buffered saline solution at the Naval
Research Laboratory, Washington, DC (NRLDC). Each anode was
placed in 2 mL of 4% cacodylate buffered glutaraldehyde fixative
(Ray et al., 1997) at NRLDC and fixed for at least 24 h at 4 �C prior
to shipment to NRLSSC without further manipulations. ESEM imag-
ing procedures were performed as previously described (Biffinger
et al., 2009).

2.7. SEM and AFM imaging

A 125 mL Erlenmeyer flask containing 50 mL marine broth was
used to initiate a S. japonica culture from an agar stab. The culture
was incubated for 48 h at 25 �C after which the 1 mL of cells was
harvested by centrifugation at 5K rpm for 3 min. The cell pellet
was washed 5 times with 1 mL of distilled water. The cells were
resuspended with 1 mL distilled water and 2 lL was deposited
onto a silicon oxide wafer for imaging. SEM micrographs were col-
lected using a LEO Supra 55 microscope using the in-lens detector
and with the primary beam voltage set to 10 kV. The primary beam
voltage was chosen to give maximum contrast and reduced charg-
ing of the sample. The sample prepared for SEM imaging was dehy-
drated in acetone. Atomic force microscopy (AFM) images were
collected using an Autoprobe CP Research AFM equipped with a
microlever contact mode tip (force constant of 0.01 N m�1), both
manufactured by Thermomicroscopes. The AFM was operated in
contact mode with a 3 nN set point, 0.4 Hz scan rate, and
512 � 512 pixel resolution.

2.8. Identification of riboflavin from mini-MFC experiments

The HPLC analysis of culture supernatants was described pre-
viously (Biffinger et al., 2008a,b). The instrumentation included
Agilent (1100 series) chromatography components (Santa Clara,
CA), a quaternary pump for mobile phase delivery and diode ar-
ray detector (DAD) for monitoring elutent and collecting UV–Vis
spectra. An Altima Phenyl column (250 mm � 4.6 mm, 5 lm sup-
port; Alltech Assoc., Deerfield Ill) was used. The mobile phase was
formic acid (0.1%):methanol (70:30, 1 mL min�1). The eluent was
monitored at 210 nm and absorbance was recorded for chromato-
grams. For the sample preparation, the culture supernatants were
first clarified using centrifugation to remove bacteria and insolu-
ble material. Following centrifugation, samples were concentrated
using a C18 solid phase extraction (SPE) cartridge (100 mg scale,
Suplelco, Bellefonte, PA) that had been preconditioned using man-
ufacturer’s recommendations. For SPE, 2 mL of culture superna-
tant was passed through the resin, polar compounds were
washed from the matrix with an equal volume of water and then
the non-polar molecules eluted with 0.5 mL methanol, and then
analyzed using HPLC.

2.9. Electrochemistry of supernatant for mediator expression

A subculture from a four-day-old culture of S. japonica was
grown for two days. The subculture was centrifuged for 10 min
(5500 g, 15 �C) and the supernatant filtered through a 0.2 lm poly-

tetrafluoroethylene (PTFE) filter prior to electrochemical analysis.
Blank MB samples were obtained from the same growth medium
used for the S. japonica culture. In a three-electrode electrochemi-
cal cell, a polished 1.6-mm diameter polycrystalline gold electrode
was used as the working electrode, Pt gauze was used as the coun-
ter electrode and a Ag/AgCl reference electrode (Bioanalytical Sys-
tems) completed the electrochemical cell. Potentials were
corrected and reported versus the reversible hydrogen electrode
(RHE). The electrolytes (media) were continuously sparged with
either Ar or O2 to maintain anoxic or aerobic conditions during
electrochemical background and electrocatalytic oxygen reduction
measurements, respectively. The working electrode was polished
before each measurement using an aqueous slurry of 0.05 lm alu-
mina powder (Buehler) on a polishing cloth and sonicated in DI
water to remove residual alumina from the electrode surface. Cyc-
lic voltammetric scan rates were 100 mV/s.

3. Results and discussion

3.1. Imaging of S. japonica

Bacterial nanofilamentous appendages have been studied for
their role in electron transfer to solid substrates (Gorby et al.,
2006; Reguera et al., 2006), biofilm formation (Proft and Baker,
2009), or cellular communication (Jelsbak and Sogaard-Andersen,
2003). Images of air exposed S. japonica were collected by either
SEM (Fig. 1A and B) or AFM (Fig. 1C) in contact mode. S. japonica
is rod-shaped (�1 lm in length) with multiple flagella and pili-
type structures expressed around the cell body. Generally, images
of S. japonica compared to S. oneidensis MR-1 (data not shown)
prepared using identical protocols indicate that there are more
nanofilamentous structures expressed by S. japonica than S. oneid-
ensis MR-1. Since pili are essential for biofilm formation, it may be
expected that S. japonica will form thick biofilms (Thormann et al.,
2004). Maximum lengths for flagella were between 10 and 15 lm
while pili lengths were between 3 and 4 lm. In addition to the
filamentous appendages, S. japonica produced a large sheath-like
material (30–40 lm � 1 lm). Except for one example of S. oneiden-
sis MR-1 grown at 3 �C (Abboud et al., 2005), sheath formation is
not common for the Shewanellacae family and the exact role of
the structure is currently unknown.

3.2. Screening of nutrients for current production by S. japonica

The ability of a bacterium to reduce inorganic oxides does not
necessarily translate into current producing capabilities (Richter
et al., 2007). Current output from S. japonica was assessed using
monosaccharides (glucose, fructose), disaccharides (sucrose, cello-
biose), carboxylic acids (acetate, lactate, citrate), and a polysaccha-
ride (starch) using a VBSA. Within this single miniature modular
platform, nine simultaneous MFCs could be operated against a sin-
gle cathode/reference electrode (Biffinger et al., 2009). For the 9-
well VBSA experiments, the amount of biofilm formation was
determined at the end of each screening experiment as well as
the current generated from air-exposed anodes with time (data
not shown).

Anodes containing S. japonica in the absence of riboflavin and
presence of 1 lM riboflavin were imaged by ESEM (data not
shown). Fig. 2A and B presents the VBSA current versus time data
for each carbon source. All experiments were shielded from light
because of the sensitivity of riboflavin to ambient light. Riboflavin
was chosen because of its potential role in mediating electron
transfer in S. oneidensis (Biffinger et al., 2008; Marsili et al., 2008;
von Canstein et al., 2008; Ramasamy et al., 2009). The maximum
current generated from non-mediated S. japonica MFCs was less
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than 0.3 lA throughout the duration of the experiment; while
mediated electron transfer resulted in defined current spikes after
the addition of carbon sources with the largest current output after
the addition of sucrose (>2 lA) (Fig. 2B). The results from the non-
mediated VBSA (Fig. 2A) indicate that none of the carbon sub-
strates were used efficiently by S. japonica for current output after
100 h. On the other hand, in the presence of 1 lM riboflavin S.
japonica was capable of generating current immediately from su-
crose, glucose, cellobiose, and to a lesser extent, starch (Fig. 2B).

Even though Shewanella sp. can deliver electrons through direct
contact as well as at a distance through external mediators, biofilm
formation will generate higher current densities due to the prox-
imity of the microbe to the electrode surface (Franks et al.,
2009). ESEM images of electrode surfaces from each of the active
anode chambers of the VBSA confirms that there was no significant
biofilm formation in most of the unmediated MFCs, while sparse

biofilms were observed with glucose-exposed S. japonica (data
not shown). There was an overall increase in cellular attachment
to the electrode surfaces when S. japonica was exposed to ribofla-
vin with the following carbon sources: acetate, cellobiose, and
fructose. However, the opposite was true for glucose. In addition,
cellobiose and fructose exposure resulted in the formation of a
sheath type structure. Biofilm formation did not result in power
output in the case of acetate, indicating that S. japonica cannot
use acetate as a carbon substrate for current production.

The lack of biofilm formation on the electrode contradicted re-
sults observed in the culture tube. S. japonica forms thicker
biofilms in standard culture tubes than S. oneidensis MR-1 (data
not shown). During the VBSA experiments there was no significant
biofilm formation on the electrode surface suggesting that S. japonica
is presumably experiencing voltage based repulsion to the electrode
surface in an operational MFC. Previous work with S. oneidensis MR-1

Fig. 1. SEM (A and B) and AFM (C) images of S. japonica.

Fig. 2. Voltage based screening assay (VBSA) current output data from high-throughput food screening experiments with no mediator additive (A) and with 1 lM riboflavin
(B). Footnote: Addition of 10 mM carbon sources is indicated by vertical lines.
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confirms that thick biofilms can be observed using our current elec-
trode preparation protocol (Biffinger et al., 2009; Bouhenni et al.,
2010) thus S. japonica does not form significant biofilms on active
electrodes. Therefore, under these particular conditions, the increase
in pili expression, as seen from the micrographs, does not lead to in-
creased biofilm formation in an operational MFC and thus may not
play a direct role in electron transfer.

3.3. Utilization of sucrose for electricity output in the mini-MFC

The necessity for the addition of homogenous organic redox ac-
tive mediators (i.e., riboflavin) to produce current responses is both
promising and concerning. S. japonica utilized simple carbohy-
drates, and both di- and polysaccharides to generate current in a
MFC in the presence of riboflavin but no significant current was ob-
served without riboflavin. To study the maximum current gener-
ated from S. japonica exposed to sucrose with and without the
addition of riboflavin, two additional MFC experiments were per-
formed in identical miniature MFCs (mini-MFC). The mini-MFC is
an active flow system that generates high current densities (per
volume) and shows good reproducibility from MFC to MFC as well
as negates the need for substantial biofilm formation to generate
maximum power density (Ringeisen et al., 2006; Biffinger et al.,
2007; Biffinger et al., 2008). Two mini-MFCs were operated simul-
taneously (with and without the addition of 1 lM riboflavin) using
the same catholyte to eliminate variation derived from the catho-
dic reaction between experiments. The current generated from
each mini-MFC versus time is shown in Fig. 3 using an 820 X exter-
nal resistor on each MFC. Additions of sucrose were performed at
the onset of the experiment, at 48 and 124 h.

The current from the mini-MFC with 1 lM riboflavin was con-
sistently higher than the MFC without riboflavin during the first
75 h of operation. After the second addition of sucrose (48 h of
operation), there was an immediate current response for the MFC
with riboflavin that is consistent with the results from the VBSA
experiment (Fig. 2B). However, after 75 h a reproducible increase
in current density (per volume) as high as 0.66 mA/cm3 was ob-
served from the mini-MFC without riboflavin. The third addition
of sucrose at 124 h confirmed that sucrose was being utilized by
S. japonica for extracellular electron transfer.

Two very interesting phenomena were observed from the mini-
MFC experiments. The first was that S. japonica could generate
twice the current (maximum current: 0.08 mA compared to
0.04 mA for riboflavin) from sucrose without addition of riboflavin
after 75 h. The second observation was that riboflavin addition
could inhibit current generation even while mediating electron
transfer between S. japonica and electrode. This result suggests that
riboflavin at 1 lM could inhibit microbial metabolism or could be a
result of the microbe metabolizing riboflavin as a carbon source in-
stead of sucrose at this concentration. However, the relationship
between riboflavin concentration and bacterial metabolism should
be explored further as riboflavin is being used to study fundamen-
tal mechanisms of extracellular electron transfer in cyclic voltam-
metric experiments.

To determine the source of the increase in current after 75 h in
the unmediated MFC, 1 mL aliquots were removed from both MFCs
throughout the experiment for analysis by HPLC with a refractive
index detector. Fig. 4 shows data from these aliquots collected dur-
ing operation of the mini-MFC (shown in Fig. 3) at 48, 51, and 110 h
(prior to the first sucrose addition, 3 and 62 h after sucrose
addition, respectively). The inserts in Fig. 4 are the calculated con-
centration of sucrose and acetate from the same mini-MFC exper-
iment by HPLC. Substrate utilization and metabolite formation in
MFC anolytes differed in response to addition of riboflavin. The
mini-MFC without riboflavin consumed all sucrose by hour 110
while generating 0.25 mM of acetate as a by-product (Fig. 4A).
No other by-products were observed. These results were signifi-
cantly different from those obtained from the mini-MFC containing
riboflavin as acetate was not produced. The rate of sucrose metab-
olism was eight times faster than the MFC containing riboflavin
(Fig. 4B). In addition, the differential consumption of sucrose was
observed by the consistently lower current generated from the
riboflavin containing mini-MFC.

Results from the qualitative analysis of the MFC anolyte sug-
gested that, like S. oneidensis, S. japonica synthesizes a soluble re-
dox mediator that could serve to facilitate extracellular electron
transfer or secondary metabolite for respiration. Comparison of
the culture supernatants and the MB medium revealed that ribofla-
vin was identified in only post-culture supernatants. No evidence
of a similar compound was found in extracts from the MB stock
medium (data not shown). Absorbance maxima were observed at
222, 268, 370 and 448 nm by UV–Vis spectroscopy. The compound
identified in culture supernatants co-elutes with a riboflavin stan-
dard and the UV–Vis spectrum of the product and the riboflavin
standard shared identical features (data not shown). However,
the abnormally high current from the unmediated MFC compared
to the mediated MFC suggests that riboflavin is not the only redox
active molecule in the culture supernatant. Since there were sparse
biofilms formed using all carbon sources from the VBSA experi-
ment and yet large increases in current after 75 h in the mini-
MFC experiment, external mediators were the primary mechanism
for electron transfer by S. japonica.

3.4. Use of electroanalytical methods to compare mediation of oxygen
reduction by S. japonica-exposed supernatants and by riboflavin

Electroanalytical methods enable determination of thermody-
namics and kinetics of electrochemical reactions mediated by
freely diffusing redox species (Polcyn and Shain, 1966; Andrieux
et al., 1980). Precise determination of rate constants for reaction
between the mediator and substrate and electrochemical reduc-
tion/oxidation potentials of both the mediator species and the sub-
strate require either large data sets which are fit to analytical
expressions, or comparison of smaller data sets to digitally simu-
lated data. Comparison of the voltammetric data generated in sep-
arate experiments will result in a qualitative comparison between

Fig. 3. Current versus time chart for S. japonica in the mini-MFC with and without
addition of 1 lM riboflavin. Footnote: Addition of 10 mM sucrose is indicated by
vertical lines.
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two mediators which catalyze the electrochemical oxidation or
reduction of the same chemical species. Using this sort of compar-
ison, one can identify whether the two mediators are the same spe-
cies or different, provided that their catalytic rates for the reaction
of interest or their standard reduction potentials are sufficiently
different from one another.

Cyclic voltammetry was performed separately on S. japonica
culture supernatant, sterile MB, and MB spiked with different con-
centrations of riboflavin. Electrocatalytic reduction of oxygen was
used as a metric for redox activity. The simplest case of mediated
electrocatalysis by a freely diffusing mediator is described gener-
ally by the following three equations (Polcyn and Shain, 1966;
Andrieux et al., 1980):

Aþ ne� ¼ B ð1Þ

P þ ne� ¼ Q ð2Þ

Q þ A ¼ P þ B ð3Þ

Eq. (1) is the direct reduction of the substrate of interest at the
electrode surface. In the present experiment, A represents molecu-
lar oxygen, and B is the reduced form of oxygen, which will be
hydrogen peroxide if n, the number of electrons in the reaction,
is equal to two, and water if n = 4. In Eq. (2), P is the oxidized form
of the electrochemical mediator and Q is the reduced form of the
same, and the equation represents the reduction of P to Q at the
electrode surface. In the present experiments, P represents
mediators generated by S. japonica or an added mediator, such as
riboflavin. Eq. (3) represents the electrocatalytic event, where the
reduced form of the mediator reacts with the substrate to generate
the reduced substrate and regenerate the oxidized mediator, repre-
sented in the present experiment by the electrocatalytic reduction
of oxygen by reduced forms of S. japonica-derived mediators or
added mediators.

Voltammograms for both the argon-saturated MB (voltammo-
gram 1), and the argon-saturated S. japonica growth medium (vol-
tammogram 2), featured very small cathodic peaks of �2 lA at
� �0.47 V (Fig. 5A). The small peaks probably represent the reduc-
tion of trace oxygen not entirely removed from the solution. The
onset of hydrogen evolution was evident around �0.65 V. The con-
centration of electrochemical mediator was below the detection
limit in the CV experiment in the absence of oxygen, and the vol-

tammograms from marine broth and culture supernatant were
indistinguishable.

Under oxygen-saturated conditions, oxygen reduction was evi-
dent in both media. In MB, the oxygen reduction wave featured a
cathodic peak at � �0.59 V (� �28 lA amplitude), and represents

Fig. 4. HPLC data for the consumption of sucrose by S. japonica in the mini-MFC without (A) and with 1 lM riboflavin (B) from 48 h (before sucrose addition), 51 h (3 h after
sucrose addition), and 110 h (62 h after sucrose addition) of operation of mini-MFCs from Fig. 3. Figure inserts are calculated concentration of sucrose and acetate from the
HPLC data. Footnote: Aliquot removal time from mini-MFC (Fig. 3): Green trace: 48 h; Red Trace: 51 h; Blue trace: 110 h.

Fig. 5. (A) Cyclic voltammograms of marine broth control solution (curves 1 and 3,
solid lines) and filtered S. japonica growth medium (curves 2 and 4, dashed lines)
under both argon- (curves 1 and 2) and oxygen-saturated conditions (curves 3 and
4). Scan rate: 100 mV/s. (B) Cyclic voltammograms of oxygen-saturated marine
broth control solution (curve 1, solid line), filtered S. japonica growth medium
(curve 4, solid line), marine broth control solution with 1 lM riboflavin (curve 2,
dashed line), and acellular marine broth control solution with 5 lM riboflavin
(curve 3, dotted line), Scan rate: 100 mV/s.
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direct reduction of oxygen at the gold electrode (voltammogram
3). In the S. japonica growth medium, the oxygen reduction wave
was shifted positively by �0.13 V, as evidenced by the � �28 lA
cathodic peak at � �0.46 V, indicating the presence of a biogener-
ated redox mediator (voltammogram 4). Fig. 5B compares the
mediated electrocatalysis of oxygen reduction in S. japonica growth
medium and in MB controls spiked with riboflavin to concentra-
tions of 0–5 lM. Riboflavin supplements caused diminution of
the cathodic peak derived from direct oxygen reduction at the elec-
trode (voltammograms 2 and 3) compared to the unmediated case
(voltammogram 1) and the onset of oxygen reduction at more
positive potentials. When high riboflavin concentrations (5 lM)
were used, the electrocatalytic wave started to take the form of a
cathodic peak around �0.2 V (voltammogram 3).

The onset potential and the general shape of the voltammo-
grams for electrocatalysis of oxygen reduction in the riboflavin-
spiked controls, when compared to the voltammograms for
electrocatalytic oxygen reduction in the S. japonica growth med-
ium (voltammogram 4), are very different. While a detailed elec-
troanalytical determination of the kinetic and thermodynamic
parameters for the mediator present in the S. japonica growth med-
ium is beyond the scope of the present study, the data imply that
both the reduction potential for the mediator and the rate con-
stants for the electron transfer between the mediator and oxygen
are different from those for riboflavin (Andrieux et al., 1980). It is
possible that some variant of riboflavin or collection of other or-
ganic redox active compounds or proteins was synthesized by S.
japonica and served as a redox mediator in its metabolic pathway.
Alternately, a different mediator altogether may be responsible for
the electrocatalysis of oxygen reduction. It is clear some sort of
mediator was generated by S. japonica, enabling the reduction of
oxygen in the metabolic pathway of S. japonica and the function
of S. japonica in the MFC.

4. Conclusions

The ability of S. japonica to use a diverse range of carbon sources
(from monosaccharides to sucrose to agar) indicates that it may
have great promise in MFC for marine environments. The reported
data conclude that sucrose can be utilized for power production
from S. japonica. Additionally, riboflavin was observed in culture
supernatants and corresponded with significant increases in the
current generated from a MFC but may not be the only mediator
present for mediating electron transfer from S. japonica to carbon
electrodes. Moreover, there was not a clear connection between
biofilm formation and current output suggesting that electron
transfer from the bacterium to the electrode surface was solely
through mediated mechanisms not direct electrode contact.
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