
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

US Army Research U.S. Department of Defense 

2011 

Dislocation–twin interactions in nanocrystalline fcc metals Dislocation–twin interactions in nanocrystalline fcc metals 

Y. T. Zhu 
North Carolina State University at Raleigh, ytzhu@ncsu.edu 

X. L. Wu 
Chinese Academy of Sciences 

X. Z. Liao 
University of Sydney 

J. Narayan 
North Carolina State University at Raleigh 

L. J. Keckés 
US Army Research Laboratory 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.unl.edu/usarmyresearch 

 Part of the Operations Research, Systems Engineering and Industrial Engineering Commons 

Zhu, Y. T.; Wu, X. L.; Liao, X. Z.; Narayan, J.; Keckés, L. J.; and Mathaudhu, S. N., "Dislocation–twin 
interactions in nanocrystalline fcc metals" (2011). US Army Research. 160. 
https://digitalcommons.unl.edu/usarmyresearch/160 

This Article is brought to you for free and open access by the U.S. Department of Defense at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in US Army Research by an 
authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17245053?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/usarmyresearch
https://digitalcommons.unl.edu/usdeptdefense
https://digitalcommons.unl.edu/usarmyresearch?utm_source=digitalcommons.unl.edu%2Fusarmyresearch%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=digitalcommons.unl.edu%2Fusarmyresearch%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/usarmyresearch/160?utm_source=digitalcommons.unl.edu%2Fusarmyresearch%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Y. T. Zhu, X. L. Wu, X. Z. Liao, J. Narayan, L. J. Keckés, and S. N. Mathaudhu 

This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/
usarmyresearch/160 

https://digitalcommons.unl.edu/usarmyresearch/160
https://digitalcommons.unl.edu/usarmyresearch/160


Dislocation–twin interactions in nanocrystalline fcc metals

Y.T. Zhu a,⇑, X.L. Wu b, X.Z. Liao c, J. Narayan a, L.J. Kecskés d, S.N. Mathaudhu d

a Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
b State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China

c School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW 2006, Australia
d US Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA

Received 16 August 2010; received in revised form 7 October 2010; accepted 9 October 2010

Abstract

Dislocation interaction with and accumulation at twin boundaries have been reported to significantly improve the strength and duc-
tility of nanostructured face-centered cubic (fcc) metals and alloys. Here we systematically describe plausible dislocation interactions at
twin boundaries. Depending on the characteristics of the dislocations and the driving stress, possible dislocation reactions at twin bound-
aries include cross-slip into the twinning plane to cause twin growth or de-twinning, formation of a sessile stair-rod dislocation at the
twin boundary, and transmission across the twin boundary. The energy barriers for these dislocation reactions are described and
compared.
� 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Twins have been reported to significantly affect the
mechanical properties of nanostructured face-centered
cubic (fcc) metals and alloys [1–10]. Importantly, twins
have been shown to be able to simultaneously increase
the strength and ductility of nanostructured metals, which
is attributed to the dislocation interaction with and accu-
mulation at twin boundaries. Since deformation twinning
usually occurs simultaneously with the slip of perfect and
partial dislocations, interactions between twins and gliding
dislocations inevitably occur at twin boundaries. Nano-
crystalline fcc metals have been found to deform via twin-
ning more readily than their coarse grained counterparts
[11–22]. This increases the probability of interactions
between dislocations and twins in nanocrystalline fcc met-
als. Furthermore, nanocrystalline fcc metals usually have
high strength, and the resulting high flow stress may
provide enough driving force to activate some energetically

unfavorable dislocation reactions at the twin boundaries.
Therefore, it is of scientific interest and practical impor-
tance to understand how the dislocations react at twin
boundaries.

Dislocation reactions at twin boundaries have been
observed both experimentally [2,3,23–32] and by molecular
dynamics (MD) simulations [33–41]. However, no system-
atic investigation has been reported. It is the objective of
this paper to systematically describe plausible dislocation
reactions at twin boundaries.

2. Possible dislocations to react with twin boundaries

There are only four types of dislocations in the fcc struc-
ture that may react at a twin boundary. They can be
described with the assistance of Fig. 1, which shows a
Thompson tetrahedron on the twin boundary. Note that
the twin boundary is also the (1 1 1) slip plane, i.e. the
ABC plane in the Thompson tetrahedron. The other three
slip planes on the tetrahedron are the ACD, ABD and
BCD planes. Before a dislocation reacts at a twin boundary
it first needs to slip on one of these three planes. When the
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dislocation reaches the twin boundary the dislocation line
should become parallel to the intersection line of the slip
plane and the twin boundary, which are either AB, BC
or CA. Since the three slip planes are identical close-packed
planes to gliding dislocations due to the crystal symmetry
for dislocation slip, we need to consider only one represen-
tative plane hereafter.

To make the discussion easier, we unfold the Thompson
tetrahedron onto a two-dimensional representation, as
shown in Fig. 2. Assuming that a dislocation glides on
the BCD, i.e. ð�11�1Þ, plane toward the twin boundary, the
orientation of the dislocation line will become parallel to
BC when it reaches the twin boundary. From Figs. 1 and
2 it can be deduced that this dislocation can be one of four
possible types: (a) a 30� Shockley partial dislocation, i.e.
the partial’s Burgers vector is at a 30� angle to the disloca-
tion line; (b) a 90� Shockley partial dislocation; (c) a screw
perfect dislocation with the Burgers vector parallel to the

dislocation line; (d) a 60� perfect dislocation. The disloca-
tion reaction at the twin boundary is determined by both
the type of dislocation and the magnitude and orientation
of the applied stress. In the following sections we will
describe possible reactions of each type of dislocation at
the twin boundary.

3. A 30� partial at the twin boundary

Assuming that a 30� Shockley partial dislocation Ba
glides on the BCD plane towards a twin boundary, at the
twin boundary it may either cross-slip into the twin bound-
ary plane (ABC plane) or be transmited across the twin
boundary to release a dislocation on the other side of the
twin boundary. Below we describe the dislocation reactions
for these two scenarios.

3.1. Cross-slip of the 30� partial at the twin boundary

When the 30� Shockley partial dislocation cross-slips
into the ABC plane at the twin boundary, it can react at
the twin boundary to grow a twin [42]. Similarly, it should
also be able to cause de-twinning by moving the twin
boundary towards the twin interior. The twin growth pro-
cess has been described in a previous paper [42]. The
de-twinning process is very similar to the twin growth pro-
cess, except that the partial glides in the opposite direction
after cross-slip. Here we also adopt the convention used in
Fig. 2 of Zhu et al. [42], and will describe the de-twinning
process only.

Fig. 3 illustrates the de-twinning process caused by the
interaction of a 30� partial, Ba, with the twin boundary.
Fig. 3a illustrates the partial Ba slip on the BCD plane,
leaving behind a stacking fault (SF), and stopped at the
twin boundary, TB, represented by a thick black line.
Under appropriate applied stress the following dislocation
reaction occurs (see Figs. 1 and 2):

Ba! Bdþ da ð1Þ
If Bd glides to the left it will move the twin boundary
towards the twin interior by one atomic plane. This leaves
a step and a stair-rod dislocation at the twin boundary.

The stair-rod dislocation da could further dissociate into
two partial dislocations according to the Thompson
tetrahedron:

da! dBþ Ba ð2Þ
where the partial dB will glide on the twin boundary in the
opposite direction to Bd under the same applied stress, be-
cause dB and Bd represent partials with opposite Burgers
vectors.

As shown in Fig. 3c, after the dB glides to the right the
twin thickness is reduced by one atomic plane, i.e. de-twin-
ning occurred during the process. The partial Ba advances
to the new twin boundary under the original applied stress,
and can repeat the above process to annihilate the whole
twin.

Fig. 1. Illustration of a Thompson tetrahedron on the coherent twin
boundary, a (1 1 1) slip plane, which coincides with the ABC plane in the
Thompson tetrahedron.

Fig. 2. Two-dimensional representation of the Thompson tetrahedron
illustrating the possible slip planes and the Burgers vectors of dislocations
in an fcc crystal.

Y.T. Zhu et al. / Acta Materialia 59 (2011) 812–821 813



There is an energy barrier to the dislocation reactions
described in Eqs. (1) and (2), because the reactions increase
the total energy of the dislocations. To estimate the energy
barrier we invoke the isotropic elastic dislocation energy
per unit dislocation line length [43]:

Eb ¼
Gb2ð1� mcos2bÞ

4pð1� mÞ ln
R
r0

ð3Þ

where Eb is the energy per unit length of a dislocation with
a Burgers vector is at an angle b to the dislocation line, G is
the shear modulus, m is the Poisson’s ratio, R can be esti-
mated as the grain size d, and r0 can be estimated as the
Burgers vector b [44]. Eq. (3) can be rewritten as:

Eb ¼
Gb2ð1� mcos2bÞ

4pð1� mÞ ln
d
b

ð4Þ

The dislocation core energy is not included in Eq. (4).
For covalent and ionic crystals, the core energy is relatively
high and also a strong function of orientation [45,46]. For
metals with a close-packed structure, such as fcc metals, the
core energy is about 0.1–0.05Gb2. The calculation of core
energies of a dislocation is still a topic of computational
and analytical study. One way to incorporate the core
energy into Eq. (4) is to choose a smaller r0, i.e. r0 = b/a,
where a can be calculated as [45]:

a ¼
ffiffiffi
3
p

e1þcð1� mÞ
ffiffiffi
2
p
½sin2bþ ecð1� mÞcos2b�

ð5Þ

where c = (1 � 2m)/4(1 � m). Therefore, the total disloca-
tion energy can be described as:

Eb ¼
Gb2ð1� mcos2bÞ

4pð1� mÞ ln
ad
b

ð6Þ

Note that for fcc metals the magnitudes of the Burgers
vector are a/

p
2 for a perfect dislocation, a/

p
6 for a partial

dislocation, and a/3
p

2 for the stair-rod dislocation da.
These quantities will be used to estimate the dislocation
energy changes for dislocation reactions.

The energy increase (energy barrier) for a dislocation
reaction can be calculated by subtracting the total energy
of the initial dislocations from that of the dislocation(s)
produced by the reaction. For example, for the reaction
described in Eq. (1) the energy barrier can be calculated as:

DEeq:1 ¼ EBd þ Eda � EBa ð7Þ
According to the Thompson tetrahedron both Ba and

Bd are 30� partials, i.e. b = 30�, while the stair-rod disloca-
tion da is an edge dislocation (b = 90�). Substituting Eq.
(6) into Eq. (7) and using the appropriate magnitudes of
Burgers vectors, the energy barrier for the dislocation reac-
tion in Eq. (1) can be calculated as:

DEBa!Bdþda
Eq1 ¼ Ga2

72pð1� mÞ ln

ffiffiffi
2
p

d
a
þ Ga2

72pð1� mÞ ln 3a ð8Þ

The first term on the right side of Eq. (8) represents the
isotropic elastic energy, while the second term represents
the core energy. In fact, since both Ba and Bd are 30� par-
tials, EBa = EBd. This leads to DEBa!Bdþda

Eq1 ¼ Eda. For easy
comparison we will hereafter define

bE ¼ Ga2

72pð1� mÞ ln

ffiffiffi
2
p

d
a
¼ eE ln

ffiffiffi
2
p

d
a

ð9Þ

Assuming hereafter that the Poisson’s ratio is approxi-
mately 1/3, which is a reasonable approximation for most
fcc metals, one can easily calculate DEBa!Bdþda

Eq1 ¼ bEþ
2:0eE. Note that bE is much larger than eE. For example,
assuming the grain size is 50 nm and a is 0.4 nm, we have
bE � 5eE.

Following a similar procedure, the energy barrier for the
dislocation reaction in Eq. (2) can be calculated as:

DEda!dBþBa
Eq2 � Ga2ð10� 9mÞ

144pð1� mÞ ln

ffiffiffi
2
p

d
a
þ 5:5eE

� 3:5bE þ 5:5eE ð10Þ

This indicates that the second reaction requires a much
higher applied stress to overcome the energy barrier. If the
applied stress is high enough to activate the reaction
described in Eq. (1) but not the reaction in Eq. (2), then
a step will be produced at the twin boundary. Twin bound-
aries with steps have been extensively studied experimen-
tally and by MD simulations [33,36,37]. For example,
Yamakov et al. [36] show that a partial dislocation can
interact with a twin boundary, which forms a stair-rod dis-
location and a step at the twin boundary and, conse-
quently, thickens or reduces the twin by one atomic layer.

Fig. 3. De-twinning process caused by the interaction of a 30� partial, Ba, with the twin boundary. SF marks the stacking fault, TB marks the twin
boundary (thick black lines). BCD and ABC represent the BCD and ABC slip planes in the Thompson tetrahedron, respectively.
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3.2. Transmission of the 30� partial across the twin boundary

To understand how the 30� partial Ba on the BCD slip
plane can be transmited across the twin boundary we need
to invoke the double Thompson tetrahedron [28], illus-
trated in Fig. 4. As shown, the Thompson tetrahedron
above the (1 1 1) twin boundary represents matrix slip sys-
tems, while the bottom tetrahedron represents twin slip sys-
tems. The twin boundary plane is shared by the matrix
above it and the twin below it. Therefore, the matrix tetra-
hedron and the twin tetrahedron share the same base,
which is ABC. In other words, dislocations with Burgers
vectors AB, BC, CA, Ad, Bd, and Cd can slip both in the
matrix and in the twin.

From Fig. 4 the 30� partial Ba on the BCD slip plane in
the matrix, can have the following dislocation reaction to
release another partial in the twin:

Ba! Ba0 þ a0a ð11Þ
where Ba0 is a partial that can slip away in the twin from
the twin boundary on the BCD0 plane, and a0a is a new
type of stationary stair-rod dislocation across the twin
boundary. Since the dislocation line is parallel to BC, it
can be seen from Fig. 4 that a0a is an edge dislocation with
its Burgers vector perpendicular to both the dislocation line
and the twin boundary (1 1 1). The magnitude of a0a can be
calculated from the geometry of the double tetrahedron as
2a/3
p

3. The dislocation configuration after the reaction is
illustrated in Fig. 5, which shows two stacking faults from
the two sides of the twin boundary meeting at the twin
boundary and connected by the stair-rod dislocation a0a.

The energy barrier of the dislocation reaction described
in Eq. (11) can be calculated as:

DEBa!Ba0þa0a
Eq11 � Ga2

27pð1� mÞ ln

ffiffiffi
2
p

d
a
þ 4:1eE

� 2:7bE þ 4:1eE ð12Þ

This indicates that the energy barrier for the 30� partial
Ba to be transmited across the twin boundary is smaller
than that in reaction 2, suggesting that this scenario is ener-
getically plausible under an appropriate applied stress.

4. A 90� partial at the twin boundary

Assuming that a 90� Shockley partial dislocation Da
glides on the BCD plane towards the coherent twin bound-
ary, we describe plausible dislocation reactions at the twin
boundary below.

4.1. Cross-slip of the 90� partial at the twin boundary

The cross-slip of 90� partials at the coherent twin
boundary has been reported to be responsible for the for-
mation of fivefold twins [47,48], which have been experi-
mentally observed and also verified by MD simulation
[49]. Since this has been reported before, we will give only
a brief description here.

A deformation twin can be defined by the twin plane K1,
shear direction g1, undistorted plane K2, and direction g2

(see Fig. 6) [45]. Deformation twins in an fcc metal are of
compound type, in which a twin formed by Shockley par-
tials with Burgers vectors parallel to g1 gliding on K1 is
the same as a twin formed by partials with Burgers vectors
parallel to g2 gliding on K2. In the current situation K1 and
K2 correspond to the ABC and BCD planes in the Thomp-
sons tetrahedron, respectively. g1 is parallel to the 90� par-
tial Ad and g2 is parallel to another 90� partial Da. In other
words, when the 90� partial Da on the BCD plane reaches
the twin boundary it becomes equivalent to another 90�
partial Ad on the ABC plane. Under an appropriate exter-
nal shear stress the Ad partial could glide to the left or
right, which consequently grows or shrinks the twin by
one atomic layer. Note that since both Da and Ad are
the same type of partial, there is no energy change (barrier)
in this dislocation reaction. Therefore, orientation of the
applied stress becomes a critical factor influencing this
cross-slip.

Fig. 4. Illustration of a double Thompson tetrahedron. The top tetrahe-
dron above the (1 1 1) twin boundary represents matrix slip systems, while
the bottom tetrahedron represents twin slip systems.

Fig. 5. The dislocation configuration after the partial Ba penetrates the
twin boundary to release another partial Ba0 on the BCD0 plane inside the
twin, leaving a stair-rod dislocation a0a on the twin boundary. This
configuration is viewed from the BC orientation.
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4.2. Transmission of the 90� partial across the twin boundary

To understand how a 90� partial Da can be transmitted
across the twin boundary to activate a partial dislocation in
the twin we need to take a careful look at the double
Thompson tetrahedron to determine the dislocation reac-
tions that can translate the Burgers vector of the 90� partial
into a partial in the twin. As shown in Fig. 4, the 90� partial
Da can dissociate as:

Da! Ddþ da ð13Þ
The double Thompson tetrahedron indicates that the

Burgers vector Dd is identical to dD0 in the twin, i.e.
Dd = dD0, which can dissociate into a 90� partial a0D0

and a stair-rod dislocation da0, i.e.

Dd ¼ dD0 ! da0 þ a0D0 ð14Þ
The 90� partial a0D0 can glide in the twin to move away

from the twin boundary. Other similar reactions that can
also produce a 90� partial include:

dD0 ! db0 þ b0D0 ð15Þ
and

dD0 ! dc0 þ c0D0 ð16Þ
The 90� partials b0D0 and c0D0 can glide on the ACD0 and

ABD0 slip planes, respectively, in the twin.
The magnitude of Dd and dD0 is a/

p
3 according to the

double Thompson tetrahedron. The energy barrier of the
dislocation reaction described in Eq. (13) can be calculated
as:

DEDa!Ddþda
Eq13 � Ga2

18pð1� mÞ ln

ffiffiffi
2
p

d
a
þ 4:4eE ¼ 4bE þ 4:4eE

ð17Þ
The energy barrier of the dislocation reaction described

in Eq. (14) can be calculated as:

DEdD0!da0þa0D0

Eq14 � � Ga2

36pð1� mÞ ln

ffiffiffi
2
p

d
a
� 0:3eE � �2bE � 0:3eE

ð18Þ

The energy barriers for the reactions in Eqs. (15) and
(16) are the same as that in Eq. (14). Therefore, the dislo-
cation reaction described in Eq. (13) has a very high energy
barrier while the reactions in Eqs. (14)–(16) are energeti-
cally favorable.

The high energy barrier in Eq. (13) is caused by creation
of the dislocation Dd (or dD0), which has a large Burgers
vector with a magnitude of a/

p
3. If the dislocation reac-

tion path changes to avoid the formation of Dd (dD0), the
energy barrier will be lower. Assuming that the dislocation
reactions in Eqs. (13)–(15) take place in one step without
forming Dd (dD0), we can substitute Eq. (14) into Eq.
(13), which yields:

Da! daþ da0 þ a0D0 ð19Þ
Similarly, b0D0 and c0D0 can also be formed by the fol-

lowing reactions:

Da! daþ db0 þ b0D0 ð20Þ
and

Da! daþ dc0 þ c0D0 ð21Þ
The energy barrier for the reaction in Eq. (19) can be

calculated as:

DEDa!daþda0þa0D0

Eq19 � Ga2

36pð1� mÞ ln

ffiffiffi
2
p

d
a
þ 4:0eE � 2:0bE þ 4:0eE

ð22Þ
Therefore, the energy barrier for the reaction in Eq. (19)

is half of the energy barrier in Eq. (13). The energy barriers
for the reactions in Eqs. (20) and (21) are identical to that
in Eq. (19).

There are two stair-rod dislocations in Eqs. (19)–(21).
Both stair-rod dislocations remain at the twin boundary
and could react to form a dislocation structure with lower
energy. With the help of the double Thompson tetrahedron
the stair-rod reactions can be described by:

daþ da0 ! 4=9Ad ð23Þ
daþ db0 ! 2=9dC ð24Þ
daþ dc0 ! 2=9dB ð25Þ

Substituting Eqs. (23)–(25) into Eqs. (19)–(21) yields:

Da! 4=9Adþ a0D0 ð26Þ
Da! 2=9dCþ b0D0 ð27Þ

and

Da! 2=9dBþ c0D0 ð28Þ
The energy barrier for reaction in Eq. (26) is:

DE
Da!4

9Adþa0D0

Eq26 � 2Ga2

243pð1� mÞ ln

ffiffiffi
2
p

d
a
þ 1:4eE � 0:6bE þ 1:4eE

ð29Þ
The energy barriers for the reactions in Eqs. (27) and

(28) are:

Fig. 6. Illustration of twinning elements g1, g2, K1 and K2.

816 Y.T. Zhu et al. / Acta Materialia 59 (2011) 812–821



DEEq27;28 �
2Ga2ð1� 3m=4Þ

486pð1� mÞ ln

ffiffiffi
2
p

d
a
þ 0:2eE � 0:1bE þ 0:2eE

ð30Þ
Therefore, the energy barriers for dislocation reactions

in Eqs. (26)–(28) are very low, which makes it easier for
the 90� partial Da to be transmitted across the twin bound-
ary to emit another 90� partial in the twin. However, it is
also noted that the reaction products in these equations
include dislocations with Burgers vectors that are a fraction
of that of a partial, which may make the energy higher than
described in Eqs. (29) and (30), since they do not corre-
spond to stable or metastable atomic positions.

5. Reaction of a perfect screw dislocation at the twin

boundary

If we assume that a perfect screw dislocation BC glides
on the BCD plane toward the twin boundary (see Fig. 4)
it could be dissociated into two 30� partials with a stacking
fault in between, i.e.

BC! Baþ aC ð31Þ
when this dissociated BC reaches the twin boundary it
could constrict to again form a perfect dislocation. Since
BC is parallel to the dislocation line, it can either cross-slip
into the ABC plane on the twin boundary or onto the
BCD0 plane in the twin, depending on the orientation of
the applied stress. Therefore, a screw dislocation can easily
cross-slip on the twin boundary or be transmitted across
the twin boundary. The interaction of a screw dislocation
with a coherent twin boundary has been observed by
MD simulation [34].

6. Reaction of a perfect 60� dislocation at the twin boundary

If we assume that a perfect 60� dislocation BD glides on
the BCD plane towards the twin boundary (see Fig. 4) it
could be dissociated into a 30� partial Ba and a 90� partial
aD with a stacking fault between them, i.e. BD ? Ba + -
aD. These partials (Ba and aD) with a stacking fault rib-
bon can glide together under an applied stress towards
the twin boundary. Since the perfect 60� dislocation cannot
easily cross-slip or be transmitted across the twin bound-
ary, there are several plausible scenarios that could occur,
which are described below.

6.1. Perfect dislocation BD constricts before reaction

We begin by describing the scenario where the partials
are constricted to form the perfect dislocation BD before
the dislocation reacts at the twin boundary. Such a scenario
can happen more easily when the stacking fault energy is
relatively high and the distance between the leading and
trailing partials is small. This has been observed experimen-
tally [32] and by MD simulations [33,35,50]. It can be seen
from the double Thompson tetrahedron (Fig. 4) that BD is

at a 60� angle to the dislocation line BC. The dislocation
reaction for BD to cross-slip onto the ABC plane is:

BD! BCþ CD ð32Þ
The energy barrier for such a reaction is:

DEBD!BCþCD
Eq32 � Ga2

8p
ln

ffiffiffi
2
p

d
a
þ 7:2eE � 6bE þ 7:2eE ð33Þ

This energy barrier is so high that such a cross-slip is
almost impossible.

Another possible dislocation reaction is for BD to be
transmitted across the twin boundary to emit a perfect dis-
location in the twin. The following analysis yields possible
dislocation reactions. First, BD can dissociate according to:

BD! Bdþ dD ð34Þ
where dD is equivalent to D0d, which can further react to
emit perfect dislocations in the twin according to:

dD ¼ D0d! D0Bþ Bd ð35Þ
dD ¼ D0d! D0Aþ Ad ð36Þ
dD ¼ D0d! D0Cþ Cd ð37Þ

Substituting Eqs. (35)–(37) into Eq. (34), and also con-
sidering Bd + Ad = dC and Bd + Cd = dA, we have:

BD! 2BdþD0B ð38Þ
BD! dCþD0A ð39Þ
BD! dAþD0C ð40Þ

The energy barriers for the dislocation reactions in Eqs.
(38)–(40) can be described by:

DEBD!2BdþD0B
Eq38 � Ga2ð1� 3m=4Þ

12pð1� mÞ ln

ffiffiffi
2
p

d
a
þ 7:5eE

� 4:5bE þ 7:5eE ð41Þ

DEBD!dCþD0A
Eq39 � Ga2

24pð1� mÞ ln

ffiffiffi
2
p

d
a
þ 3:9eE

� 3:0bE þ 3:9eE ð42Þ

DEBD!dAþD0C
Eq40 � Ga2

24pð1� mÞ ln

ffiffiffi
2
p

d
a
þ 3:9eE

� 3:9bE þ 3:9eE ð43Þ

Therefore, the dislocation reactions in Eqs. (39) and (40)
have smaller energy barriers. In these two reactions one par-
tial will glide on the twin plane, which will grow or shrink the
twin by one atomic plane and leave behind a step on the twin
boundary depending on the gliding direction. At the same
time a perfect 60� dislocation is emitted in the twin, which
will also produce a step on the twin boundary. In compari-
son, the dislocation reaction in Eq. (38) will release two par-
tials on the ABC plane, which may grow or shrink the twin by
two atomic planes if they glide on two slip planes.

6.2. 30� leading partial Ba reacts first at the twin boundary

If we assume that the 60� dislocation BD glides on the
BCD plane toward the twin boundary it can be dissociated
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as BD ? Ba + aD, with the 30� partial Ba as the leading
partial. The leading partial Ba could either cross-slip onto
the twin boundary plane or be transmitted across the twin
boundary. We will discuss these two cases below.

6.2.1. Leading 30� partial Ba cross-slip onto the twin
boundary plane

When the stacking fault energy is relatively low and
under an appropriate applied stress Ba can cross-slip onto
the ABC twin boundary plane to emit a partial Bd follow-
ing the dislocation reaction described in Eq. (1), leaving
behind a stair-rod dislocation da and the 90� partial aD,
still on the BCD plane, as shown in Fig. 7a. Such a dislo-
cation structure has been observed both experimentally
[3,51] and by MD simulation [9,33,37], and it has been
assumed to be very effective in blocking other dislocations
and, consequently, causing strain hardening [9].

As shown in Fig. 7a, under a high applied stress the
trailing partial aD may be driven to the twin boundary
to react with the stair-rod dislocation da:

daþ aD! dD ð44Þ
The energy barrier for this reaction is:

DEdaþaD!dD
Eq44 � � Ga2

36pð1� mÞ ln

ffiffiffi
2
p

d
a
þ 0:3eE

� �2bE þ 0:3eE ð45Þ

Therefore, the dislocation reaction in Eq. (44) is energet-
ically favorable.

From the double Thompson tetrahedron dD is equiva-
lent to D0d. The latter can dissociate as:

D0d! D0a0 þ a0d ð46Þ
where D0a0 can slip away on the BCD0 plane in the twin.
This scenario is schematically illustrated in Fig. 7b. The en-
ergy barrier for this reaction is:

DED0d!D0a0þa0d
Eq46 � Ga2

36pð1� mÞ ln

ffiffiffi
2
p

d
a
� 0:3eE

� 2bE � 0:3eE ð47Þ

This energy barrier is reasonably low for it to occur dur-
ing real deformation.

Another scenario is for the stair-rod dislocation da in
Fig. 7a to further dissociate into two partial dislocations

according to Eq. (2), da ? dB + Ba, where the partial dB

glides on the twin boundary in the opposite direction to
Bd to reduce the twin thickness by one atomic plane, as
illustrated in Fig. 7c. Such a process can be repeated to
reduce the twin, as described in Section 3.1. The energy
barrier for such a reaction is about 3.5bE + 5.5eE, making
it more difficult than the reaction in Eq. (46). The cutting
of a stacking fault by a dislocation has been observed by
MD simulation [36]. The de-twinning process is similar to
cutting of the stacking fault, suggesting that such a sce-
nario could happen under an appropriate applied stress.

6.2.2. Leading 30� partial Ba transmits across the twin

boundary
As discussed in Section 3.2 (see Eq. (11) and Fig. 5), the

30� partial Ba may be transmited across the twin bound-
ary, leaving behind a large stair-rod dislocation aa0. If
the trailing partial aD remains on the BCD plane it will
have a unique dislocation configuration where one stacking
fault links aa0 with partial Ba0, while another stacking fault
links aa0 with trailing partial aD, as shown in Fig. 8a. The
trailing partial aD can also cross-slip onto the twin bound-
ary plane, becoming a partial dA that slips to the left to
increase the twin by one atomic plane (as described in Sec-
tion 4.1), forming a dislocation configuration, as shown in
Fig. 8b.

The trailing partial aD can also react with the stair-rod
aa0 and be transmitted across the twin boundary consider-
ing aD ? dD + ad and aa0 ? da + a0d:

aDþ aa0 ! dDþ a0d ð48Þ
From the double Thompson tetrahedron (Fig. 4) it can

be seen that dD = D0d = a0d + D0a0. Therefore, Eq. (48)
can be rewritten as:

Daþ aa0 ! 2a0dþD0a0 ð49Þ
The energy barrier for the reaction in Eq. (49) can be

described by:

DEDaþaa0!2a0dþD0a0

Eq49 � Ga2

18pð1� mÞ ln

ffiffiffi
2
p

d
a
¼ 4bE ð50Þ

The dislocation reaction in Eq. (49) can release one par-
tial (D0a0) in the twin, leaving behind a double stair-rod dis-
location (2da0). However, this reaction apparently has a
high energy barrier.

Fig. 7. Reaction of dissociated 60� dislocation BD with a 30� leading partial at the twin boundary. (a) The leading partial cross-slips onto the ABC twin
boundary, leaving behind a stair-rod dislocation and the 90� trailing partial still on the original BCD slip plane. (b) After the trailing partial aD reacts with
the stair-rod dislocation da and transmits across the twin boundary (Eqs. (44) and (46)). (c) The stair-rod dislocation dissociates according to
da ? dB + Ba to reduce the twin by one atomic layer.
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Similarly to Eqs. (36) and (37), dD could also dissociate
according to the two equations: dD = D0d = Db0 + b0d and
dD = D0d = Dc0 + c0d. However, the final energy barrier
for such reactions will be even higher than that of the reac-
tion in Eq. (49). Therefore, these reactions will not be
described in detail here.

6.3. 90� leading partial aD reacts first at the twin boundary

If the 90� leading partial aD is the leading partial it
could either cross-slip onto the twin boundary plane or
transmit across the twin boundary. We will discuss these
two cases below.

6.3.1. Leading 90�partial aD cross-slips onto the twin

boundary plane

The leading partial aD can cross-slip to form dA, which
slips on the twin boundary plane ABC as described in Sec-
tion 4.1. The trailing partial Ba can also cross-slip onto the
twin boundary to form Bd on the ABC plane, following the
procedure described in Section 3.1, leaving behind a stair-
rod dislocation da. Bd and dA can glide together on the
twin boundary with a stacking fault between them.

On the other hand, the trailing 30� partial Ba can also be
transmited across the twin boundary to emit a partial Ba0

in the twin, as described in Section 3.2 and Fig. 5. This
leaves behind a stair-rod a0a at the twin boundary.

6.3.2. Leading 90� partial aD transmits across the twin

boundary

The leading partial aD can be transmitted across the
twin boundary, which is energetically not too difficult, as
described in Section 4.2. With the help of Eqs. (19)–(21)
in Section 4.2, which describe the dislocation reactions of
Da, the aD reactions for transmission across the twin
boundary can be described by:

aD! adþ a0dþD0a0 ð51Þ
aD! adþ b0dþD0b0 ð52Þ

and

aD! adþ c0dþD0c0 ð53Þ
where the partial dislocations Da0, D0b0 or D0c0 will glide
away in the twin, leaving behind two stair-rod dislocations

at the twin boundary. When the trailing partial Ba reaches
the twin boundary it can react with the stair-rod disloca-
tion in all three cases, i.e.

Baþ ad! Bd ð54Þ
This reaction is energetically favorable with an energy

reduction of �bE � 2:0eE. The Bd can glide on the ABC
plane, which either increases or reduces the twin thickness
by one atomic plane, depending on the slip direction. The
slip direction is determined by the orientation of the
applied shear stress.

The trailing partial Ba can also react with stair-rod dis-
locations (as shown in Eqs. (51)–(53)) at the twin boundary
to release a Shockley partial dislocation in the twin:

Baþ adþ a0d! Ba0 þ 2a0d ð55Þ
Baþ adþ b0d! Ba0 þ a0dþ b0d ð56Þ

and

Baþ adþ c0d! Ba0 þ a0dþ c0d ð57Þ
At first sight the energy barrier should be 0 for the reac-

tions in Eqs. (55)–(57) because the number of partial dislo-
cations and stair-rod dislocations do not change. However,
as described in Eqs. (23)–(25), the reacting stair-rod dislo-
cation pairs on the left can combine to form a dislocation
with lower energy, while the stair-rod dislocation pairs on
the right form a dislocation with higher energy when they
combine together. These energy differences can be regarded
as the energy barrier, which are described by:

DEEq55 �
23Ga2

486ð1� mÞ ln

ffiffiffi
2
p

d
a
þ 2:7eE � 3:4bE þ 2:7eE ð58Þ

DEEq56;Eq57 � 2:8bE þ 3:7eE ð59Þ

Therefore, the energy barrier for the trailing 30� partial
to be transmitted across the twin boundary is very high.

7. Discussion

Plausible dislocation reactions at the twin boundaries
and the energy barriers associated with the reactions are
listed in Table 1. It should be noted that the energy barrier
is not the only factor that determines a dislocation reac-
tion. Other factors that may play a role in the dislocation
reaction include the orientation and magnitude of the
applied stress, as well as the stacking fault energy of the
material. If the grains are nearly randomly oriented with-
out much texture it can be assumed that the orientation
of the applied stress does not affect the global probability
of which types of dislocation reaction occur.

Stacking fault energy should play a significant role in
determining which types of dislocation reaction predomi-
nantly occur. Specifically, if the stacking fault energy is
relatively high it will be difficult for partial dislocations
to nucleate and slip, which leads to fewer interactions

Fig. 8. (a) Dislocation configuration after the leading 30� partial Ba
transmits across the twin boundary and the trailing 90� partial aD remains
on the BCD plane. (b) After the trailing partial aD cross-slips into the
ABC plane to grow the twin by one atomic plane.

Y.T. Zhu et al. / Acta Materialia 59 (2011) 812–821 819



between individual partials and twin boundaries. In addi-
tion, a higher stacking fault energy makes it easier for a
dissociated perfect dislocation to constrict at the twin
boundary before the leading partial reacts at the twin
boundary. This is especially significant for perfect screw
dislocations, which, once constricted, can cross-slip into
the twin boundary plane or be transmitted across the twin
boundary to glide on a slip plane in the twin, without any
dislocation reaction.

If the stacking fault energy is very low partial disloca-
tions can be emitted in large numbers from grain bound-
aries and other sources [52,53]. These partials can cross-
slip into the twin boundaries with small energy barriers
(see Table 1), which generate steps on the twin bound-
aries. It can also be seen from Table 1 that the energy
barriers for 90� partials to be transmitted across twin
boundaries are much lower than the energy barrier for
30� partials to be transmitted across a twin boundary.
In addition, a low stacking fault energy makes it difficult
for a dissociated perfect dislocation to constrict. This
could produce a scenario in which the leading partial
cross-slipped into the twin boundary plane or was trans-
mitted across the twin boundary, while the trailing partial
remains on the original slip plane in the matrix. Such a
dislocation structure is believed to be effective in improv-
ing the work hardening rate [9].

8. Summary

In this paper we have systematically described the plau-
sible dislocation reactions at twin boundaries. Such reac-
tions and subsequent dislocation slips determine how the
twins affect the deformation behavior of nanocrystalline
fcc metals. Plausible dislocation reactions and the energy
barriers associated with the reactions are listed in Table
1. It should be noted that the equations used to calculate
the dislocation elastic energies are based on isotropic elas-
ticity. Therefore, the energy barriers listed in Table 1 are
isotropic energy barriers. The energy barrier determines
the feasibility of a dislocation reaction. A lower energy bar-
rier indicates that the reaction is statistically more likely to
occur. However, other factors, including the orientation
and magnitude of the applied stress and the stacking fault
energy also play important roles. It should be noted that
most of the dislocation–twin reactions described in this
paper may not occur in coarse grained fcc metals and alloys
because of their requirement of high applied stresses to
overcome the energy barriers.
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Table 1
Summary of dislocation reactions at twin boundaries and their isotropic energy barriers. TB = twin boundary, which is the ABC plane.

Reaction description Equation Eq.# Isotropic energy barrier

30� Partial, Ba

Cross-slip onto the TB Ba! Bdþ da 1 bE þ 2:0eE
Stair-rod dislocation dissociation da! dBþ Ba 2 3:5bE þ 5:5eE
Transmit across the TB Ba! Ba0 þ a0a 11 2:7bE þ 4:1eE

90� Partial, Da
Cross-slip onto the TB Da! Ad 0
Transmit across the TB Da! daþ da0 þ a0D0 19 2:0bE þ 4:0eE

Da! daþ db0 þ b0D0 20 2:0bE þ 4:0eE
Da! daþ dc0 þ c0D0 21 2:0bE þ 4:0eE
Da! 4=9Adþ a0D0 26 0:6bE þ 1:4eE
Da! 2=9dBCþ b0D0 27 0:1bE þ 0:2eE
Da! 2=9dþ c0D0 28 0:1bE þ 0:2eE

Cross-slip of perfect screw dislocation, BC

No dislocation reaction needed 0

Perfect 60� dislocation

Cross-slip onto TB BD! BCþ CD 32 6:0bE þ 7:2eE
Transmit across the TB BD! 2BdþD0B 38 4:5bE þ 7:5eE

BD! dCþD0A 39 3:0bE þ 3:9eE
BD! dAþD0C 40 3:0bE þ 3:9eE

30� Leading partial cross-slip onto TB and trailing
90� partial transmit across TB

D0d! D0a0 þ a0d 46 2:0bE � 0:3eE

30� Leading partial transmit across TB first and the
90� trailing partial transmit cross TB second

Daþ aa0 ! 2a0dþD0a0; 49 4:0bE

90� Leading partial and 30� trailing partial
transmit across TB sequentially

Baþ adþ a0d! Ba0 þ 2a0d 55 3:4bE þ 2:7eE

Baþ adþ b0d! Ba0 þ a0dþ b0d 56 2:8bE þ 3:7eE
Baþ adþ c0d! Ba0 þ a0dþ c0d 57 2:8bE þ 3:7eE

�bE ¼ Ga2

72pð1�mÞ ln
ffiffi
2
p

d
a ; eE ¼ Ga2

72pð1�mÞ.
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