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M A J O R A R T I C L E

Genetically Attenuated Plasmodium berghei
Liver Stages Induce Sterile Protracted
Protection That Is Mediated by Major
Histocompatibility Complex Class I–Dependent
Interferon-g–Producing CD8+ T Cells

Ousman Jobe,1 Joanne Lumsden,1 Ann-Kristin Mueller,4 Jackie Williams,2 Hilda Silva-Rivera,3 Stefan H. I. Kappe,3

Robert J. Schwenk,1 Kai Matuschewski,4 and Urszula Krzych1

Divisions of 1Malaria Vaccine Development and 2Entomology, Walter Reed Army Institute of Research, Silver Spring, Maryland; 3Seattle
Biomedical Research Institute, Seattle, Washington; 4Department of Parasitology, Heidelberg University School of Medicine, Heidelberg, Germany

(See the article by Tarun et al., on pages 608–16.)

At present, radiation-attenuated plasmodia sporozoites (g-spz) is the only vaccine that induces sterile and
lasting protection in malaria-naive humans and laboratory rodents. However, g-spz are not without risks. For
example, the heterogeneity of the g-spz could explain occasional breakthrough infections. To avoid this pos-
sibility, we constructed a double-knockout P. berghei parasite by removing 2 genes, UIS3 and UIS4, that are
up-regulated in infective spz. We evaluated the double-knockout Pbuis3(�)/4(�) parasites for protective efficacy
and the contribution of CD8+ T cells to protection. Pbuis3(�)/4(�) spz induced sterile and protracted protection
in C57BL/6 mice. Protection was linked to CD8+ T cells, given that mice deficient in b2m were not protected.
Pbuis3(�)/4(�) spz–immune CD8+ T cells consisted of effector/memory phenotypes and produced interferon-
g. On the basis of these observations, we propose that the development of genetically attenuated P. falciparum
parasites is warranted for tests in clinical trials as a pre-erythrocytic stage vaccine candidate.

Malaria claims millions of lives annually [1], and a

malaria vaccine is urgently needed [2]. Although pre-

erythrocytic stage subunit vaccines are promising, it is
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unclear whether they will engage the required com-

ponents of the innate and adaptive immune responses

to confer long-term protection. Following the report

[3] that immunization with x-irradiated Plasmodium

gallinaceum sporozoites (spz) confers protective im-

munity, the use of radiation-attenuated P. falciparum

spz (Pf g-spz)—nonreplicating, live parasites—as an

effective vaccine has been demonstrated in humans [4].

At present, Pf g-spz are the only vaccine inducing

lasting and sterile protection in malaria-naive subjects

of diverse HLA backgrounds [5]. The use of radiation

for spz attenuation is, however, not without risk, be-

cause it yields heterogeneously attenuated spz. This pro-

cess is also radiation dose sensitive [6], and underir-

radiated spz remain infectious, whereas overirradiated

spz are not sufficiently immunogenic to prevent infec-

tion [6, 7]. These problems prompted a search for other

forms of attenuation that would render the parasite a

more reliable vaccine.
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Recently, we described the development of 2 genetically at-

tenuated P. berghei parasites, each with a targeted disruption

of a single but different gene up-regulated in infective spz and

thus designated UIS3 [8] and UIS4 [9]. Both genes are essential

for the development of liver-stage parasites. Although the pro-

tein encoded by the UIS4 gene localizes to the parasitophorous

vacuole (PV) membrane [9], UIS3 interacts with liver–fatty

acid–binding protein within hepatocytes [10]. Immunizations

of C57BL/6 mice with either P. berghei UIS3 (Pbuis3[�]) or

UIS4 (Pbuis4[�]) mutants conferred protection against wild-

type (WT) homologous challenge [8, 9].

A single-gene knockout parasite might not be suitable as a

vaccine for humans, because it could give rise to breakthrough

infections. To safeguard against this possibility, we developed

a double-knockout parasite, Pbuis3(�)/4(�) parasite in which

both genes, UIS3 and UIS4, were deleted (K.M., data not

shown). The question remained, however, whether the double-

knockout parasite is sufficiently immunogenic to induce pro-

tection. The mechanism of induction and maintenance of pro-

tection by the genetically attenuated plasmodia is unexplored,

although it likely stems from the inability of arrested early liver-

stage parasites to develop into mature liver-stage schizonts [8,

9]. We and others [11, 12] have shown that treatment with

primaquine, a drug that disrupts liver-stage parasites and,

hence, prevents the expression of protein antigens, results in

the loss of g-spz–induced long-term protection in rodents and

a shorter time to reinfection in humans [13]. It is believed,

therefore, that proteins from the arrested liver-stage parasites

provide the key antigens required for the induction of effector

CD8+ T cells and, possibly, for the maintenance of protection

by memory CD8+ T cells [14].

The evidence that CD8+ T cells are the sine qua non effectors

against liver-stage infection comes from the observations that

adoptively transferred g-spz–immune CD8+ T cells confer pro-

tection [15] and that g-spz do not protect mice deficient in

CD8+ T cells, either as a result of in vivo depletion of these

cells [16] or b2m [17] or MHC class I (KbDb) disruption [14].

In the Pfg-spz model, both CD8+ cytotoxic T lymphocyte [18]

and interferon (IFN)–g responses are critical for protection

against liver-stage parasites, and most of the current focus has

shifted toward cytokine-producing CD8+ T cells. We have dem-

onstrated that Pbg-spz–induced long-lasting, protective im-

munity is major histocompatibility complex (MHC) class I

dependent [17] and is accompanied by the presence of CD8+

effector memory (TEM) and central memory (TCM) cells in the

liver [12]. Whereas CD8+ TEM cells produce IFN-g in response

to infectious challenge, CD8+ TCM cells undergo homeostatic

proliferation (U.K., personal observations) and thereby form

the reservoir of memory T cells [14].

In the present study, we tested the protective efficacy of

Pbuis3(�)/4(�) spz against P. berghei spz challenge. We also

determined whether protection induced by Pbuis3(�)/4(�) spz

involves MHC class I molecules and CD8+ T cells. The results

demonstrate, to our knowledge for the first time, that, similar

to Pbg-spz, Pbuis3(�)/4(�) spz induced intrahepatic CD8+ TEM

and TCM cells and that Pbuis3(�)/4(�) spz induced IFN-g–

producing CD8+ T cells that were recalled even after rechallenge

at 6 months. This and other studies [8, 9, 19] showing that

genetically attenuated plasmodia spz are efficient at inducing

and maintaining protective immunity support our efforts to

develop genetically attenuated P. falciparum spz as a pre–eryth-

rocytic-stage vaccine for human use.

MATERIALS AND METHODS

Mice. Female C57BL/6 and b2m
�/� (6–8 weeks old) were pur-

chased from Jackson Laboratory and were housed at Walter

Reed Army Institute of Research (WRAIR) and Seattle Bio-

medical Research Institute animal facilities and handled ac-

cording to institutional guidelines. All procedures were re-

viewed and approved by the Animal Care and Use Committees

of both institutes and were performed in facilities accredited

by the Association for Assessment and Accreditation of Lab-

oratory Animal Care International.

Generation and propagation of spz. We generated a

Pbuis3(�)/4(�) double-knockout strain by targeting the UIS4

locus in the uis3(�) mutant parasite line [8] with a second

selectable marker (human dihydrofolate reductase). Details of

the double gene disruption will be published elsewhere (K.M.,

data not shown). The phenotypic analysis of the Pbuis3(�)/

4(�) parasite revealed no impairment of blood-stage devel-

opment, sporogeny, salivary gland invasion, or hepatocyte in-

vasion. Liver-stage development was completely arrested, as

shown elsewhere [8, 9].

For P. berghei WT or Pbuis3(�)/4(�) spz production,

Anopheles stephensi mosquitoes were fed on gametocyte-in-

fected mice. Then, spz were dissected [12] from the salivary

glands of mosquitoes 16–21 days after the blood meal and were

used either immediately or after attenuation with gamma ra-

diation (15,000 rad; Cesium-137 source Mark 1 series or Co-

balt-60 Model 109; JL Shepard).

Immunizations. Mice were primed (iv) with 75,000 of ei-

ther Pbg-spz [12] or Pbuis3(�)/4(�) spz followed by 2 boost

immunizations of 20,000 homologous spz 1 week apart and

were challenged with 10,000 infectious spz 1 week later. In some

experiments, mice were rechallenged 6 months after challenge.

In addition, various regimens of immunization and challenge

were performed with Pbuis3(�)/4(�) spz. These included 3

immunizations of 10,000 Pbuis3(�)/4(�) spz given 1 week

apart followed by a challenge of 10,000 infectious spz on day

7 or 118 after the last immunization.
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Table 1. Protection of C57BL/6 Pbuis3(�)/4(�) sporozoite (spz)–immunized
mice against challenge with wild-type (WT) Plasmodium berghei spz.

Priminga Boostsa
Challenge dose

(time point)b
No. protected/
no. challengedc

75,000 20,000 (7)/20,000 (14) 10,000 (7 and 180) 27/27 (7); 6/6 (180)
10,000 10,000 (14)/10,000 (28) 10,000 (7) 14/14
10,000 10,000 (14)/10,000 (28) 10,000 (118) 14/14

NOTE. An age-matched naive control group was included in each experiment, and these
mice all became blood-stage patent at day 5–7 after challenge (data not shown).

a Data are no. of spz used for priming and the first and second boost immunizations (day
of boost).

b Mice were challenged with infectious P. berghei WT spz. Time points in parentheses
indicate the day of challenge after the final boost.

c Data are results from representative experiments; however, 1100 mice were immunized
with different doses of Pbuis3(�)/4(�) spz and remained protected against challenge with
infectious P. berghei spz.

Thin blood smears were prepared from individual mice start-

ing on day 2 after challenge, and parasitemia was determined

microscopically using Giemsa stain. Mice were considered pro-

tected if parasites were not detected in 40 fields by day 14 after

challenge.

Cell preparation. At various time points after immuniza-

tion, mice were euthanized by CO2 inhalation. Livers were per-

fused with 10 mL of PBS, removed, and pressed through a 70-

mm nylon cell strainer (BD Labware), and the cell suspension

was processed as described elsewhere [12]. Briefly, cells were

resuspended in PBS that contained 35% Percoll (Amersham

Pharmacia Biotech) and centrifuged at 800 g for 20 min. Eryth-

rocytes were lysed with lysis buffer (Sigma), and the remaining

hepatic mononuclear cells (HMCs) were resuspended in com-

plete RPMI 1640 medium. Spleens were removed aseptically,

and single-cell suspensions were prepared as described above.

For isolation of peripheral blood mononuclear cells (PBMCs),

venous blood was collected into microtone tubes that contained

K2 EDTA (BD Biosciences). Erythrocytes were lysed, and the

remaining PBMCs were washed in PBS and resuspended in

complete RPMI 1640 medium.

Flow cytometry. Four-color staining of HMCs, spleen cells,

or PBMCs was performed using a combination of the follow-

ing monoclonal antibodies (MAbs): fluorescein isothiocyanate

(FITC)–conjugated anti-CD45RB (16A), phycoerythrin (PE)–

conjugated anti-CD44 (IM7), peridinin-chlorophyll-protein–

conjugated anti-CD8a (Ly-2), and allophycocyanin (APC)–

conjugated anti-CD44 (IM7) (BD Biosciences). Briefly, 2–10

� 105 cells were resuspended in cold assay buffer (PBS con-

taining 1% bovine serum albumin [BSA; Sigma] and 0.01%

sodium azide) and incubated with anti-FcR 24G2 (BD Biosci-

ences) and 0.5 mg of the relevant MAb for 30 min at 4�C. Cells

were washed and resuspended in cold assay buffer. Flow cy-

tometry was performed on a FACSCalibur (BD Biosciences),

and data analysis was performed using CellQuest (version 3.3;

BD Biosciences) or FlowJo software (version 8.1.0; Tree Star).

IFN-g secretion assay. IFN-g–producing CD8+ T cells were

detected as described elsewhere [12] using a secretion assay in

accordance with the manufacturer’s instructions (Miltenyi Bio-

tec). Briefly, cells were resuspended in 90 mL cold assay61 � 10

buffer (PBS with 2 mmol/L EDTA and 0.5% BSA) that con-

tained 10 mL of mouse IFN-g capture reagent and incubated

on ice for 5 min. Cells were resuspended in 10 mL of RPMI

and incubated for 45 min at 37�C in 5% CO2 under continuous

shaking. After washing, the cells were resuspended in 90 mL of

cold buffer that contained 10 mL of PE-labeled IFN-g detection

reagent, 1 mL of anti-CD3 FITC, and 1 mL of anti-CD8 APC

and were incubated on ice for 10 min. After washing, the cells

were resuspended in 500 mL of cold buffer. Then, 10 mL of 7-

amino–actomycin D (25 mg/mL) was added to the cell sus-

pension, and the sample was immediately analyzed by flow

cytometry.

Antibody determinations. Serum from Pbuis3(�)/4(�)

spz-immune WT and b2m
�/� mice was tested for circumspo-

rozoite (CS) protein–specific antibodies by ELISA. Briefly, 2-

fold serial dilutions of serum were dispensed into duplicate

wells that had been previously coated with P. berghei glutathione

S-transferase–CS protein (provided by Dr. E. Angov, WRAIR).

The plates were incubated for 1 h at 22�C. After washes, 100

mL of anti-mouse IgG alkaline phosphatase conjugate (1 mg/

mL) was added and incubated for 1 h at 22�C. After washes,

100 mL of alkaline phosphatase substrate was added and in-

cubated for 1 h at 22�C. The reaction was stopped with 10%

SDS/H2O, and the plates were read on an ELISA plate reader

(SPECTRAmax M2; Molecular Devices) using SoftmaxPro soft-

ware (version 4.7.1; Molecular Devices) at 450 nm.

Statistical analysis. Data are presented as the means �

SDs, and the differences among groups were analyzed by the   
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Figure 1. Induction by radiation-attenuated Plasmodium berghei spo-
rozoites (Pbg-spz) and Pbuis3(�)/4(�) spz of similar populations of phe-
notypically distinct subsets of CD8+ T cells. A, Hepatic mononuclear cells
isolated from livers of 3 individual naive or 3 immune mice 6 days after
the indicated immunization and analyzed by flow cytometry. Lymphocytes
labeled with anti-CD8 monoclonal antibodies (MAbs) were gated on a
forward/side-scatter plot, and gates were applied to identify CD8+ T cells.
CD8+ T cell subsets were revealed using anti-CD45RB and anti-CD44
MAbs, and percentages of subsets are shown as a dot plot from a
representative mouse. The experiments were performed 3 times with 3
mice/group, and cells from individual mice were assayed. Data in the
text are the mean � SD of responses observed in 9 individual mice.

Mann-Whitney U test using Graphpad Prism software (version

4.0c). was considered to be statistically significant.P ! .05

RESULTS AND DISCUSSION

Sterile protection after immunization with Pbuis3(5)/4(5)

spz. P. berghei parasites deficient in a single gene induce pro-

tection in mice [8, 9, 19]. However, single-knockout parasites

may not be sufficiently attenuated and may compensate for loss

of a single gene, resulting in an occasional breakthrough in-

fections [9, 19]. To preclude this possibility, we constructed a

novel double-knockout Pbuis3(�)/4(�) strain and tested its

ability to confer sterile protection against homologous WT spz

challenge in C57BL/6 mice. Mice were immunized with 75,000,

20,000, and 20,000 Pbg-spz or Pbuis3(�)/4(�) spz 1 week

apart and challenged with 10,000 spz after the last immuni-

zation. In some cases, mice were rechallenged 6 months after

the primary challenge. Whereas naive mice became parasitemic

within 5–7 days after challenge, both Pbg-spz- and Pbuis3(�)/

4(�) spz–immune mice were fully protected against primary

and secondary (day 180) challenges (table 1). A further inves-

tigation showed that 3 immunizations with 10,000 Pbuis3(�)/

4�) spz also conferred full protection at challenge 118 days

later (table 1).

These data show for the first time that multiple immuni-

zations with double-knockout Pbuis3(�)/4(�) spz confer ster-

ile and long-lasting protection against P. berghei liver-stage

infection. Collectively, 1100 mice remained solidly (100%) pro-

tected. Experiments are in progress to assess the duration of

protective immunity beyond the initial 6-month period.

Hepatic CD8+ TEM cells induced by Pbuis3(5)/4(5) spz.

Pbg-spz enter hepatocytes, where they undergo aborted de-

velopment into liver-stage parasites that induce sterile immu-

nity characterized by the presence of activated/memory hepatic

CD8+ T cells. Because the knockout parasites also colonize

hepatocytes [8, 9], we sought to determine whether Pbuis3(�)/

4(�) spz–induced protective immunity against P. berghei liver-

stage infection is also associated with the presence of activated/

memory hepatic CD8+ T cells.

Hepatic and splenic CD8+ T cells isolated from Pbg-spz– and

Pbuis3(�)/4(�) spz–immune mice were analyzed for the ex-

pression of the activation-related surface markers, CD44 and

CD45RB, at different time points after priming and boost im-

munizations. Consistent with our previous observations with

Pbg-spz [12], Pbuis3(�)/4(�) spz–induced hepatic CD8+ T

cells that consisted of 2 distinct populations: CD8+ TCM cells

(CD44hiCD45RBhi) and CD8+ TEM cells (CD44hiCD45RBlo) (fig-

ure 1). Naive liver CD8+ T cells contained a negligible per-

centage and number of CD8+ TEM cells, but ∼30% already ex-

hibited a TCM cell phenotype. After priming, the Pbuis3(�)/

4(�) spz–induced CD8+ TEM cells represented of10% � 2%

the hepatic CD8+ T cells, and after the last boost immunization

they increased to (figure 1), whereas CD8+ TCM cells28% � 5%

concomitantly decreased from after priming to25% � 2%

after boost immunization. The percentage of each17% � 2%

CD8+ T cell subset at each time point examined was remarkably

similar between the Pbg-spz– and Pbuis3(�)/4(�) spz–im-

mune mice (figure 1). As previously reported for Pbg-spz [12,

20], only a small percentage (! 10%) of CD8+ T EM cells was

found in the spleens of Pbuis3(�)/4(�) spz–immune mice

(data not shown), thus confirming the enrichment of CD8+

TEM cells in the liver, a nonlymphoid organ, which is the site

of liver-stage malaria infection.
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Figure 2. CD8+ T effector memory cells maintained after challenge and rechallenge of radiation-attenuated Plasmodium berghei sporozoites (Pbg-
spz) and Pbuis3(�)/4(�) spz–immunized mice. A, Hepatic mononuclear cells isolated from livers of individual mice at the indicated time points after
immunization and challenge and analyzed as described in figure 1. The percentages of CD8+ T cell subsets are shown as a dot plot from a representative
mouse. The experiments were performed 3 times with 3 mice/group, and cells from individual mice were assayed. The data in the text are shown
as the mean � SD of responses observed in 9 individual mice. B, Mononuclear cells isolated from peripheral blood of naive or immune mice 6 days
after the second boost with Pbg-spz or Pbuis3(�)/4(�) spz, and analyzed as described for panel A. Results are from 1 of 3 representative experiments.
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Figure 3. No induction of protective immunity by genetically attenuated Plasmodium berghei in b2m�/� mice. Wild-type (WT; ) and b2m�/�n p 5
mice (n p 19) were immunized with 75,000, 20,000, and 20,000 Pbuis3(�)/4(�) sporozoites (spz) administered 1 week apart. One week after the final
immunization, mice were challenged with 10,000 infectious P. berghei spz. Naive mice (n p 5) were used as infectivity controls. WT mice were
rechallenged with 10,000 infectious P. berghei spz 6 months after the first challenge. Parasitemia was monitored by microscopy of Giemsa-stained
blood smears every other day, starting 2 days after challenge. A, Percentage of mice remaining parasite free at the indicated time points. B, Average
� SE percentage of parasitized red blood cells per mouse. Immunized WT mice are indicated in by squares, immunized b2m�/� mice by triangles,
and naive infectivity controls by diamonds.

Protracted protection induced by Pbuis3(5)/4(5) spz and

associated with the persistence of hepatic CD8+ TEM cells. We

asked whether similar to Pbg-spz–induced immunity [12], the

Pbuis3(�)/4(�) spz–induced hepatic CD8+ TEM cells are main-

tained during protracted protection. In a longitudinal study,

we measured the levels of CD8+ TEM and TCM cells at the in-

dicated time points after the challenge and rechallenge (figure

2A). One week after challenge, the accumulation of CD8+ TEM

cells peaked (∼60%) in both groups of mice, owing to either

recruitment from the CD8+ TCM cells, to influx of extrahepatic

cells into the liver, or to both. Numbers of hepatic CD8+ TEM

cells in both groups decreased after the first week, presumably

due to attrition, as observed during infection [21]. At 8 weeks

after challenge, percentages of CD8+ TEM cells remained at

∼40% in both groups (figure 2A). To examine the recall of

memory responses, mice were rechallenged at 6 months, and

CD8+ T cells were analyzed for subset distribution. In the Pbg-

spz–protected mice, of hepatic CD8+ T cells were25% � 6%

CD8+ TEM cells, whereas, in Pbuis3(�)/4(�) spz–protected

mice, CD8+ TEM cells represented of the total liver42% � 5%

CD8+ T cells. The differences, however, were not statistically

significant.

We also detected ∼20% of circulating CD8+ TEM cells in blood

6 days after spz challenge of both Pbuis3(�)/4(�) spz– and

Pbg-spz–immune mice but not in the blood of naive mice

(figure 2B). These observations demonstrate the feasibility of  
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Figure 4. Similar levels of anti–Plasmodium berghei circumsporozoite
(CS) protein antibodies in b2m�/� and wild-type (WT) mice. b2m�/� (n p
) and WT ( ) mice were immunized with 75,000, 20,000, and 20,0005 n p 5

Pbuis3(�)/4(�) sporozoites administered 1 week apart. Serum samples
were obtained 6 days after tertiary immunization and assayed for anti–P.
berghei CS protein antibodies by ELISA. Serum samples from naive mice
served as negative controls. Black bar, WT mice; white bar, b2m�/� mice

Figure 5. Higher frequency of interferon (IFN)–g–producing CD8+ T cells in the liver of Plasmodium berghei Pbuis3(�)/4(�) sporozoites (spz)–immunized
vs. Pbg-spz–immunized mice. Hepatic mononuclear cells (HMCs) were isolated 6 days after both prime and prime-boost immunizations and at 24, 72, 144,
and 216 h after challenge from livers of Pbg-spz– or Pbuis3(�)/4(�) spz–immunized mice. IFN-g–secreting CD8+ T cells was identified by fluorescent
labeling using an IFN-g secretion assay (see Materials and Methods). The percentage of IFN-g–secreting T cells in the gated CD3+CD8+ T cell populations
was determined by flow cytometry and is indicated in the upper quadrants. Dots plots are representative of 3 mice/group.

using peripheral blood CD8+ T cell subsets as a surrogate in-

dicator of hepatic CD8+ T cells in human subjects participating

in malaria vaccine trials, including those planned with the dou-

ble-knockout P. falciparum spz.

Mediation by CD8+ T cells of protection against liver-stage

infection in Pbuis3(5)/4(5) spz–immunized mice. The rel-

evance of the CD8+ T cells to Pbuis3(�)/4(�)spz–induced pro-

tection is not known; therefore, we investigated their contri-

bution using the CD8+ T cell–deficient b2m
�/� mouse model.

Pbuis3(�)/4(�) spz–immunized WT and b2m
�/� mice were

challenged with 10,000 spz 1 week after the last immunization.

As expected, Pbuis3(�)/4(�) spz–immune WT mice remained

sterilely protected. However, consistent with our observations

with Pbg-spz [17], all of the Pbuis3(�)/4(�) spz–immunized

b2m
�/� mice became parasitemic by day 7 after challenge (figure

3A). In contrast to naive WT mice, which developed parasi-

temia by day 5, the Pbuis3(�)/4(�) spz–immunized b2m
�/�

mice had a slight delay in the onset of parasitemia, and by day

5 only 50% of mice were parasitemic. In addition, although

the level of parasitemia in both groups was 1% at day 5, it

increased in the WT naive mice to 8% on day 7, whereas it

remained at 2% in the b2m
�/� mice (figure 3B).

Although the failure to achieve sterile protection in b2m
�/�

mice likely stems from the absence of surface expression of

MHC class I molecules and, hence, CD8+ T cells, we wanted

to rule out a possible defect in the antibody response as a

contributor to this failure. It has been well established that Pbg-

spz–induced protection is multifactorial [22] and that CD4 T+

helper cells [22] and B cells [23] play a significant role in

mediating protective immunity. P. berghei CS protein–specific

antibody titers of Pbuis3(�)/4(�) spz–immunized b2m
�/� and

WT mice were 24,150 and 27,875, respectively, and these dif-

ferences were not statistically significant (figure 4). We presume

that the delayed onset and lower level of parasitemia seen in

Pbuis3(�)/4(�) spz–immunized b2m
�/� mice were controlled

in part by the CS protein–specific antibodies. This observation

confirms previous findings from the Pbg-spz [24] and Py-spz   
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[25] models that, although essential, antibody responses alone

cannot mediate protection.

Efficient IFN-g production by Pbuis3(5)/4(5) spz–im-

mune CD8+ T cells. The exact mechanism by which CD8+ T

cells confer protection is still not understood, although it is

known that IFN-g can mediate the destruction of liver-stage

infection [16, 26]. We [12] and others [27] have demonstrated

that IFN-g–producing liver CD8+ T cells are linked to both

induction and persistence of protective immunity. To determine

whether Pbuis3(�)/4(�) spz–induced CD8+ T cells functioned

similarly, we analyzed IFN-g–producing CD8+ T cells after

prime-boost immunizations with Pbuis3(�)/4(�) spz and after

infectious challenge. Immunizations with either Pbg-spz or

Pbuis3(�)/4(�) spz induced IFN-g–producing hepatic CD8+

T cells (figure 5). However, priming with Pbuis3(�)/4(�) spz

induced a 4-fold higher response than that induced by Pbg-

spz ( vs. ), and, after boost immunization,4% � 1% 1% � 0.2%

a 2.5-fold increase ( vs. ) was still evident.5% � 1% 2% � 1%

The peak response in both groups occurred at 24 h after chal-

lenge, although the percentage of IFN-g–producing CD8+ T

cells at this time was 1.6-fold higher in the Pbuis3(�)/4(�)

spz– than in the Pbg-spz–immune–challenged mice (11% �

vs. ). The Pbuis3(�)/4(�) spz–immune–chal-2% 7% � 2%

lenged mice continued to exhibit a more robust response than

the Pbg-spz–immune–challenged mice at 72 and 144 h after

challenge with an ∼3-fold higher percentage of IFN-g–pro-

ducing CD8+ T cells at both time points ( vs.9% � 0.5%

and vs. at 72 and 144 h,3% � 0.6% 7% � 0.2% 3% � 0.5%

respectively). The fluorescence data also revealed a higher in-

tensity of IFN-g production by the Pbuis3(�)/4(�) spz–in-

duced CD8+ T cells than in Pbg-spz–immune CD8+ T cells.

Likewise, the attrition or contraction of the IFN-g–producing

CD8+ T cells was lower in Pbuis3(�)/4(�) spz–immune than

in Pbg-spz–immune mice. To determine the recall of memory

responses, mice in both groups were rechallenged at 6 months,

and CD8+ T cells were analyzed for IFNg production. In

Pbuis3(�)/4(�) spz–immune mice, of the hepatic19% � 2%

CD8+ T cells produced IFN-g, whereas, in Pbg-spz–immune

mice, IFN-g–producing CD8+ T cells represented 14% � 6%

of liver CD8+ T cells. The differences, however, were not sta-

tistically significant. IFN-g–producing hepatic CD8+ T cells

were not detected in the Pbuis3(�)/4(�) spz–immune–chal-

lenged b2m
�/� mice (data not shown).

The data presented here show for the first time that genet-

ically attenuated P. berghei spz with double gene deletions in-

duced protective immunity that was long-lived and linked to

MHC class I–dependent, IFN-g–producing hepatic memory

CD8+ T cells. Although both Pbg-spz and Pbuis3(�)/4(�) spz

promoted differentiation of CD8+ T cells into phenotypically

similar TEM and TCM cell subsets, collectively, the data suggest

that Pbuis3(�)/4(�) spz might be superior for the induction

of protection. Although the mechanisms for this improved ef-

ficacy remain to be investigated, a number of scenarios could

be considered. First, the Pbuis3(�)/4(�) spz might be more

immunogenic than Pbg-spz, owing to differences in the state

of the genes between the 2 parasite strains. Genetic attenuation

disrupts specific genes, creating homogeneously arrested par-

asites, whereas attenuation by gamma radiation may damage

genes randomly, leading to the loss of highly antigenic proteins.

In addition, it is possible that genetic arrest is at a stage that

best reflects the repertoire of protective antigens against sub-

sequent transmission. By contrast, only a subpopulation of g-

spz might arrest at this point. Hence, relative to Pbg-spz, the

Pbuis3(�)/4(�) spz could produce a broader spectrum of par-

asite antigens, some with high binding affinities to MHC class

I molecules, which might be reflected in the robust IFN-g

response.

The Pbuis3(�)/4(�) spz–derived proteins might engage an-

tigen processing and presentation pathways more efficiently

than proteins derived from Pbg-spz. It is relevant that the UIS4-

encoded protein is associated with the PV membrane [9] that

surrounds the parasite subsequent to its invasion of hepato-

cytes. Although Pyuis4(�) parasites form a PV membrane

(S.H.I.K., data not shown), it is likely that the PV membrane

has compromised function and may not protect the parasite

from the host’s intracellular proteolytic enzymes; instead, it

might allow for a provision of a broader universe of antigenic

proteins. Both the Pyuis3(�) and Pyuis4(�) parasites disappear

by 40 h after invasion (S.H.I.K., data not shown), which might

be partly explained by the leaky PV membranes surrounding

the Pbuis3(�)/4(�) parasites. In turn, it is also possible that

the leaky membranes might trigger early apoptosis of the in-

vaded hepatocytes, thus leading to efficient cross-presentation

by dendritic cells (DCs), of a wide spectrum of these liver-stage

antigens [19]. Alternatively, some of these antigens may also

be exported by the hepatocyte, possibly in the form of exosomes

and subsequently taken up by DCs for presentation to CD8+

T cells [28]. It should be also noted that long-term retention

of parasite antigens, possibly in the form of antigen-antibody

complexes bound to follicular DCs could account for pro-

tracted recruitment of CD8+ T cells subsequent to the demise/

disappearance of the parasite.

Three doses of 10,000 Pbuis3(�)/4(�) can protect against

an infectious spz challenge given 3 months after the last boost

immunization without an intermittent infectious spz challenge.

In conclusion, these are compelling data in support of the

genetically attenuated plasmodia organisms as a pre-erythro-

cytic vaccine candidate and, thus, the development of geneti-

cally attenuated P. falciparum parasites for the use in phase Ia

trials in humans is fully warranted.  
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