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Accurate measurement of leaf area index (LAI), an important characteristic of plant canopies directly linked to
primary production, is essential for monitoring changes in ecosystem C stocks and other ecosystem level
fluxes. Direct measurement of LAI is labor intensive, impractical at large scales and does not capture seasonal
or annual variations in canopy biomass. The need to monitor canopy related fluxes across landscapes makes
remote sensing an attractive technique for estimating LAI. Many vegetation indices, such as Normalized
Difference Vegetation Index (NDVI), tend to saturate at LAI levels N4 although tropical and temperate forested
ecosystems often exceed that threshold. Using two monospecific shrub thickets as model systems, we
evaluated the potential of a variety of algorithms specifically developed to improve accuracy of LAI estimates
in canopies where LAI exceeds saturation levels for other indices. We also tested the potential of indices
developed to detect variations in canopy chlorophyll to estimate LAI because of the direct relationship
between total canopy chlorophyll content and LAI. Indices were evaluated based on data from direct
(litterfall) and indirect measurements (LAI-2000) of LAI. Relationships between results of direct and indirect
ground-sampling techniques were also evaluated. For these two canopies, the indices that showed the highest
potential to accurately differentiate LAI values N4 were derivative indices based on red-edge spectral
reflectance. Algorithms intended to improve accuracy at high LAI values in agricultural systems were
insensitive when LAI exceeded 4 and offered little or no improvement over NDVI. Furthermore, indirect
ground-sampling techniques often used to evaluate the potential of vegetation indices also saturate when LAI
exceeds 4. Comparisons between hyperspectral vegetation indices and a saturated LAI value from indirect
measurement may overestimate accuracy and sensitivity of some vegetation indices in high LAI communities.
We recommend verification of indirect measurements of LAI with direct destructive sampling or litterfall
collection, particularly in canopies with high LAI.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Leaf area index (LAI) is a key structural characteristic of plant
canopies that directly affects rates of atmospheric gas exchange,
absorption of solar radiation, and interception of meteorological
nutrients (Bonan, 1993; Runyon et al., 1994). Because of a funda-
mental importance to ecosystem processes, accurate estimation of LAI
is necessary for monitoring changes in ecosystem C stocks (Sanchez-
Azofeifa et al., 2009). Collection and analysis of leaf litterfall biomass
and a dry weight/leaf area conversion factor can provide an accurate
and direct physical measurement of LAI (Brantley & Young, 2007;
Gower et al., 1999; Newbold, 1967). While direct measurement of LAI
is most accurate, techniques such as litter collection, or alternatives
such as direct destructive sampling or allometry, that rely on harvest
of leaf biomass are labor intensive and do not reflect seasonal or

interannual variations unless repeated for each period of interest.
Indirect methods of estimating LAI, such as hemispheric photography,
portable integrating radiometry and light attenuation, either lose
sensitivity at high LAI values or require a priori knowledge of canopy
structure to determine an extinction coefficient (Brantley & Young,
2007). At the landscape scale, analysis of aerial and/or satellite
imagery is a practical approach for rapid estimation of LAI across
populations, communities and ecosystems. Remote sensing of
vegetation has the added advantage of providing biophysical
measurements for landscapes with limited access. Perhaps most
importantly, remote-sensing methods are repeatable seasonally and/
or annually with relatively little labor enhancing the ability to
quantify temporal changes in LAI, ANPP (annual net primary
production), biomass and related phenomena.

For thepast twodecades, thenormalizeddifferencevegetation index
(NDVI) has been the standard algorithm used to quantify and map
spatial distribution of green vegetationwith the aim of estimating ANPP
and other landscape-level fluxes. NDVI is based on differences in
reflectance in the red region (due topigmentabsorption)andmaximum
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reflectance in the near-infrared (caused by leaf cellular structure;
Table 1) and is sensitive to canopy greenness. Like indirect methods of
ground-sampling, NDVI loses sensitivity as LAI values increase andNDVI
and related algorithmsoften reach saturation at LAI values of 3–4 (Asner
et al., 2000). Because NDVI saturates easily, derived LAI values are often
static, insensitive to small spatial and temporal variations across
landscapes and are poor indicators of canopy physiology (Grace et al.,
2007; Haboudane et al., 2004; Turner et al., 2004; Wang et al., 2005). A
lack of sensitivity at high LAI values is of little consequence in most arid
and many temperate ecosystems, but can lead to severe underestima-
tion of LAI and related ecological fluxes in highly productive systems.
Tropical, sub-tropical and other systems with high ANPP have the
greatest potential for C sequestration and finding solutions to this
paradox is an ongoing issue in the application of vegetation remote
sensing (Asner et al., 2000; Grace et al., 2007; Sanchez-Azofeifa et al.,
2009; Turner et al., 2004).

Remotely sensed hyperspectral images of tropical forests have
been used effectively to estimate changes in vegetative biophysical
chemistry and understand basic ecological properties (Asner, 2000).
Vegetation indices that incorporate bands in the green and red-edge
region and that are good predictors of LAI include the modified
chlorophyll absorption ratio index (MCARI; Table 1) and the
triangular vegetation index (TVI; Table 1). Similar to NDVI, many
reflectance indices developed for ANPP estimation have been
unsuccessful at fine scale dynamic changes because they also
approach a saturation level asymptotically as LAI increases. These
indices are also sensitive to the effects of chlorophyll absorptions.
Several indices were developed by Haboudane et al. (2004) as
modified versions of MCARI and TVI, and these were expected to be
less sensitive to chlorophyll effects and more responsive to variations
in green LAI. These indices include MCARI1, MCARI2 (which
incorporates a soil adjustment factor) and MTVI2 (modified TVI;
Table 1) and MCARI2 and MTVI2 were demonstrated to accurately
predict LAI in modeled crop canopies (Haboudane et al., 2004).
Although these algorithms were specifically developed for agricul-
tural applications, application to natural ecosystems has potential to
improve estimates of LAI and further aide in providing accurate
estimates of ANPP and C cycling.

An additional group of vegetation indices that show promise in
improving LAI estimation in high LAI canopies are based on changes in
red edge spectral reflectance. The red-edge region is characterized as a
sharp change in reflectance between wavelengths at 690–750 nm.
This area is the boundary between dominance by absorption of red
light and high scattering of radiation in the mesophyll (Curran et al.,
1990; Horler et al., 1983). Although typically used for stress detection,
these algorithms may also be strongly influenced by increases in LAI
due to enhanced cellular scattering of leaves. Examples of these
indices include D730/D706 and R740/R850 (Zarco-Tejada et al., 2002,

2009; Zhang et al., 2008). Other red-edge reflectance and derivative
indices associated with changes in LAI include R761/R757, R750/R710,
D705/D722, Dmax/D705, Dmax/D745 and D715/D705 (Campbell et al., 2007;
Zarco-Tejada et al., 2009; Zhang et al., 2008). A related index, the
chlorophyll index (CI), also uses red-edge wavelengths and is a good
predictor of chlorophyll content in high LAI systems and, given
homogenous chlorophyll values, LAI is inherently linked to total
canopy chlorophyll content as represented in reflectance data
(Gitelson et al., 2005; Zhang et al., 2008).

In addition to the direct influences of LAI on red-edge indices,
there may be a second less direct link between LAI and canopy
reflectance. Slight variations in biomass may also be reflected in
remotely sensed vegetative stress indices because variations in
canopy physiology and biochemistry caused by environmental stress
often affect plant productivity (i.e. plants under stress often display
lower LAI values). For instance, Asner et al. (2004) showed that in
humid tropical forests with high LAI (N5), canopy leaf area was
sensitive to water stress reflectance metrics. In systems with high
environmental gradients and variability of stressors, LAI is likely to be
strongly related to spatial variations in environmental stress and this
covariation between LAI and stress may confound LAI estimation or it
may provide a potential surrogate measure of canopy biomass. As
with red-edge reflectance indices, application of stress-related indices
incorporating pigment reflectance as a predictor of LAI is emerging as
another potential method to improve accuracy of remote sensing in
high LAI canopies.

Application of algorithms developed for ecosystems with high LAI
and/or NPP is not limited to use in tropical or agricultural systems.
Most temperate, mesic systems display LAI values b6, but mesic shrub
thickets may exhibit LAI values as high as 10–12 (Brantley & Young,
2007; Knapp et al., 2008). Expansion of native and exotic shrubs into
historically herbaceous communities has been observed across a
broad range of ecosystems and changes in ecosystem function
resulting from woody encroachment are strongly linked to a
stimulation in ecosystem LAI which affects hydrology, nutrient
cycling, and species diversity (Archer, 1989; Brantley & Young,
2008; Briggs et al., 2005; Knapp et al., 2008; Sturm et al., 2005;
Wessman et al., 2004). Mesic systems exhibit a greater increase in LAI
than arid or semi-arid systems after woody encroachment and LAI in
mesic shrub thickets often surpasses LAI for forest communities in the
same region (Brantley & Young, 2007; Knapp et al., 2008; Lett &
Knapp, 2003). Such large changes in LAI may substantially alter
ecosystem C cycling but great uncertainty exists regarding effects of
woody encroachment on global C sequestration (Brantley & Young,
2010a; Briggs et al., 2005; Houghton, 2003; Jackson et al., 2002).
Remote sensing of mesic shrub canopies may provide important
evidence for effects of woody encroachment in regional and global C
cycles (Grace et al., 2007; Turner et al., 2004), but the limitations of

Table 1
Summary of vegetation indices, algorithms and sources for vegetation indices used to estimate leaf area index in two shrub thickets.

Index description Algorithm Source

Normalized difference vegetation index(NDVI)
R800−R670ð Þ

ðR800 + R670Þ Rouse et al., 1974

Modified chlorophyll absorption ratio index (MCARI) ðR700−R670Þ−0:2ðR700−R550Þ½ � R700
R670

� �
Daughtry et al., 2000

Triangular vegetation index (TVI) 0.5[120(R750−R550)−200(R670−R550)] Broge & Leblanc, 2000

Modified chlorophyll absorption ratio index 1 (MCARI1) 1.2[2.5(R800−R670)−1.3(R800−R550)] Haboudane et al., 2004

Modified chlorophyll absorption ratio index 2 (MCARI2)
1:5 2:5 R800−R670ð Þ−1:3 R800−R550ð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R800 + 1ð Þ2− 6R800−5

ffiffiffiffiffiffiffiffiffi
R670

p� �
−0:5

q Haboudane et al., 2004

Modified triangular vegetation index (MTVI2)
1:5 1:2 R800−R550ð Þ−2:5 R670−R550ð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R800 + 1ð Þ2− 6R800−5

ffiffiffiffiffiffiffiffiffi
R670

p� �
−0:5

q Haboudane et al., 2004

Chlorophyll index
R750

ðR700 + R710Þ−1
Gitelson et al., 2005
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standard vegetation indices are the same as those observed in tropical
systems and new vegetation indices need to be evaluated.

Mesic shrub thickets provide an ideal model system to evaluate
vegetation indices. They are often homogeneous in canopy structure
and species composition and LAI values can range from b1 to N12,
depending on site characteristics and species. The two shrub species
studied here also show little variation in leaf chlorophyll concentra-
tion, an important biochemical parameter that affects reflectance.
Lastly, there is increasing interest in the effects of shrub expansion of
aboveground productivity of ecosystems. Our goal was to evaluate the
potential for a variety of hyperspectral algorithms to accurately
predict LAI for two mesic shrub communities. Our primary objective
was to compare values from a variety of hyperspectral vegetation
indices to direct measurements of LAI (from leaf litterfall) in dense
shrub thickets. A second objective was to examine correlations
between LAI estimates from indirect ground-sampling methods,
which also saturate at high LAI values, and vegetation indices.
Correlations between two indirect methods that saturate at similar
levels could lead to overestimation of the potential of some remote-
sensing products to estimate LAI accurately. Other considerations in
calibrating remote sensing indices with ground observations, includ-
ing spatial resolution, variations in canopy architecture and variability
of leaf chlorophyll concentration are also discussed.

2. Methods

2.1. Study site

Field work was conducted in two shrub thickets in Virginia, USA.
General site information is provided in Table 2. Each site is dominated
(N90% of woody cover) by individuals of a single, large (~5 m canopy
height) shrub species (Fig. 1). The first study site, Hog Island, is part of
the Virginia Coast Reserve, an NSF-funded Long-Term Ecological
Research site owned and managed by The Nature Conservancy. Dense
thickets of Morella cerifera dominate in the mesic swales located
between dune ridges and M. cerifera currently covers ~40% of the
upland area on the island (Young et al., 2007). Formerly known as
Myrica cerifera (Wilbur, 1994) and commonly known as wax myrtle,
M. cerifera is a native, evergreen, nitrogen-fixing shrub common along
the southeastern Atlantic coast. LAI varies widely among sites from ~1
in some older sites to N12 in the youngest thickets (Brantley & Young,
2007). The second site is on Ft. A.P. Hill, Virginia and consists of two
thickets located on either side of a road that are dominated by
Elaeagnus umbellata. Commonly known as Autumn olive, E. umbellata
is an invasive, deciduous, nitrogen-fixing shrub native to Japan, China
and Korea, which was introduced into cultivation in the U.S. in 1830
(Nestleroad et al., 1987). It was often planted to stabilize soils and
provide wildlife cover and is now commonly found along roadsides, in
abandoned agricultural fields and in other disturbed areas throughout
the central and eastern United States (Baer et al., 2006; Benítez-
Malvido & Martínez-Ramos, 2002).

2.2. Leaf area index and canopy chlorophyll content

Forty plastic litter traps, ~0.30 m2 in area and 0.15 m deep, were
placed in M. cerifera shrub thickets in April 2004. Litter was collected
periodically from April 2004 to May 2009 as part of a long-term
project to quantify changes in C cycling on barrier islands after shrub

expansion (Brantley & Young, 2010a). In August 2008, 15 plastic litter
traps were placed in two E. umbellata thickets and litter was collected
after leaf fall in November 2008. Litter was dried at 70 °C for 4–5 days,
separated into leaf, woody and reproductive (i.e. fruits and flower
parts) components, and weighed to the nearest 0.1 g. Leaf litter mass
was converted to LAI using values for specific leaf area (SLA). SLA was
determined for each species using leaf tracings on a paper of known
density (Brantley & Young, 2010b). In 2004, peak LAI values (mid-
August) in M. cerifera thickets were estimated with a Li-Cor LAI-2000
portable integrating radiometer (Li-Cor Biosciences, Lincoln,
Nebraska, USA) above each litter trap and these data were reported
in Brantley and Young (2007). In 2008, peak LAI was estimated for E.
umbellata at each litter trap site with the Li-Cor LAI-2000. At each site
where litter was collected, leaf samples from the upper canopy were
collected from both species (2008 only) for analysis of chlorophyll
content using methods recommended by Šesták (1971). Chlorophyll
was extracted using a 100% acetone solution and samples were
ground, filtered, and analyzed using a Spectronic 21 spectrophotom-
eter. Chlorophyll concentrations were calculated using equations
given by Holm (1954). Results of field observations are summarized in
Table 3.

2.3. Airborne image acquisition

The airborne hyperspectral mission for 2004 was flown using the
Portable Hyperspectral Imager for Low-Light Spectroscopy (PHILLS)
(Davis et al., 2002). Images were post-processed for radiometric
calibration to provide data that is within ±5% of absolute radiance.
Calibrated radiance data were converted to surface reflectance values,
using MODTRAN4 radiative transfer code to correct for atmospheric
absorption and scattering components. Hyperspectral images for
2008 were provided by SpectIR using the ProSpecTIR VIS hyperspec-
tral imaging spectrometer (SpectIR Corp., Reno, NV, USA). Aircraft,
flight and sensor characteristics are described in Table 3. Images were
collected under cloud-free conditions and data were post-processed
to minimize geometric and radiometric (e.g., bi-directional) effects.
For both flights ground reflectance radiometry was used to calibrate
the data based on target endmembers collected in-scene with the ASD
FieldSpec Pro Full Range reflectance radiometer (Analytical Spectral
Devices, Inc., Boulder, CO, USA). This effectively placed the scene into
reflectance units and helped minimize variations due solely to
atmospheric effects. Calibration was performed using the empirical
line calibration method within ENVI (RSI, Inc). Transformation of the
PHILLS data was accomplished using the SpectIR data as a reference to
normalize the bands. Extraction of pixels and subsequent calculation
of indices at specific wavelengths from the 2004 PHILLS data were
normalized to the reference 2008 SpectIR data using a histogram
matching procedure following Jensen (2005):

DNnew = DNt−MEANt = STDtð ÞSTDr + MEANr

where DNnew denotes the new spectral band(s) (PHILLS), DNt denotes
the digital number values for the image to be transformed (PHILLS
band), MEANt denotes the statistical mean of the image to be
transformed (PHILLS band), STDt denotes the standard deviation of
the image to be transformed (PHILLS band), STDr denotes the standard
deviation of the reference image (SpectIR band), and MEANr denotes
the statistical mean of the image to be transformed (SpectIR band).

Table 2
Site descriptions for two shrub thickets in Virginia, USA.

Location Dominant species Latitude Longitude Mean annual temperature (°C) Mean annual precipitation (mm)

Hog Island, Northhampton County, VA Morella cerifera 37.449 N 75.667 W 14.2a 1065a

Fort A.P. Hill, Caroline County, VA Elaeagnus umbellata 38.093 N 77.335 W 13.6a 1167a

a Source: National Climatic Data Center (2004), Asheville, NC.
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Given the close acquisition times, spectral, spatial, radiometric and
ground features for each airborne mission, this effectively normalized
each image set for comparative stress calculations based upon
reflectance signatures.

2.4. Analysis

Representative spectra from a midpoint on Hog Island for the two
flights are shown and the wavelengths used in representative indices
are shown to illustrate fundamental differences in chemical and/or
structural mechanisms that affect reflectance values for those indices
(Fig. 2). Pixels for analysis were selected from each image based on
GPS locations of each litter trap taken with a Trimble GeoXT handheld
GPS (Trimble, Sunnyvale, CA, USA) and corresponding spectra were
extracted. Pixel values for vegetation indices from hyperspectral
imagery were compared to LAI measurements from litterfall and
estimates from the LAI-2000 using Pearson correlation analysis.
Comparisons of hyperspectral indices and ground-sampled LAI
estimated were completed for data from M. cerifera thickets in 2004
and 2008 and for E. umbellata from 2008. Potential of select indices to
accurately predict LAI was also evaluated using simple linear
regression analysis between values from images and ground sampling
data. Results from litterfall and the LAI-2000were also comparedwith
Pearson correlation analysis using data fromM. cerifera in 2004 and E.
umbellata in 2008.

3. Results and discussion

Correlations between NDVI and other indices, such as SAVI and
MCARI and derivations thereof, that have been previously used to
estimate LAI based on canopy reflectance ranged from very poor to
acceptable depending on a number of factors including species, image
spatial resolution and ground-sampling method used for comparison
(Tables 4 and 5). NDVI was a relatively poor predictor of LAI in M.
cerifera canopies across years and methods of ground sampling
(Fig. 3). NDVI was a more effective indicator of LAI in E. umbellata,
especially when 1 m2 pixels were aggregated (Fig. 3). Differences
between the two species in effectiveness of NDVI for predicting LAI
may be due to differences in the range of LAI values observed for each
species or by differences in canopy structure. Saturation of NDVI was
more likely in M. cerifera, where individual litterfall LAI values often
exceeded 10, than in E. umbellata where maximum litterfall LAI was
~4. Relevant differences in canopy structure that may also affect the
potential of NDVI to accurately predict LAI in these species are
discussed in the later part.

Algorithms developed to improve LAI predictions in crop canopies
(MCARI, MCARI1, MCARI2, TVI, and MTVI2) performed poorly in the
two natural systems examined here (Tables 4 and 5). There were no
significant relationships between these indices and ground-sampled
LAI for E. umbellata (Table 5). There were significant relationships for
M. cerifera, however correlation was generally poor and effectiveness
of these indices was inconsistent across years and methods.

Fig. 1. Close-up, stand-level and aerial images (top to bottom) of (A) Elaeagnus umbellata on Fort A.P. Hill, VA and (B)Morella cerifera on Hog Island, VA. Researchers in center photos
are shown for scale (locations of photos are denoted by arrows in aerial images).
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Regression analysis also showed that the potential sensitivity of these
indices (and of NDVI, Fig. 3) to detect small variations in LAI using
predictive modeling was low due to the small slopes of the regression
models relative to potential error (data not shown). Relationships
between some of these indices (specifically MCARI1 and TVI) and M.
cerifera LAI estimates from the LAI-2000 were strongest among this
group (Table 4) but this result might be expected as these indices
were largely derived and tested using modeled reflectance derived
from estimates of LAI based on similar indirect measurements
(Haboudane et al., 2004).

Red-edge and derivative reflectance indices were significantly and
highly related to variations in LAI and these were the best indices to
predict LAI across species, years (M. cerifera only) and methods of
ground sampling (Tables 4 and 5). In addition to the high sensitivity of
these indices to variations in high LAI canopies, many of these indices
also displayed higher variations across the range of LAI values which
would improve the eventual application of such indices for predictive
modeling (Fig. 4). ForM. cerifera, no single algorithmwas consistently
best across years and methods but several indices (CI, D705/D722 and
D730/D706) consistently had correlation coefficients N0.70 when using
either 2004 imagery or pixel aggregates from 2008 (Table 4). For E.

umbellata, R750/R710 was consistently the index best related to LAI for
all comparisons (pixel size and/or method of collection; Table 5).
When considering both species across 2008 only, CI and the two
derivative indices, D705/D722 and D730/D706, were uniformly the most
reliable predictors of LAI (Tables 4 and 5; Fig. 4). Thus, our results
suggest that indices using wavelengths in the red edge region, and
that were originally developed for chlorophyll estimation, were the
most capable of accurately differentiating high LAI values in these
shrub thickets. Although these indices have previously been related to
stress detection, there is no relationship between stress and
chlorophyll concentration in these systems (Naumann et al., 2007,
2008b, 2009; see discussion below). The close correlation between
red-edge indices and LAI may either be related to increased scattering
by mesophyll as a function of increased mesophyll content of the
canopy or it may simply be an indicator of total canopy chlorophyll.
Given the lack of variation in leaf chlorophyll concentration across
each site, total canopy chlorophyll would simply be a function of LAI.

In high LAI canopy systems, reflectance signatures tend to be
dominated by leaf biochemical properties, canopy chlorophyll content
and other confounding canopy characteristics (Asner et al., 2000;
Asner et al., 2004). For the M. cerifera shrub thickets that we studied,
steep environmental gradients exist causing variations in salinity
stress (Naumann et al., 2008a, 2009), and laboratory studies have
demonstrated that salinity can lead to changes in reflectance
characteristics (Naumann et al., 2007, 2008b). However, unlike most
woody species, M. cerifera retains chlorophyll even under conditions
of stress, and chlorophyll does not change regardless of location
relative to salinity (Naumann et al., 2007, 2008b, 2009). There were
no significant differences in total chlorophyll content, chlorophyll a
or chlorophyll b concentrations for M. cerifera (all PN0.05; 360±
14 mg m−2, 211±8 mg m−2, 148±8 mg m−2, respectively) and
there was very little variability in E. umbellata (409±12 mg m−2,
239±9 mg m−2, 177±6 mg m−2, respectively). Because chlorophyll
content was consistent across the range of observed LAI values for
both species (Fig. 5), changes in relationships between LAI and
reflectance stress indices in these systems are likely dominated by
variations in LAI rather than differences in chlorophyll concentration
due to stress. For example, there were significant relationships
between CI and LAI across species and years (Tables 4 and 5). The
lack of variation in leaf-level chlorophyll content for either species
indicates that those relationships are due to changes in LAI that affect

Table 3
Summary metadata for field measurements of leaf area index (LAI), specific leaf area (SLA), aircraft image acquisition, and sensor characteristics for two sites and three observation
periods. All chlorophyll values and LAI-2000 values were taken in July/August of the same year.

Field observations

Species Collection dates
for litterfall

Leaf litterfall
(g/m2)

SLA (m2/g) Mean LAI
(litterfall)

Mean LAI
(LAI-2000)

Total chlorophyll
concentration (mg/m2)

Morella cerifera (2004) April 2004–March 2005 537±29 0.015±0.001 8.1±0.4 3.2±0.1 Data not available
Morella cerifera (2008) June 2008–May 2009 606±44 0.015±0.001 8.8±0.7 Data not available 360±15
Elaeagnus umbellata (2008) November 2008 103±11 0.022±0.001 2.3±0.2 2.3±0.2 402±13

Aircraft observations

Species Flight Date/Time
(Eastern standard time)

Aircraft Solar elevation
(degrees)

Altitude
(m above ground)

Area of observation (ha)

Morella cerifera (2004) August 24/1215 EST Antonov An-2 63.3 2800 3540
Morella cerifera (2008) August 19/1012 EST Cessna 207 54.4 1700 1320
Elaeagnus umbellata (2008) August 19/1410 EST Cessna 207 53.4 1700 2309

Sensor specifications

Species Sensor Spatial resolution
(pixel footprint)

Spectral range (nm) Spectral resolution/FWHM
(at 510 nm)

Signal/Noise ratio
(at 510 nm)

Morella cerifera (2004) PHILLS 4 m/pixel 384–1000 128 bands/4.51 nm 170:1
Morella cerifera (2008) ProSpecTIR VIS 1 m/pixel 400–1000 128 bands/4.50 nm 884:1
Elaeagnus umbellata (2008) ProSpecTIR VIS 1 m/pixel 400–1000 128 bands/4.50 nm 884:1

Fig. 2. Representative spectra from a midpoint on Hog Island from flights in 2004 and
2008. Wavelengths of select indices are illustrated to show differences in spectral
regions among various groups of indices.
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total canopy chlorophyll content rather than variation in chlorophyll
throughout the thicket.

The apparent potential of various algorithms evaluated herein to
accurately estimate LAI also depended heavily on the method of
ground sampling used for comparison. When available, direct
measurements of LAI such as litterfall or destructive sampling should
be used for calibrating vegetation indices because of the inherent
constraints on indirect methods (Brantley & Young, 2007; Gower
et al., 1999). Contrasting the results of indices for litterfall LAI and LAI-
2000 values illustrates the risk of relying solely on indirect ground-
sampling for calibration of indices. Relationships between litterfall LAI
and LAI-2000 estimates were significant and positive for both species
and absolute values for LAI were highly comparable for the two
methods in E. umbellata thickets but absolute values of LAI for M.
cerifera thickets diverged significantly between the two methods
(Fig. 6). Litterfall LAI and LAI-2000 values were similar at the lowest
LAI values but differences increased linearly as LAI increased in M.
cerifera (Fig. 6). Optical saturation with the LAI-2000 often occurs ~4
(Gower et al., 1999), and this may explain differences in the results
from these two species. There was not enough overlap in LAI values
between the two species to thoroughly test the potential effects of
canopy structure on saturation thresholds but it is possible that
saturation points may be lower or higher depending on species. A
saturation point of four is near the same threshold often cited for
saturation of NDVI and other vegetation indices, although reasons
for saturation are different (Asner et al., 2000; Haboudane et al., 2004;

Wang et al., 2005). Agreement betweenNDVI and portable integrating
radiometer measurements for E. umbellata was strong and the LAI-
2000 provided acceptable accuracy and sensitivity for ground-
sampling this species. However, because many vegetation indices
and the portable integrating radiometer saturate at similar levels,
strong statistical relationships between these methods for other
systems, such as M. cerifera shrub thickets or tropical systems with
high LAI values, are not necessarily indicative of the potential accuracy
of a given algorithm. In such cases, the underestimation of LAI from
the LAI-2000 could lead to overestimation of the effectiveness of
vegetation indices that saturate near the same threshold. Resulting
underestimation of LAI could lead to underestimates of related
ecological phenomena such as ANPP.

Several variables other than algorithm selection also affected
relationships between ground sampling and vegetation indices and
we will address the most important of those variables here. When
considering the entire set of indices, best results were obtained for
imageswith larger pixel sizes or for aggregated pixels for both species.
Higher spatial resolution generally improves accuracy of LAI estimates
from airborne or space-borne platforms, especially as sensors reach
saturation (Asner et al., 2000), but our analyses indicates that
agreement between vegetation indices and ground sampling does
not necessarily improve as spatial resolution improves. Correlations
between ground samples and vegetation indices calculated from the
1 m2 pixels were relatively poor (Tables 4 and 5). When values for
four adjacent pixels were averaged, relationships with ground-

Table 5
Summary of correlation coefficients (r) between vegetation indices and LAI estimates from litterfall and a portable integrating radiometer (Li-Cor LAI-2000) for Elaeagnus umbellata
shrub thickets. An r value with * is significant at the 0.05 level while an r value with ** is significant at the 0.01 level. The best index for each sampling period/method is highlighted in
bold.

Index Elaeagnus umbellata
(2008)/LAI-2000

Elaeagnus umbellata
(2008) Litterfall

Elaeagnus umbellata
(2008) Aggregate/Litterfall

Elaeagnus umbellata
(2008) Aggregate/LAI-2000

NDVI 0.481 0.607 0.666* 0.757**
MCARI 0.355 0.095 0.502 0.566
MCARI1 0.032 0.302 0.158 0.089
MCARI2 0.539 0.445 0.442 0.510
TVI 0.063 0.217 0.071 0.000
MTVI2 0.539 0.445 0.442 0.510
CI 0.596 0.513 0.824** 0.834**
R740/R850 0.601* 0.725** 0.760** 0.767**
R761/R757 0.230 0.687* 0.632* 0.249
R750/R710 0.666* 0.742** 0.825** 0.843**
D705/D722 0.344 0.641* 0.796** 0.767**
D730/D706 0.486 0.526 0.827** 0.737**
Dmax/D720 0.118 0.373 0.601* 0.559
Dmax/D745 0.322 0.089 0.396 0.666*
D715/D705 0.354 0.130 0.455 0.692*

Table 4
Summary of correlation coefficients (r) between vegetation indices and LAI estimates from litterfall and a portable integrating radiometer (Li-Cor LAI-2000) forMorella cerifera shrub
thickets. An r value with * is significant at the 0.05 level while an r value with ** is significant at the 0.01 level. The best index for each sampling period/method is highlighted in bold.

Index Morella cerifera
(2004)/LAI-2000

Morella cerifera
(2004) Litterfall

Morella cerifera
(2008) Litterfall

Morella Cerifera (2008)
Aggregate/Litterfall

NDVI 0.518** 0.430** 0.524* 0.492**
MCARI 0.095 0.303 0.338 0.455**
MCARI1 0.691** 0.586** 0.397 0.515**
MCARI2 0.409** 0.445** 0.524** 0.295
TVI 0.641** 0.541** 0.346* 0.439**
MTVI2 0.063 0.134 0.397 0.295
CI 0.810** 0.884** 0.572** 0.773**
R740/R850 0.651** 0.592** 0.655** 0.773**
R761/R757 0.784** 0.902** 0.000 0.187
R750/R710 0.678** 0.718** 0.711** 0.705**
D705/D722 0.814** 0.881** 0.497* 0.705**
D730/D706 0.743** 0.819** 0.297 0.760**
Dmax/D720 0.814** 0.917** 0.562* 0.100
Dmax/D745 0.574** 0.541** 0.475* 0.729**
D715/D705 0.644** 0.785** 0.369* 0.521**
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sampled values improved substantially. Larger pixels and/or pixel
aggregates may simply improve spatial agreement between pixel
values and indirect methods such as the LAI-2000 or hemispheric
photography because the area sampled is more similar (Fig. 7). The
area represented by the portable integrating radiometer (which varies
with canopy height) will generally include many square meters of
canopy space and may be better related spatially to larger pixels if the
absolute values are accurate (Fig. 7) (Li-Cor LAI-2000 manual).

The potential importance of matching ground-sampling area with
image sampling can be further demonstrated in our results. While
litterfall methods are considered highly accurate, individual litter
traps represent a very small area of the canopy (0.30 m2 in this study)
compared to other methods. The strongest relationship for M. cerifera
with NDVI was observed between small pixels and litter traps (1 m2

and 0.30 m2 respectively). At this small scale, however, high levels
of accuracy (sub-meter) for locating ground sampling points is

Fig. 3. Simple linear regression of Normalized Difference Vegetation Index and leaf area index measured from leaf litterfall (top panels) and a portable integrating radiometer (Li-Cor
LAI-2000) (bottom panels) for two shrub species.

Fig. 4. Simple linear regression analyses for best derivative vegetation indices and Leaf Area Index for Morella cerifera (top panels) and Elaeagnus umbellata (bottom panels) shrub
thickets.
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important to ensure that the values are representative of the same
physical location. Relationships between M. cerifera litterfall LAI and
other indices may be improved over NDVI because other indices are
less likely to saturate and this affect is stronger than the effect of
spatial sample size or becauseM. cerifera canopies are more uniformly
dense (personal observation) and a litterfall LAI values is able to
represent the entire pixel. The strongest relationship between E.
umbellata and NDVI were for 4 m2 pixel aggregates and the LAI-2000.
Each method demonstrated here has a different sampling area based
on ground-sampling methodology or pixel size and differences in the
physical area sampled by various methods may lead to poor
relationships because of the inherent heterogeneity characteristic of
most canopies. If high resolution imagery is used (e.g. 1 m2 pixel size),
aggregations of pixels may provide better relationships with ground
measurements that represent larger areas because a single pixel may
not adequately represent variations in the area sampled on the
ground. Similarly, relatively large pixels on images with lower spatial
resolution (e.g. 30 m) may not be adequately represented by a single
litter trap.

Reflectance values using smaller pixels also generally showed a
greater degree of variability, likely because of the inherent structural
heterogeneity of natural canopies caused by the presence of small gaps,
clumps of foliage, large stems, etc. Other effects of a heterogeneous
canopy include the casting of shadows that affect canopy reflectance,
change pixel values and (Middleton et al., 2009). Larger pixels, or
aggregates of smaller pixels, reduce this variation by averaging index
values for several pixels. Alternatively, Middleton et al. (2009)
demonstrated a correction technique to account for the differential
effects of shadows on reflectance values that may prove preferable in
many circumstances where maintaining finer spatial resolution is
desirable. Unlike techniques that specifically address shadows, better
correlations in indices with larger pixels may simply be an artifact of
reducing this variation across a wider area. Aggregating smaller pixels

Fig. 5. Simple linear regression analyses for chlorophyll content and Leaf Area Index for
Morella cerifera (dark circles) and Elaeagnus umbellata(empty circles).

Fig. 6. Correlation between leaf area indexmeasurements from direct (litterfall) and indirect (LAI-2000) measurements. Left panels compare LAI estimates from the twomethods for
Elaeagnus umbellata (A) and Morella cerifera (B). Right panels show the divergence of LAI-2000 estimates from litterfall LAI.

Fig. 7. Relative footprints of various sampling methods used to estimate leaf area index.
Relative pixel sizes from two hyperspectral images are represented by gray boxes (1 m2

on bottom and 16 m2 on top). Litter traps are represented by black boxes (0.30 m2).
LAI-2000 results are represented by circles and the sampling area is estimated based
on canopy height. Representations are to scale except for LAI-2000 which is an
approximation.
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may also mitigate any inaccuracies in ground-sample plots where
highly-precise locations (e.g. sub-meter) ground-sampling are not
available.Whether aggregating pixels is applicable to these studiesmay
depend on the scale of interest and size of canopy footprint produced
from the preferred ground sampling technique.

Finally, it is difficult to decouple the effects of saturation and
canopy architecture because there was little overlap between LAI
values between the two species. However, the high LAI in M. cerifera
shrub thickets requires some discussion and differences in canopy
architecture may also help explain why LAI is more difficult to
estimate in some canopies. Variations in leaf orientation (i.e., leaf
angle and leaf azimuth) and branching patterns affect distribution of
leaves within a canopy and strongly influences reflectance at the
stand level (Kempf & Pickett, 1981; Nicola & Pickett, 1983; Sands,
1995; Falster & Westoby, 2003). Canopy structure at the leaf and
stand level varies substantially between the two species studied here.
Elaeagnus umbellata has lower leaf angles than M. cerifera (i.e. leaves
are horizontally rather than vertically inclined) and E. umbellata
foliage is biased towards the south where as M. cerifera foliage is
randomly oriented with no directional bias (Brantley & Young,
2010b). Additionally, leaves of E. umbellata are more evenly
distributed within the canopy which reduces leaf clumping and
increases efficiency of light interception in relation to biomass
(Brantley & Young, 2010b). Highly clumped foliage and high leaf
angles are likely the reasonM. cerifera thickets can maintain relatively
high LAI values, and these characteristics combine to make both
optical methods of LAI estimation and remote-sensing methods
difficult. A solution to improve accuracy for indirect optical methods,
such as hemispheric photography and radiometric methods, is to
apply a correction coefficient to improve ground-sampling accuracy
(DeBlonde et al., 1994). Improved ground-sampling accuracy,
combined with recognition of the effects of canopy structure on
reflectance and the application of the derivative indices discussed
previously has potential to greatly improve accuracy of LAI estimates
in certain canopies.

4. Summary and conclusions

Our analysis points to a number of recommendations for
improving the accuracy of LAI estimates in high LAI canopies from
remote-sensing platforms. To address the issue of saturation,
increased consideration should be given to use of indices using
wavelengths in the red-edge region. These indices reflect variations in
total canopy chlorophyll content, and may be especially useful in
communities where LAI exceeds 4 and leaf chlorophyll concentrations
are unrelated to variations in LAI. Second, comparisons between LAI
and remotely derived vegetation indices have often used ground-
sampling measurements based on indirect measurements that are
limited in sensitivity due to optical saturation. In dense canopies,
correlation between an underestimated LAI value and a vegetation
index that saturates at a similar value may lead to erroneous
conclusions regarding the potential of such an algorithm to accurately
predict LAI. Ground-sampling should include at least a sub-sample of
direct measurements such as litterfall or destructive sampling to
confirm results from broader indirect sampling or allow determina-
tion of an empirical relationship that can be used to correct for
saturation in indirect estimates when they are not in agreement with
direct LAI measurements. If ground sampling is not possible, some
effort should be made to perform direct sampling on areas with
similar species assemblages and/or community structure to provide
evidence of accuracy for indirect measurements. Lastly, consideration
needs to be given regarding the relationship between pixel size/
spatial resolution and size of ground sampling units. When high
resolution imagery is used (e.g. 1 m2 pixel), aggregations of pixels
may provide better relationships with ground measurements that

were made over larger areas and account for heterogeneity in
canopies by averaging across multiple pixels.

We present a comprehensive comparison of vegetation indices
using algorithms from various regions of the visible and infrared
spectrum as derived from hyperspectral imagery and their relation-
ship to directly measured LAI values from a simple, established
method of measuring LAI. Our results show that, at least for the two
communities studied, many algorithms developed to improve LAI
estimates over NDVI remain insensitive to variations in canopies with
LAI N4. Vegetation indices in other regions, especially those related to
the red edge spectral region may have greater potential for detecting
variations in high LAI canopies. While the limitations of indirect
measurement of LAI have been addressed several times previously
(Brantley & Young, 2007; Deblonde et al., 1994; Gower et al., 1999),
these techniques and/or instruments continue to be used for ground-
sampling and incorporated into reflectance models that depend on
accurate measurement of LAI. Underestimates of LAI could lead to
similar underestimates of associated ecological phenomena, including
primary productivity, hydrologic effects and nutrient cycling. With
continued interest in monitoring regional and global C cycling using
remote-sensing, reliable techniques of using hyperspectral imagery to
accurately estimate LAI are essential.

Acknowledgements

This researchwas supported, in part, by a grant to Donald R. Young
from the United States Army Research Office. Additional support was
provided by NSF grant DEB-008031 to the University of Virginia for
LTER-related work at the Virginia Coast Reserve. Spencer Bissett and
Kati Rubis provided assistance with field work and laboratory
analysis. The Virginia Coast Reserve LTER staff assisted with island
logistics.

References

Archer, S. (1989). Have southern Texas savannas been converted to woodlands in
recent history? American Naturalist, 134, 545−561.

Asner, G. P., Nepstad, D., Cardinot, G., & Ray, D. (2004). Drought stress and carbon
uptake in an Amazon forest measured with spaceborne imaging spectroscopy.
Proceedings of the National Academy of Science, 101, 6039−6044.

Asner, G. P., Townsend, A. R., & Braswell, B. H. (2000). Satellite observation of El Niño
effects on Amazon forest phenology and productivity. Geophysical Research Letters,
27, 981−984.

Baer, S. G., Church, J. M., Williard, K. W. J., & Groninger, J. W. (2006). Changes in
intrasystem N cycling form N2-fixing shrub encroachment in grassland: Multiple
positive feedbacks. Agriculture, Ecosystems & Environment, 115, 174−182.

Benítez-Malvido, J., & Martínez-Ramos, M. (2002). Impact of forest fragmentation on
understorey plant species richness in Amazonia. Conservation Biology, 17,
389−400.

Bonan, G. B. (1993). Importance of leaf area index and forest type when estimating
photosynthesis in boreal forests. Remote Sensing of Environment, 43, 303−314.

Brantley, S. T., & Young, D. R. (2007). Leaf-area index and light attenuation in rapidly
expanding shrub thickets. Ecology, 88, 524−530.

Brantley, S. T., & Young, D. R. (2008). Shifts in litterfall and dominant nitrogen sources
after expansion of shrub thickets. Oecologia, 155, 337−345.

Brantley, S. T., & Young, D. R. (2010a). Shrub expansion stimulates soil C and N storage
along a coastal soil chronosequence. Global Change Biology, 16, 2052−2061.

Brantley, S. T., & Young, D. R. (2010b). Linking light attenuation, sunflecks, and canopy
architecture in mesic shrub thickets. Plant Ecology, 206, 225−236.

Briggs, J. M., Knapp, A. K., Blair, J. M., Heisler, J. L., Hoch, G. A., Lett, M. S., et al. (2005). An
ecosystem in transition: causes and consequences of the conversion of mesic
grassland to shrubland. Bioscience, 55, 243−254.

Broge, N. H., & Leblanc, E. (2000). Comparing prediction power and stability of
broadband and hyperspectral vegetation indices for estimation of green leaf area
index and canopy chlorophyll density. Remote Sensing of Environment, 76,
156−172.

Campbell, P. K. E., Middleton, E. M., McMurtney, J. E., Corp, L. A., & Chappelle, E. W.
(2007). Assessment of vegetation stress using reflectance or fluorescence
measurements. Journal of Environmental Quality, 36, 832−845.

Curran, P. J., Dungan, J. L., & Gholz, H. L. (1990). Exploring the relationship between
reflectance red edge and chlorophyll content in slash pine. Tree Physiology, 7,
33−48.

Daughtry, C. S. T., Walthall, C. L., Kim, M. S., Brown de Colstoun, E., & McMurtrey, J. E., III
(2000). Estimating corn leaf chlorophyll concentration from leaf and canopy
reflectance. Remote Sensing of Environment, 74, 229−239.

522 S.T. Brantley et al. / Remote Sensing of Environment 115 (2011) 514–523



Davis, C., Bowles, J., Leathers, R., Korwan, D., Downes, T. V., Snyder, W., et al. (2002).
Ocean PHILLS hyperspectral imager: Design, characterization, and calibration.
Optics Express, 10, 210−221.

Deblonde, G., Penner, M., & Royer, A. (1994). Measuring leaf area index with the LAI-
2000 in pine stands. Ecology, 75, 1507−1511.

Falster, D. S., & Westoby, M. (2003). Leaf size and angle vary widely across
species: What consequences for light interception? The New Phytologist, 158,
509−525.

Gitelson, A. A., Viña, A., Ciganda, C., Rundquist, D. C., & Arkebauer, T. J. (2005). Remote
estimation of canopy chlorophyll content in crops. Geophysical Research Letters, 32,
L08403.

Gower, S. T., Kucharik, C. J., & Norman, J. M. (1999). Direct and indirect estimation of leaf
area index, fpar, and net primary production of terrestrial ecosystems. Remote
Sensing of Environment, 70, 29−51.

Grace, J., Nichol, M., Disney, M., Lewis, P., Quaife, T., & Bowyer, P. (2007). Can we
measure terrestrial photosynthesis from space directly, using spectral reflectance
and fluorescence? Global Change Biology, 13, 1484−1497.

Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Stachan, I. B. (2004).
Hyperspectral vegetation indices and novel algorithms for predicting green LAI of
crop canopies: Modeling and validation in the context of precision agriculture.
Remote Sensing of Environment, 90, 337−352.

Holm, G. (1954). Chlorophyll mutation in barley. Acta Agriculturae Scandinavica, 4,
457−471.

Horler, D. N. H., Dockray, M., & Barber, J. (1983). The red edge of plant leaf reflectance.
International Journal of Remote Sensing, 4, 273−288.

Houghton, R. A. (2003). Why are estimates of the terrestrial carbon balance so
different? Global Change Biology, 9, 500−509.

Jackson, R. B., Banner, J. L., Jobbagy, E. G., Pockman, W. T., & Wall, D. H. (2002).
Ecosystem carbon loss with woody plant invasion of grasslands. Nature, 418,
623−626.

Jensen, J. R. (2005). Introductory digital image processing: A remote sensing perspective
(3rd ed.). Upper Saddle River, New Jersey, USA: Prentice Hall.

Kempf, J. S., & Pickett, S. T. A. (1981). The role of branch length and angle in branching
pattern of forest shrubs along a successional gradient. The New Phytologist, 88,
111−116.

Knapp, A. K., Briggs, J. M., Collins, S. L., Archer, S. R., Bret-Harte, M. S., Ewers, B. E., et al.
(2008). Shrub encroachment in North American grasslands: Shifts in growth form
dominance rapidly alters control of ecosystem carbon inputs. Global Change Biology,
14, 615−623.

Lett, M. S., & Knapp, A. K. (2003). Consequences of shrub expansion in mesic grassland:
resource alterations and graminoid responses. Journal Vegetation Science, 14,
487−496.

Middleton, E. M., Cheng, Y., Hilker, T., Black, T. A., Krishnan, P., Coops, N. C., et al. (2009).
Linking foliage spectral response to canopy-level ecosystem photosynthetic light-
use efficiency at a Douglas-fir forest in Canada. Canadian Journal of Remote Sensing,
35, 166−188.

National Climatic Data Center, Asheville, NC. 2004. Monthly station climate summaries
(1971–2000) for Virginia. http://cdo.ncdc.noaa.gov/climatenormals/clim20/state-
pdf/va.pdf

Naumann, J. C., Anderson, J. E., & Young, D. R. (2008). Linking physiological responses,
chlorophyll fluorescence and hyperspectral imagery to detect salinity stress using
the physiological reflectance index in the coastal shrub, Myrica cerifera. Remote
Sensing of Environment, 112, 3865−3875.

Naumann, J. C., Young, D. R., & Anderson, J. E. (2007). Linking leaf chlorophyll
fluorescence properties to physiological responses for detection of salt and drought
stress in coastal plant species. Physiologia Plantarum, 131, 422−433.

Naumann, J. C., Young, D. R., & Anderson, J. E. (2008). Leaf fluorescence, reflectance, and
physiological response of freshwater and saltwater flooding in the evergreen shrub,
Myrica cerifera. Environmental and Experimental Botany, 63, 402−409.

Naumann, J. C., Young, D. R., & Anderson, J. E. (2009). Spatial variations in salinity stress
across a coastal landscape using vegetation indices derived from hyperspectral
imagery. Plant Ecology, 202, 285−297.

Nestleroad, J., Zimmerman, D., & Ebinger, J. (1987). Autumn olive reproduction in three
Illinois state parks. Transactions of the Illinois Academy of Science, 80, 33−39.

Newbold, P. J. (1967) IBP Handbook No. 2: Methods for estimating the primary
production of forests. International Biological Programme, London.

Nicola, A., & Pickett, S. T. A. (1983). The adaptive architecture of shrub canopies: Leaf
display and biomass allocation in relation to light environment. The New
Phytologist, 93, 301−310.

Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D.W., & Harlan, J. C. (1974). Monitoring the
vernal advancements and retrogradation of natural vegetation. NASA/GSFC, Final
Report, Greenbelt, MD, USA (pp. 1−137).

Runyon, J., Waring, R. H., Goward, S. N., & Welles, J. M. (1994). Environmental limits on
net primary productivity and light use efficiency across the Oregon transect.
Ecological Applications, 4, 226−237.

Sanchez-Azofeifa, G. A., Castro-Esau, K. L., Kurz, W. A., & Joyce, A. (2009). Monitoring
carbon stocks in the tropics and the remote sensing operational limitations: From
global to regional projects. Ecological Applications, 19, 480−494.

Sands, P. J. (1995). Modeling canopy production 1: optimal distribution of photosyn-
thetic resources. Australian Journal of Plant Physiology, 22, 593−601.

Šesták, Z. (1971). Determination of chlorophylls a and b. In Z. Šesták, J. Čatský, & P. G.
Jarvis (Eds.), Plant photosynthetic production. Manual of methods (pp. 672−701).
The Hague: Dr W. Junk N.V. Publishers.

Sturm, M., Schimel, J., Michaelson, G., Welker, J. M., Oberbauer, S. F., Liston, G. E.,
Fahnstock, J., & Romanovsky, V. E. (2005). Winter biological processes could help
convert Arctic tundra to shrubland. BioScience, 55, 17−26.

Turner, D. P., Ollinger, S. V., & Kimball, J. S. (2004). Integrating remote sensing and
ecosystem process models for landscape- to regional-scale analysis of the carbon
cycle. Bioscience, 54, 573−584.

Wang, Q., Adiku, S., Tenhunen, J., & Granier, A. (2005). On the relationship of NDVI with
leaf area index in a deciduous forest site. Remote Sensing of Environment, 94,
244−255.

Wessman, C. A., Archer, S., Johnson, L. C., & Asner, G. P. (2004). Woodland expansion in
US grasslands: Assessing land-cover change and biogeochemical impacts. In G.
Guttman, A. Janetos, & D. Skole (Eds.), Land change science: Observing, monitoring
and understanding trajectories of change on the Earth's surface (pp. 185−208). New
York, USA: Kluwer Academic Publishers.

Wilbur, R. L. (1994). The Myricaceae of the United States and Canada: Genera,
subgenera, and series. Sida, 16, 93−107.

Young, D. R., Porter, J. H., Bachmann, C. H., Shao, G., Fusina, R. A., Bowles, J. H., et al.
(2007). Cross-scale patterns in shrub thicket dynamics in the Virginia barrier
complex. Ecosystems, 10, 854−863.

Zarco-Tejada, P. J., Berni, J. A. J., Súarez, L., Sepulcre-Cantó, G., Morales, F., & Miller, J. R.
(2009). Imaging chlorophyll fluorescence with an airborne narrow-band multi-
spectral camera for vegetation stress detection. Remote Sensing of Environment, 113,
1262−1275.

Zarco-Tejada, P. J., Miller, J. R., Mohammed, G. H., Noland, T. L., & Sampson, P. H. (2002).
Vegetation stress detection through chlorophyll a+b estimation and fluorescence
effects on hyperspectral imagery. Journal of Environmental Quality, 31, 1433−1441.

Zhang, Y., Chen, J. M., Miller, J. R., & Noland, T. L. (2008). Leaf chlorophyll content
retrieval from airborne hyperspectral remote sensing imagery. Remote Sensing of
Environment, 112, 3234−3247.

523S.T. Brantley et al. / Remote Sensing of Environment 115 (2011) 514–523

http://cdo.ncdc.noaa.gov/climatenormals/clim20/state-pdf/va.pdf
http://cdo.ncdc.noaa.gov/climatenormals/clim20/state-pdf/va.pdf

	Application of hyperspectral vegetation indices to detect variations in high leaf area index temperate shrub thicket canopies
	

	Application of hyperspectral vegetation indices to detect variations in high leaf area index temperate shrub thicket canopies
	Introduction
	Methods
	Study site
	Leaf area index and canopy chlorophyll content
	Airborne image acquisition
	Analysis

	Results and discussion
	Summary and conclusions
	Acknowledgements
	References


	Text6:     This article is a U.S. government work, and is not subject to copyright in the United States.


