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Biobased chemicals and LCA

e Life cycle assessment (LCA) is now used in state and federal greenhouse gas
(GHG) emissions regulations (this is where LCA is most relevant today):

1)  Energy Independence and Security Act of 2007 (EPA) requires a 20%
reduction in GHG emissions for corn-ethanol compared to gasoline

2) Low Carbon Fuel Standard (California Air Resources Board; CARB) requires
10% reduction in gasoline GHG emissions by 2020
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Regulatory LCA is not likely to be used for non-fuel chemicals in the near future



Billion gallons per year

US ethanol industry capacity is predominantly dry mills
(202 biorefineries total)
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GHG emissions credits for distillers grains co-products from dry mills
(similar life cycle emissions credits exist for wet mills)

Co-product distillers

Corn grain grains fed to livestock
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Source: Bremer, Liska, et al. Journal of Environmental Quality, 2010



Simplest inventory of life cycle GHG emissions for dry mill corn-ethanol

Component GHG emission category | gCO,e MJ™ Mg CO.e* | % of LC
Crop Production
Nitrogen fertilizer, N 4.26 34,069 7.46 f—— ;
Phosphorus fertilizer, P 0.953 7,618 1.67 FZrop prOdUCtlon
Potassium fertilizer, K 0.542 4,337 0.950 Inputs
Lime 2.82 22,577 4.95
Herbicides 1.51 12,079 2.65
Insecticides 0.018 141 0.031
Seed 0.193 1,540 0.337
Gasoline 0.355 2,837 0.621
Diesel 1.73 13,848 3.03 L Fossil Fuel
LPG 1.24 9,932 2.18 .
Natural gas 0 0 0 Inputs
Electricity 0.348 2,785 0.610
Depreciable capital 0.268 2,144 0.470
N,O emissions** 112,550 247
TOTAL 28.3 226,456 49.6
Biorefinery —
Natural gas input 19.7 157,356 345 ¢— Bioreﬁnery emissions
NG Input: drying DGS' 0 0 0
Electricity input 6.53 52,201 11.4
Depreciable capital 0.458 3,663 0.802
Grain transportation 16,851 3.69
TOTAL 28.8 230,071 50.4
Co-Product Credit | — GHG emissions credits:
Diese 0.216 1,731 0.379 .
Urea production 262 -20,956 59— Co-product substitutes for
Corn production -11.4 -91,501 -20.0 conventional livestock feed
Enteric fermentation-CH, -2-64 -21,102 -4.62
TOTAL (-16.5)] -131,828 -28.9 (beef cattle)
Transportation of Ethanol from Biorefinery } 11,196 0
LIFE-CYCLE NET GHG EMISSIONS 42.0 335,895 100
GHG-intensity of ethanol, g CO2e MJ" 42. 335,895 .
GHG-intensity of gasoline’, g CO2e MJ" 92.0 735,715 f#— Gasoline >
GHG reduction relative to gasoline, % 50. 399,819 54.3%

Source: Liska et al, Journal of Industrial Ecology, 13, 5§—}74 (2009)



Updated corn-ethanol GHG emissions credits and life cycle impacts
based on beef, dairy, swine dietary substitutions

Regions Midwest lowa Nebraska Texas
GHG emissions credit, gCO,e MJ*
Corn (regional sources) 9.64 6.50 12.8 22.1
Soybean meal 2.82 4.56 0.91 0.21
Urea 1.60 0.52 2.43 2.85
Diesel fuel -0.10 -0.04 -0.21 -0.26
Enteric fermentation 1.27 0.424 2.52 3.42
Total 15.2 12.0 184 5 28.3
Biorefinery thermal energy* MJ L 1.72 7.60 : 491
Net ethanol Intensity, gCO,e MJ* 52.3 5 43.7 50.0
GHG Reduction relative to gasoline, % 46.5% 47.2% 55.3% 48.8%
~

More beef cattle compared to swine and dairy, more wet distillers grains compared

to dry, and therefore more corn substituted relative to IA and NE

6
Source: Bremer, Liska, et al. Journal of Environmental Quality, 2010



Variable GHG emissions credits and life cycle impacts:
Similar methods employed in GREET model used by regulators
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Chemicals produced from protein and lipid would reduce the existing co-
product credit; those from starch could increase credits per unit energy

Source: Bremer, Liska, et al. Journal of Environmental Quality, 2010 !



Starch-based biopolymers and substituted petroleum polymers
determine GHG emission credit per kg

GHG GHG GHG
intensity* intensity credit*®
Biobased polymers Ferm. Yield A Petroleum substitutes B B-A
kg starch/
kg polymer  kgCO,e/kg kgCO,e/kg kgCO,e/kg
Low density polyethylene
poly lactic acid (PLA) 1.53* -1.2 (LDPE) 3.84 5.04%
polyhydroxyalkanoates (PHA) 3.04** 2.85 Polystyrene (PS) 5.98% 3.13tt
polyhydroxybutyrates (PHB) 3.97%** -3.27 polypropylene (PP) 3.65%% 6.92%1%

*Cargill case study, http://www.wbcsd.org/web/publications/case/natureworks_full_case_web.pdf

**Gerngross, T. U. Can biotechnology move us toward a sustainable society? Nature Biotechnology, 17, 541-544, 1999

***Kim Beom Soo, Production of Poly(3-hydroxybutyrate) from inexpensive substrates. Enzyme and Microbial Technology 27, 774-777, 2000

tDornburg V., Lewandowski I., Patel M. Comparing the land requirements, energy savings, and greenhouse gas emissions reduction of biobased polymers and

bioenergy. Journal of Industrial Ecology 7 (3-4), 93-116, 2004

fPatel, M., Bastioli, C., Marini, L., Wiirdinger, E. Life-cycle assessment of bio-based polymers and natural fiber composites. Biopolymers Online. 2005.

t1Kim, S.; Dale, B. E. Life cycle assessment study of biopolymer (polyhydroxyalkanoates) derived from no-tilled corn. Int. J LCA 10 (3), 200-210, 2005

$1Kim, S.; Dale, B. E. Energy and greenhouse gas profiles of polyhydroxybutyrates derived from corn grain: A life cycle perspective. Environ. Sci. Technol. 42, 7690-

7695, 2008 (uses corn residue as fuel)
Why is the carbon intensity of biopolymers less than petroleum chemicals?
1) carbon in polymers is GHG neutral (originates from atmosphere)
2) energy efficiency of the process

*Warning: GHG intensities of biopolymers are uncertain based on inconsistent use
of system boundaries in analysis; To obtain GHG credits for ethanol systems,
standardized LCA of biopolymers should be developed and defined with EPA for

consistency



Significant GHG emission credits for corn-ethanol can be obtained by
using only roughly 6-9% of initial starch for production of biopolymers*

(in a parallel fermentation process, reduces ethanol output)

Ethanol E + PHA E + PHB E+PLA
Mg polymerl - 10,000 10,000 30,000
Mg starch/Mg polymerz - 3.04 3.97 1.53
Mg starch for polymer(1*2) - 30,370 39,683 46,010
polymer starch, % total - 5.7% 7.4% 8.6%
kgCO,e/kg polymer credit® - 3.13 6.92 5.04
kgCO,e credit (1*3) - 31,300,000 69,200,000 151,200,000
g COZe/I\/IJ(l*3/4) - -4.2 9.4 -20.7
gal/yr 100,000,000 94,347,191 92,613,738 91,435,938
MJ ethanol? 7,986,350,000 7,534,896,893 7,396,457,284 7,302,393,995

3calculated on previous page

*these calculations follow LCA theory and related co-product analysis, but EPA’s decision
on the analysis is what is important



Using this model, credits are proportional to polymer produced,

but...
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At what threshold (e.g. %) is the co-product designated by EPA as

a separate process and not a co-product of ethanol production?
(this is not clearly defined in LCA theory)
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CARB-defined ethanol GHG emissions intensities can be lowered
below regulatory thresholds using 6-9% starch for biopolymers
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International indirect land use change (ILUC) GHG emissions from corn-ethanol
are uncertain projections of future change in land use due to higher prices
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Source: Liska AJ. Eight Principles of Uncertainty for Life Cycle Assessment of Biofuel Systems, chapter 22 in: Biofuels:
Environmental Implications and Impacts, Brouder et al. (eds.), Cambridge University Press. submitted.



ILUC is one of many indirect GHG emissions:

All global indirect GHG emissions from both biofuels and gasoline need
to be accounted for and compared

Corn-ethanol
Indirect emissions

Gasoline
Indirect emissions

+ Global land use (ILUC)

Military security for foreign oil
(~$130 billion per year)

- Global livestock (CH,, N,O)

Unconventional sources of
petroleum, tar sands

- Global soil carbon from
crop substitutions:
more corn, less soybean

Processing emissions not
Included, e.g. oil spills

- Global soil carbon
sequestration from reclamation
of dry lands

Wars for foreign oil?
(another ~$100
billion per year in lraq)

+ Rice (CH,)




EPA’s macro-modeling framework recognizes multiple indirect emissions
(combines 8 models and tens of thousands of parameters)

Figure 2.2-1 System Boundaries and Models Used

Data Source / Model Used Biofuel Lifecycle GHG
Emission Category
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Source: http://www.epa.gov/otaq/renewablefuels/420r10006.pdf



EPA’s New Life Cycle Emissions Results (Feb. 2010)

Figure 2.6-2. Results for a New Natural Gas Fired Corn Ethanol Plant by Lifecvcle Stage
Average 2022 plant: natural gas, 63% dry, 37% wet DGS (w/ fractionation)
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Other estimates and factors not included by EPA (2010):
Corn-Ethanol vs. Gasoline from Middle East (12% of US)

3 Indirect EPA 2010 Other Estimates
Effects gCO,e/MJ gCO,e/MJ
Global Land Use + 30.1 + 13.9
(ILUC) (Tyner et al. 2010)
Global Livestock - 0.28 -47.5
(Liska and Perrin 2009 based on
Searchinger 2008 and FAO 2007)
Military Security 0 -17.5
for Middle East oll increase gasoline GHGs or
reduction in military; based on LCA
of US military and attribution of
20% (~$100B/yr) to oil security
(Liska and Perrin, 2010)
+29.8 -51.1

Indirect effects are associated with a large degree of uncertainty
and more research is clearly needed

Sources: Sanchez et al. submitted; Liska & Perrin, Biofuels, Bioproducts, Biorefining 2009; Liska & Perrin Environment 2010.




Conclusions

Regulatory LCA is not likely to be used for non-fuel chemicals
alone in the near future

Significant GHG emission credits for corn-ethanol can be
obtained by using only roughly 6-9% of initial starch for
production of biopolymers based on previous LCA theory

Pay close attention to values in calculating credits per kg—
these have to stand up in litigation to ensure the credit

Credits are proportional to the mass of polymer produced

Many theoretical issues are uncertain and credits will only be
determined in conjunction with EPA

Indirect emissions are uncertain and are a dominant factor in
determining total life cycle GHG emissions and the
importance of potential co-product credits from biopolymers
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