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Abstract—Models for composition and temperature dependencies of single-crystal elastic stiffness coefficients are developed and
applied to the Al12Mg17 and hexagonal closed-packed solution phases in the Mg–Al system based on data from first-principles cal-
culations. In combination with models for multi-phases, the bulk, shear, and Young’s moduli of Mg–Al alloys are predicted and
compared with available experimental data in the literature. It is noted that both phase transition and grain boundary sliding
may play important roles in the elastic coefficients as a function of temperature.
� 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Computational methods in materials research offer
powerful tools to provide fundamental understanding of
the behaviors of materials and to support selection and
design of materials that meet application requirements.
With advances in computational science and informa-
tion technology in recent years, materials research and
development are shifting from the empirical approaches
to the design to achieve optimal functionality. It is
resulting in a new paradigm based on integrated compu-
tational-prediction and experimental-validation ap-
proaches [1,2]. Capabilities derived from the
integration of first-principles calculations, mechanistic
modeling, and simulations [3,4].

Magnesium is the eighth most abundant element in
the Earth’s crust, the third most plentiful element dis-
solved in seawater, and the lightest structural metallic
material, with a density of 1.741 g cm�3, particularly
attractive for transportation applications such as auto-
mobiles and helicopters for weight reduction and higher
fuel efficiency [5]. In previous works, we systematically
studied thermodynamic properties of Mg alloys through
integrating first-principles calculations and CALPHAD
(CALculation of PHAse Diagram) modeling of relevant
binary, ternary and multi-component systems [6]. Re-
cently, we ventured into the development of approaches

in predicating diffusion coefficients [7] and elastic con-
stants [8]. In this paper, we develop models for compo-
sition and temperature dependences of single-crystal
elastic stiffness coefficients, evaluate model parameters
based on results from first-principles calculations, and
combine them with the multi-phase models to predict
bulk, shear, and Young’s moduli of Mg alloys using
the Mg–Al binary system as the model system.

2. Modeling methodology

One successful modeling approach for properties of
multi-component systems is the CALPHAD method.
The CALPHAD approach was originally developed
for modeling thermodynamic properties by integrating
experimental phase equilibrium and thermochemical
data [4,9]. The CALPHAD modeling begins with the
development of models and the evaluation of parame-
ters of unary and binary systems. By combining the con-
stitutive binary systems with ternary experimental data,
ternary interactions and properties of ternary phases are
obtained. In this approach, properties of individual
phases are modeled, covering the whole composition
and temperature ranges, including experimentally unin-
vestigated regions. For pure elements and stoichiometric
compounds, the most commonly used model is the one
suggested by the Scientific Group Thermodata Europe
(SGTE) [10]. The CALPHAD approach has been
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extended to model multi-component atomic mobility
[11] and molar volume [12].

The CALPHAD modeling of properties in multi-
component systems can be written in a general form as
follows for a phase a:

/a ¼ o/a þ D/a ð1Þ
where /a is the property of the multi-component a
phase, o/a represents the mechanical mixing of individ-
ual species, and D/a denotes the interactions among
the species. o/a and D/a are commonly written as

o/a ¼
X

xi
o/a

i ð2Þ

D/a ¼ D/a
conf þ

X
i

X
j>i

xixj

X
n¼0

n/a
i;jðxi � xjÞn

þ
X

i

X
j>i

X
k>j

xixjxk/
a
ijk ð3Þ

where xi is the mole fraction of species i; o/a
i the prop-

erty of species i in the structure of the a phase, D/a
conf

the configurational contribution, and n/a
i;j and n/a

i;j are
nth order binary and ternary interaction parameters.
For thermodynamic modeling, D/a

conf is usually de-
scribed by the ideal atomic configurational entropy of
mixing, while for properties such as atomic mobility,
molar volume, and elastic coefficients, there is no config-
urational contribution. One significant aspect of Eq. (2)
is that all o/a

i need to be in the same structure of the a
phase. In case the stable structure of a component is
not the same as the structure of the a phase, the differ-
ence of the properties between the two structures, called
lattice stability in thermodynamic modeling, needs to be
evaluated [9]. Efforts to predict thermodynamic lattice
stability by first-principles calculations have been going
on for many years [13]. New progresses have been made
recently [14], and more works are needed in order to de-
velop systematic approaches in predicting lattice stabil-
ity for energy, atomic mobility, elastic coefficients, and
other properties.

This paper aims to outline an approach for modeling
of elastic coefficients as a function of temperature and
composition and apply it to Mg alloys. The elastic en-
ergy of a crystal can be written as

Eel ¼
X6

l¼1

X6

m¼1

1

2
clmelem ð4Þ

where clm is a 6 � 6 elastic stiffness coefficient matrix,
and ei represents the strains. We can model clm using
the approach described by Eqs. (1)–(3) as follows:

clm ¼ oclm þ Dclm ð5Þ
oclm ¼

X
xi

oci
lm ð6Þ

Dclm ¼
X

i

X
j>i

xixj

X
n¼0

nci;j
lmðxi � xjÞn

þ
X

i

X
j>i

X
k>j

xixixkcijk
lm ð7Þ

where oci
lm is the elastic stiffness coefficient of species

i; nci;j
lm the nth order binary interaction parameters be-

tween species i and j, and cijk
lm the ternary interactions

among species i, j, and k, all in the structure of the phase

under consideration. In developing multi-component
databases of elastic stiffness coefficients as a function
of temperature and composition, it is crucial to first
build a dataset for pure elements in common structure
such as face-centered cubic (fcc), body-centered cubic
(bcc), and hexagonal close-packed (hcp) similar to the
SGTE thermodynamic data for pure elements [10],
which is recently published by our group [15].

Let us first examine oci
lm, the elastic stiffness coeffi-

cients of a pure element or a stoichiometric compound
i, as a function of temperature. Varshni [16] presented
the following equation:

oci
lm ¼ oci0

lm �
S

et=T � 1
ð8Þ

where oci0
lm; s and t are constants. oci0

lm is the elastic stiff-
ness coefficient at 0 K. For higher temperatures, as
vibrational energy changes linearly with respect to tem-
perature, Lowrie and Gonas [17] and Slagle and
McKinstry [18] presented polynomials in temperature as

oci
lm ¼ aþ bT þ cT 2 ð9Þ

The similar equation was also tested by Varshni [16]
with b = 0 in Eq. (9) and used in the CALPHAD mod-
eling approach, sometimes with additional higher-order
terms [10]. We will test both Eqs. (8) and (9) in the pres-
ent work.

For binary and ternary interaction parameters, let us
follow the same approaches as in thermodynamic and
atomic mobility modeling, i.e.

nci;j
lm ¼ nAi;j

lm þ nBi;j
lmT þ nCi;j

lmT 2 þ
nDi;j

lm

T 2
ð10Þ

cijk
lm ¼ xiI i

lm þ xjI
j
lm þ xkIk

lm ð11Þ

with nAi;j
lm;

nBi;j
lm;

nCi;j
lm;

nDi;j
lm; I

i
lm; I

j
lm, and Ik

lm being binary
and ternary model parameters to be evaluated. For
phases with more than one sublattice, Eqs. (6) and (7)
can be rewritten in general as

oclm ¼
X
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Y
t
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it
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lm

 !
ð12Þ
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where ocem
lm is the elastic stiffness coefficient of the end-

member. The first and second terms in Eq. (13) represent
the binary and ternary interaction parameters in each
sublattice, while the third term describes the interaction
between two sublattices [4,19].

There are two classic approaches to calculating the
polycrystal elastic properties in terms of the single-crys-
tal elastic coefficients: one is Voigt’s approach for the
upper bound based on the uniform strain, and the other
is Reuss’s approach for the lower bound based on the
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uniform stress (see e.g. Ref. [20]). According to Hill’s
empirical average [21], the bulk (BH), shear (GH) and
Young’s (EH) moduli are calculated as BH = (BV +
BR)/2, GH = (GV + GR)/2, and EH = (9BHGH)/(3BH +
GH), with subscripts V and R representing Voigt and
Reuss approaches, respectively. By employing a varia-
tional approach and considering the crystal anisotropy,
Hashin and Shtrikman [22] developed upper and lower
bounds as a function of orientation averages, which
are tighter than the Voigt–Reuss approaches. Further
development includes extensions to consider the two-
point and high-order correlation functions and strong
textured grains [23]. For simplicity, we will use Hill’s
average in the present work.

Furthermore, Hashin and Shtrikman [24] considered
multi-phase materials as mechanical mixtures of a num-
ber of different isotropic and homogeneous elastic phases.
With the smallest bulk and shear moduli of phases de-
noted by B1 and G1, and the largest by Bn and Gn, the
bounds of effective bulk and shear moduli, with B�1 and
G�1 for the lower bounds and B�n and G�n for the upper
bounds, are obtained as follows, respectively:

B�i ¼ Bi þ
Ai

1þ aiAi
ð14Þ

G�i ¼ Gi þ
Si

2þ 2bSi
ð15Þ

with ai ¼ 3
3Biþ4Gi

; Ai ¼
P

j–1
V j
1

Bj�Bi

; bi ¼ � 3ðBiþ2GiÞ
5Gið3Biþ4GiÞ and

Si ¼
P

j–1
V j

1
2ðGj�GiÞ

�bi
where Vj is the volume fraction of

phase j, and i = 1 and n for the lower and upper bonds,
respectively. These bounds have been widely used for
composite materials in the literature [23].

3. Elastic coefficients by first-principles calculations

The elastic coefficients can be obtained using the effi-
cient strain–stress method [8]. Consider a crystal with
lattice vectors R subject to a set of strains, e = (e1, e2,
e3, e4, e5, e6), with e1,e2, and e3 being the normal strains
and e4, e5 and e6 the shear strains. For small shape
change due to strains e, the deformed lattice vectors
can be approximated as follows:

Rdef ¼ R

1þ e1 e6=2 e5=2

e6=2 1þ e2 e4=2

e5=2 e4=2 1þ e3

0
B@

1
CA ð16Þ

The corresponding set of stresses, r = (r1,r2, r3, r4, r5,
r6) for the deformed crystal, is obtained directly from
the output of the first-principles calculations, which is
more accurate than the stresses calculated from deriva-
tives of the work done. Based on the general Hooke’s
law, the elastic stiffness coefficients are calculated by

c ¼ e�1r ð17Þ
where e�1 represents the (pseudo)inverse of the sets of
strains. The number of independent elastic stiffness con-
stants can be reduced based on crystal symmetries [25].
The bulk, shear and Young’s moduli can be derived from
the calculated first-principles elastic stiffness constants.

The temperature dependence of elastic stiffness coeffi-
cients can be obtained through first-principles calcula-
tions with the quasi-harmonic phonon approximation.
The Helmholtz energy of a crystal can be obtained from
first-principles calculations by considering the static en-
ergy at 0 K, the lattice vibrational free energy of the lat-
tice ions, and the thermal electronic contribution [26].
The equilibrium volume at a given temperature, V(T),
can be computed through the derivative of Helmholtz
energy to volume which defines the external pressure.
As noted by Ledbetter [27], the temperature dependence
of elastic stiffness coefficients is primarily due to the vol-
ume expansion with temperature increasing. By calculat-
ing the elastic stiffness coefficients at various volumes,
the following equation can be used to evaluate their tem-
perature dependence [28]:

cijðV Þ ()
V ðT Þ

cijðT Þ ð18Þ
It should be noted that the elastic stiffness coefficients
thus obtained are under isothermal conditions. On the
other hand, when the elastic stiffness coefficients are
measured by resonant vibrations, the system may be
viewed as adiabatic because elastic waves travel faster
than heat diffuses, and the deformation due to the elastic
waves is thus a constant-entropy (isentropic) process.
Consequently, the isothermal elastic stiffness coeffi-
cients, cT

ij, are different from the adiabatic or isentropic
elastic stiffness coefficients, cS

ij, with their thermody-
namic relations discussed by Davies [29] as follows:

cS
ij ¼ cT

ij þ
Tkikj

qCe
ð19Þ

ki ¼
@S
@ei

� �
T

¼ � @ri

@T

� �
e

¼ � @2F
@T@ei

¼ �
X

j

@ri

@ej

� �
T

@ej

@T

� �
r

¼ �
X

j

ajcT
ij ð20Þ

where q is the density, Ce the heat capacity under con-
stant strain, and aj the thermal expansion. For a stable
phase, the second derivative of its Helmholtz energy in
Eq. (20) is positive, and therefore both ki and kj are neg-
ative. This results in cT

ij < cS
ij.

For solution phases or compounds with homogeneity
ranges, the supercell method can be employed. For di-
lute solutions, one solvent atom is substituted by one
solute atom in a supercell. For concentrated solutions,
the special quasi-random structure (SQS) approach
[30,31] can be employed with their pair and multiple cor-
relation functions as close as possible to random solu-
tions. The first-principles approaches described above
can be directly applied to the SQS supercells to obtain
elastic stiffness coefficients of solid solution phases as a
function of temperature.

4. Elastic coefficients in Mg alloys

Based on our efficient strain–stress method [8] as out-
lined previously, the elastic coefficients of binary Mg–X
dilute hcp solutions and binary compounds at 0 K have
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been predicted from first-principles calculations [32,33].
In the present paper, we focus on the elastic coefficients
of the Mg–Al system. In the Mg–Al system, the
Al12Mg17 intermetallic compound is in equilibrium with
the hcp solid solution phase [34]. Zhang et al. [35] re-
cently predicted the elastic coefficients of pure hcp-Mg
and Al12Mg17 as a function of temperature. The results
from first-principles calculations [33,35] are used to eval-
uate model parameters based on Eqs. (8) and (9) as
shown in Table 1 for a-hcp of pure Mg and Table 2
for c-Al12Mg17 with the coefficient of determination
(R2) between 0.95 and 1 (also true for parameters in
all other tables). All isentropic elastic stiffness coeffi-
cients are calculated in the present work using equations
discussed earlier. It is found that there is no need to in-
clude the parameter c in Eq. (9) for either a or c phase.
The parameters nCi;j

lm and nDi;j
lm in Eq. (10) are not needed

either. It should be mentioned that the expressions for
elastic compliance coefficients are quite complex for
non-cubic structures, and so are their BR and GR. Con-
sequently, they are fitted to their values using the simple
formula as shown in Eqs. (8) and (9). The same is true
for EH when Eq. (8) is used.

To evaluate the effect of alloying elements, the tem-
perature dependences of elastic stiffness coefficients of
with 2.78 at.% Al are obtained from first-principles cal-
culations in the present work using a supercell of 36
atoms with one being Al and 35 being Mg as in Ref.
[33], and the model parameters are listed in Table 3.
In order to model the elastic coefficients in the whole
composition range as shown in Eq. (6), the elastic stiff-
ness coefficients of hcp-Al are obtained from first-princi-
ples calculations in the present work with parameters
listed in Table 4. Based on these data, the interaction
parameters between Mg and Al in a are evaluated from
Eq. (10) with only zero-order interaction parameters
considered for each elastic stiffness coefficient due to
the only data point at 2.78 at.% Al (see Table 5). The

elastic stiffness coefficients of the Mg–Al-hcp solid solu-
tion as a function of temperature and composition are
thus represented by the following equation:

chcp
lm ¼ xAl

ocAl�hcp
lm þ xMg

ocMg�hcp
lm

þ xAlxMg
0AAl;Mg

lm þ 0BAl;Mg
lm T

� �
ð21Þ

with ocMg�hcp
lm from Table 1, ocAl�hcp

lm from Table 4, and
0AAl;Mg

lm and 0BAl;Mg
lm from Table 5.

For a two-phase mixture, Eqs. (14) and (15) reduce to

B�i ¼ Bi þ
V jðBj � BiÞð3Bi þ 4GiÞ

3Bi þ 4Gi þ 3V iðBj � BiÞ
ð22Þ

G�i ¼ Gi þ
5GiV jðGj � GiÞð3Bi þ 4GiÞ

5Gið3Bi þ 4GiÞ þ 6V iðGj � GiÞðBi þ 2GiÞ
ð23Þ

For the lower bonds, Bi and Gi are from the phase with
lower values, and Bj and Gj from the phase with higher
values. For the upper bonds, Bi and Gi are from the
phase with higher values, and Bj and Gj from the phase
with lower values. We apply the above equations to bin-
ary Mg–Al binary alloys with 3 and 9 wt.% Al, respec-
tively, in analogy to the AZ31 and AZ91 alloys. The
mole fractions of phases as a function of temperature
are obtained from thermodynamic calculations [34].

For simplicity, we approximate the elastic properties
of the off-stoichiometric c phase with those of the stoi-
chiometric one as its composition in equilibrium with
the hcp solution phase is almost constant with respect
to temperature. The isothermal and isentropic bulk
(BH), shear (GH), and Young’s (EH) moduli of Mg–
3 wt.% Al and Mg–9 wt.% Al are shown in Figures 1
and 2, respectively, along with experimental, isentropic
shear (GH), and Young’s (EH) moduli data of the
AZ31 (Mg–3 wt.% Al–1 wt.% Zn) and AZ91 (Mg–
9 wt.% Al–1 wt.% Zn) alloys available in the literature
measured by means of resonant vibrations. It is noted
that the predicted values of isothermal shear modules

Table 2. Two sets of model parameters for Al12Mg17 based on Eqs. (8) and (9), respectively, evaluated from first-principles calculations in Ref. [35].

cT
ij cS

ij cT
ij cS

ij

a b a b oci0
lm s t oci0

lm s t

c11 101.744 �2.667 � 10�2 102.178 �2.356 � 10�2 101.371 1.438 52.702 101.371 1.333 56.628
c12 28.733 �8.917 � 10�3 29.167 �5.810 � 10�3 28.613 0.464 51.002 28.613 5.499 720.616
c44 32.546 �6.280 � 10�3 32.546 �6.280 � 10�3 32.423 0.459 70.964 32.423 0.459 70.964
BH 53.070 �1.479 � 10�2 53.504 �1.173 � 10�2 52.121 14.077 424.608 52.804 1.694 142.248
GH 34.129 �7.277 � 10�3 34.130 �7.330 � 10�3 33.480 11.940 586.277 33.813 0.726 98.314
EH 84.315 �1.890 � 10�2 84.438 �1.821 � 10�2 82.656 29.889 576.707 83.595 1.944 105.921

Table 1. Two sets of model parameters for hcp-Mg based on Eqs. (8) and (9), respectively, evaluated from first-principles calculations in Ref. [35].

cT
ij cS

ij cT
ij cS

ij

a b a b oci0
lm s t oci0

lm s t

c11 59.583 �2.023 � 10�2 59.248 �1.158 � 10�2 58.987 2.396 112.892 58.987 0.361 23.078
c12 29.643 �1.083 � 10�2 29.305 �6.354 � 10�3 28.872 4.738 356.350 28.872 0.696 112.164
c13 20.658 �2.597 � 10�3 20.478 �5.969 � 10�4 20.431 1.655 464.729 20.431 0.017 31.736
c33 64.419 �1.921 � 10�2 63.934 �1.415 � 10�2 63.102 7.927 343.544 63.102 1.468 105.147
c44 17.656 �3.019 � 10�3 17.656 �3.019 � 10�3 17.610 0.185 60.981 17.610 0.185 60.981
BH 36.167 �1.013 � 10�2 35.883 �6.761 � 10�3 35.318 5.511 413.917 35.568 0.732 107.313
GH 17.565 �5.021 � 10�3 17.535 �4.720 � 10�3 17.447 0.555 102.892 17.494 0.0843 17.854
EH 45.352 �1.293 � 10�2 45.236 �1.145 � 10�2 44.923 2.101 146.861 45.089 0.325 27.715
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in both alloys are well in line with the experimental isen-
tropic ones at low temperatures, indicating the poten-
tially small corrections between isothermal and
isentropic shear moduli at low temperatures. As can
be seen, the correction becomes more significant at high
temperatures.

In AZ31, Watanabe et al. [36] suggested that the drop
in elastic constants in fine-grained hot-rolled samples at
above 400–423 K as a result of the onset of grain bound-
ary sliding. The current calculations indicate that this
drop may also be affected by the decrease of the amount

of c-Al12Mg17. At higher temperatures, Watanabe et al.
[36] observed significantly lower shear and Young’s
moduli in the hot-rolled plate (average grain size of
51 lm) and sheet (average grain size of 11 lm) than
those in the sample solution-treated at 686 K for 48 h
(average grain size of 150 lm). This difference is more
dramatic at temperatures higher than 475 K where the
alloy is in the single a-hcp phase region at equilibrium,
keeping in mind that the phase relation in AZ31 is
slightly different from the Mg–3 wt.% Al. The signifi-
cantly lower shear and Young’s moduli are likely due

Table 5. Model parameters for the Mg–Al-hcp solid solution based on Eq. (10) with the hcp-Mg and hcp-Al from Eqs. (8) and (9), respectively.

ocT
lm ¼ aþ bT ocS

lm ¼ aþ bT ocT
lm ¼ aþ bT ocS

lm ¼ aþ bT
oAi;j

lm
oBi;j

lm
oAi;j

lm
oBi;j

lm
oAi;j

lm
oBi;j

lm
oAi;j

lm
oBi;j

lm

c11 �108.133 0.138 �122.956 0.131 �125.534 0.173 �118.231 0.275
c12 �1.735 0.036 �6.776 7.492 � 10�2 �4.561 4.248 � 10�2 �0.682 6.556 � 10�2

c13 �51.078 �0.155 �62.475 �2.027 � 10�2 �34.032 �0.193 �54.297 �2.260 � 10�2

c33 218.147 �0.082 207.164 7.586 � 10�2 163.985 5.286 � 10�2 223.035 5.155 � 10�2

c44 �89.554 �0.038 �89.554 �3.881 � 10�2 �112.362 1.188 � 10�2 �112.362 1.188 � 10�2

BH �25.642 �0.036 �33.557 7.891 � 10�2 �26.138 �1.501 � 10�2 �32.233 7.706 � 10�2

GH �55.233 0.032 �41.235 4.686 � 10�2 �74.014 0.079 �48.328 5.725 � 10�2

EH �125.517 0.064 �94.355 6.683 � 10�2 �168.756 0.180 �110.313 0.142

Figure 1. Calculated bulk (BH), shear (GH), and Young’s (EH) moduli
of Mg–3 wt.% Al as a function of temperature in comparison with the
experimental data of AZ31 [36] with the diamond symbols from
solution treated and the triangle and square symbols from plates and
sheets after hot rolling, respectively.

Figure 2. Calculated bulk (BH), shear (GH), and Young’s (EH) moduli
of Mg–9 wt.% Al as a function of temperature in comparison with
experimental Young’s modulus ( ) [37], ( ) [38], and shear modulus
( ) [39] of the AZ91 alloy.

Table 3. Model parameters for Mg–2.78 at.% Al-hcp based on Eqs. (8) and (9), respectively, evaluated from present first-principles calculations.

cT
ij cS

ij cT
ij cS

ij

a b a b oci0
lm s t oci0

lm s t

c11 57.874 �0.0171 57.109 �8.551 � 10�3 58.325 �1.096 �64.852 58.325 �0.929 �103.068
c12 30.639 �0.0102 30.129 �4.501 � 10�3 31.175 �0.352 �31.559 31.175 �0.970 �197.049
c13 20.161 �0.0072 19.6337 �1.311 � 10�3 21.200 �0.732 �83.307 21.200 �0.754 �473.362
c33 71.527 �0.0218 70.710 �1.267 � 10�2 71.250 �0.837 �41.311 71.250 �0.139 �10.794
c44 14.866 �0.0042 14.866 �4.204 � 10�3 14.400 �0.200 �69.827 14.400 �0.200 �69.827
BH 36.557 �1.162 � 10�2 35.969 �4.891 � 10�3 35.805 4.037 296.973 35.886 0.179 36.494
GH 16.014 �4.217 � 10�3 16.347 �3.593 � 10�3 15.180 1.992 498.274 15.774 1.751 451.816
EH 41.851 �1.142 � 10�2 42.588 �8.669 � 10�3 39.892 5.222 466.589 41.253 3.974 416.768

Table 4. Model parameters for hcp-Al based on Eqs. (8) and (9), respectively, evaluated from present first-principles calculations.

cT
ij cS

ij cT
ij cS

ij

a b a b oci0
lm s t oci0

lm s t

c11 103.024 �4.290 � 10�2 101.578 �2.907 � 10�2 101.333 7.353 158.110 101.333 �8.111 � 10�3 �0.276
c12 67.287 �2.402 � 10�2 65.641 �1.227 � 10�2 66.021 6.949 249.814 66.021 �0.184 �14.465
c13 52.379 �1.819 � 10�2 50.742 �6.668 � 10�3 51.403 5.430 256.279 51.403 �0.583 �80.723
c33 108.921 �4.751 � 10�2 107.129 �3.448 � 10�2 106.639 11.531 214.719 106.639 0.181 5.347
c44 4.007 �8.601 � 10�3 4.007 �8.601 � 10�3 3.870 0.325 38.173 3.870 0.325 38.173
BH 73.229 �2.818 � 10�2 71.615 �1.598 � 10�2 71.370 7.794 248.014 71.512 0.221 13.794
GH 14.705 �1.020 � 10�2 14.740 �9.599 � 10�3 14.359 1.363 125.674 14.549 0.408 42.348
EH 41.347 �2.730 � 10�2 41.382 �2.397 � 10�2 40.331 4.262 141.213 40.867 1.365 51.571
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to the grain boundary sliding as suggested by the
authors [36]. On the other hand, the kinks on the shear
and Young’s moduli are less visible for the solution-trea-
ted sample. This is probably because the sample did not
reach equilibrium at the temperatures of measurements
as the holding time at those temperatures was not men-
tioned and was probably very short. As most c-
Al12Mg17 particles are typically on grain boundaries,
larger grain sizes imply larger sizes of c-Al12Mg17 parti-
cles for a given alloy composition and thus lower disso-
lution rates of c-Al12Mg17 and longer time to reach
equilibrium. The interplay of c-Al12Mg17 dissolution
and grain boundary sliding jointly determines the elastic
properties at high temperatures.

The comparison for AZ91 is shown in Figure 2. The
experimental shear modulus is lower than the predicted
one at low temperatures, but higher at high tempera-
tures. This is probably due to the higher amount of c-
Al12Mg17 than its equilibrium amount at temperatures
of measurements as there is not enough time for the al-
loy to reach equilibrium.

5. Summary

In summary, in this viewpoint article on computa-
tional modeling of elastic coefficients, we present a sys-
tematic approach in calculating elastic stiffness
coefficients and bulk, shear, and Young’s moduli of sin-
gle crystals and multi-phases through first-principles cal-
culations and CALPHAD modeling. The calculations
are made for the binary Mg–Al alloys and compared
with the experimental data of AZ31 and AZ91 in the lit-
erature. At low temperatures, the predicted elastic coef-
ficients agree well with experimental data. At high
temperatures, both the dissolution of c-Al12Mg17 and
the grain boundary sliding affect the elastic properties
of the alloys. Further works are needed in quantifying
and separating their contributions.
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