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[1] We developed a robust Bayesian inversion scheme to plan and analyze laboratory
creep compaction experiments. We chose a simple creep law that features the main
parameters of interest when trying to identify rate-controlling mechanisms from
experimental data. By integrating the chosen creep law or an approximation thereof, one
can use all the data, either simultaneously or in overlapping subsets, thus making more
complete use of the experiment data and propagating statistical variations in the data
through to the final rate constants. Despite the nonlinearity of the problem, with this
technique one can retrieve accurate estimates of both the stress exponent and the activation
energy, even when the porosity time series data are noisy. Whereas adding observation
points and/or experiments reduces the uncertainty on all parameters, enlarging the range of
temperature or effective stress significantly reduces the covariance between stress
exponent and activation energy. We apply this methodology to hydrothermal creep
compaction data on quartz to obtain a quantitative, semiempirical law for fault zone
compaction in the interseismic period. Incorporating this law into a simple direct rupture
model, we find marginal distributions of the time to failure that are robust with respect to

errors in the initial fault zone porosity.
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1. Introduction

[2] When analyzing rock deformation experimental data,
one deals with both measurement errors and complexity in
the deformation processes. This often leads to partial or only
qualitative data analyses, which limits the application of
these studies to large-scale geophysical problems (e.g.,
modeling of the earthquake source). To bridge the gap
between laboratory studies and their application, there is a
need for a probabilistic approach that can be used both to
infer the parameters of a constitutive model from experi-
mental rock compaction data, and to simulate numerically
the time-dependent porosity reduction in fault zones from a
known (e.g., lab-derived) constitutive relationship, while
still keeping track of all the uncertainties. This latter step is
crucial if we are to achieve process-based seismic hazard
assessment. Both the rate of effective stress buildup (namely,
due to fault compaction) and the recovery of fault strength
between earthquakes determine how long it will take for
different parts of the previously ruptured fault to reach
failure again, thus controlling the timing and the size of
the next rupture [Segall and Rice, 1995]. Although labora-
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tory compaction and time-dependent strength recovery data
are key elements in obtaining a physical understanding of
this process [Muhuri et al., 2003], deterministic fault
models derived from these data need a measure of their
robustness if they are to be useful in generating forecasts of
earthquake rupture timing and extent. It is therefore impor-
tant to work within a modeling framework that enables the
use and propagation of uncertainties in the experimental
data and the model parameters through to the final result.

[3] Toward this end, we present here a probabilistic,
Bayesian, framework for the analysis of laboratory com-
paction data. Our approach is illustrated by a directed
graphical model. Though not commonly used in the Earth
Sciences, graphical models are very useful to show the
relationships between all the variables, parameters, obser-
vations and models that play a role in a given (direct or
inverse) problem. We show how the experimental setup can
be represented in such a model, and how this enables us to
decompose, in a rigorous fashion, the inversion of the creep
data. Because we are mainly interested in deformation
mechanisms that can play a role in the interseismic com-
paction of fault zones, we focus on one rather simple,
though experimentally derived, compaction law that we
consider valid for a range of diffusion-controlled mecha-
nisms. Its parameters are a stress exponent, an apparent
activation energy, and a porosity term. However, the ap-
proach presented here could accommodate any other type of
mechanism.

[4] We first develop the method for the general case of
time-dependent porosity reduction during hydrostatic com-
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paction at hydrothermal conditions and show how it can be
used to decide on the optimal range of experimental
parameters (temperature, effective stress, etc.) and the
number of tests needed to generate a robust suite of
constitutive parameters (stress exponent, apparent activation
energy, porosity term). We then adapt this Bayesian infer-
ence method to determine these constitutive parameters
from experimental creep compaction data on quartz
obtained at elevated temperatures by Niemeijer et al.
[2002]. Finally, we show how the creep laws so derived
can be implemented in direct (generative) models of the
time evolution of porosity and fluid pressure along faults
during the earthquake cycle, using graphical models as a
guide to propagate experimental uncertainties. This approach
represents a substantial improvement over existing fault
zone compaction models, which utilize arbitrary compac-
tion laws with little or no basis in laboratory experiments
[see Fitzenz and Miller, 2003].

2. Application of Bayesian Inference to Time-
Dependent Compaction

[5] The Bayesian methodology is an approach to statistics
in which all forms of uncertainty are expressed in terms of
probability [Bernardo and Smith, 1994]. Indeed, geophys-
ical field data, experimental lab results or any piece of
information, no matter how obtained, can be described by
probabilities in the case of discrete variables or by a
probability density function (pdf), in the case of continuous
variables. In this study, we consider random variables, some
of which are linked by deterministic models. This differs
greatly from the pure deterministic modeling approaches;
instead of yielding single values, this method will yield
probability density functions for all the model results. Given
this probabilistic approach, forward calculations are distin-
guished from forward modeling and referred to as genera-
tive modeling, and the inverse calculations are not called an
inversion anymore, but a Bayesian inference.

[6] In the present study, we develop a Bayesian inference
method specifically to analyze laboratory compaction
experiments performed on natural and synthetic fault gouge
samples. To do so, we chose a simple and rather general
creep compaction law, and then fit this creep law to a set of
experimentally derived porosity time series. Since porosity
in a general compaction creep law can exhibit a highly
nonlinear dependence on effective stress and temperature,
our method consists of (1) finding an optimal parameteri-
zation, providing a behavior as linear as possible over a
finite range of stress and temperature, and (2) then
performing whatever inference is required to solve for the
constitutive parameters in the original (physically meaning-
ful) creep law. This is a fundamentally different approach
than is commonly used in analysis of creep compaction
data, in which all but one of the independent variables (e.g.,
compaction strain, effective stress, temperature, grain size)
are held fixed in an experiment while the remaining variable
is systematically changed to solve for the dependence of
compaction rate on that free variable. In addition to the
computation of the covariance matrix, the main advantage
of our method compared to common practice is the fact that
we integrate the creep rate law with respect to time and can
deal with porosity as a function of time or “compacted
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porosity” as a function of initial porosity if the time interval
is fixed. This removes three difficulties encountered in
traditional analyses of laboratory compaction data: (1) the
choice of a relevant definition for the “state” of a sample,
(2) the small number of data points effectively used in the
analysis due to the need to compare strain rates for samples
at the same state, and (3) the large uncertainties associated
with the computed derivatives of the porosity or strain
versus time curves when the deformation rate is low (i.e.,
typically, when the ratio between the instantaneous and the
starting porosity becomes lower than 0.5 [Niemeijer et al.,
2002]).

[7] To show how this analysis can be used in forward
modeling of fault compaction, we also propose a simple
generative model of Coulomb failure for an undrained fault
compacting following the creep law inferred from the data
of Niemeijer et al. [2002]. This enables us to discuss the
shape of the pdfs both for the time to failure and for the
stress and porosity conditions at failure which depends not
only on the covariance matrix of the creep parameters but
also on the pdf of the initial porosity (or of any other
parameter).

3. Inferring Creep Parameters From
Measurements of Time-Dependent Compaction

[8] The rationale for and the full description of the
methodology used here are given by Fitzenz et al. [2005]
for the more general case of repeated porosity measure-
ments (e.g., from field or borehole, direct or indirect
observations). For completeness, we present here a short
summary of the method as applied to analysis of porosity
versus time data from laboratory compaction experiments.

3.1. Choice of the Creep Law

[9] The creep behavior of rocks depends on temperature
(T), pressure (P), the presence or absence of fluids, and the
mineralogy and grain size distribution of the rock assem-
blage. Experimental compaction studies have been carried
out on a wide variety of materials, including halite [Spiers et
al., 1990; Hickman and Evans, 1992; Bos et al., 2000] and
quartz [e.g., Schutjens, 1991; Dewers and Hajash, 1995;
Chester et al., 2004]. Many processes were shown to be
active at hydrothermal conditions, especially in polycrys-
talline compaction experiments, including intergranular
pressure solution, cataclasis rate-limited by subcritical crack
growth, and intracrystalline plasticity [Bos et al., 2000;
Dewers and Hajash, 1995; Schutjens, 1991; Chester et
al., 2004]. In many cases, the interpretation of the experi-
mental data was made difficult because the data did not fit
the theoretical laws well, owing to a transition in rate-
controlling deformation mechanisms during the experi-
ments, complex mineralogy, changes in grain packing
geometry, or other effects that were not included in the
theoretical rate laws. In other cases, the range of T, P
conditions employed in these experiments were insufficient
to yield a well-constrained constitutive relationship [Chester
et al., 2004]. Even when a good fit of data to the rate laws
was obtained, in all cases the data were analyzed ““inde-
pendently” for the different parameters of the laws (as
described in section 2), and the uncertainties were not
evaluated at each step and propagated to the next, making
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it difficult to use the derived creep laws in quantitative
numerical models and assess the robustness of their results.
Therefore, although there is a wealth of experimental data
obtained for rock creep that gives us valuable insights into
the deformation mechanisms involved and their relative
sensitivities to variations in T, P, mineralogy, grain size,
fluid chemistry and other factors, creep laws deriving from
quantitative analyses of these data are scarce.

[10] Most theoretical compaction laws are tailored to a
single deformation mechanism (dislocation creep, intergran-
ular pressure solution, cataclastic flow, stress corrosion
cracking) and are characterized by a stress exponent, an
activation energy, a porosity term, and another term, usually
dependent on the grain size. However, during deformation
of real fault gouges, more than one process can be occurring
at a given time (maybe over different timescales) and a
single-mechanism rate law is probably not appropriate. We
therefore choose to invert creep data for a more general
creep law of the form [Rutter and Wanten, 2000]

¢ = 0 ol exp(—0/(RT)) exp(639) (1)

giving the porosity reduction rate as a function of the
effective confining stress (o), temperature (T in °K), and
instantaneous porosity (¢). In this expression, 0 is the stress
exponent, 6, is the activation energy, and 65 is an
empirically derived porosity term. 6, is an empirical
constant, containing the grain size sensitivity, which will
be assumed constant in section 4 where we analyze
experiments conducted at roughly constant grain size.

[11] In the experiments analyzed here [Niemeijer et al.,
2002], each porosity measurement (in %) is determined to
an accuracy of £1 to 2%. We assume that this corresponds
to a 95% confidence interval and represent the overall
measurement error in porosity as a Gaussian, with standard
deviation 0.5%. Here, porosity is treated as a bulk property
of the sample, i.e., spatial variations of porosity within the
sample are ignored. In the following, we evaluate the prob-
ability density function (pdf) of the parameters of the
general creep law (i.e., equation (1), which we will call
the model) knowing the porosity as a function of time at
different 7'and o.g conditions.

[12] Although we use only one “model,” one could test
different creep laws. In particular, once 6; and 6, in
equation (1) are determined, one could propose a probable
dominant mechanism and try the same inversion scheme for
more appropriate (i.e., physically based) creep laws. Indeed,
the Bayesian framework is a natural framework for model
selection and assessment, allowing for the determination of
the best creep law for a particular experimental data set.

3.2. Hierarchical Bayesian Formulation of the
Inference Scheme
3.2.1. Background and Graphical Model

[13] The relationships between all the ingredients of our
problem are synthesized in a directed graphical model
(Figure 1). In such a model, each node represents a set of
random variables. A black arrow pointing from node A to
node B means that B depends on A (or that B can be derived
using A, or that A causes B). In terms of probability, it
denotes a conditional pdf. The terminal nodes without
incoming arrows are prior pdfs. They represent what we
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believe to be true before starting the experiments (i.e., the a
priori assumptions). The least restrictive startup point for the
initial porosity in our case is a uniform pdf between 0 and
100%. The multidimensional pdf of all the variables (i.e.,
joint pdf) is then given by the product of all prior and
conditional pdfs according to the graph structure. What we
want is to find the best parameters for a given model and a
given data set (i.e., take the arrows backward, or follow the
thick arrows on the graph). In other words, we want to find
the parameter values that maximize the posterior pdf of the
creep parameters. According to Bayes’ theorem, it is equiv-
alent to maximizing this joint probability. This is called
Bayesian estimation [see Bernardo and Smith, 1994].

[14] To mimic realistic circumstances, we show the rela-
tionships between the variables for a set of i observations of
(time-dependent) porosity for each one of the n temperature
and effective stress conditions (i.e., n experiments). The
factorial structure of the graph is due to the experimental
design. Sets of i observations and n experiments are
symbolized by rectangles or plates [Jordan, 2004].

[15] In other words, the graph on Figure 1 means that the
noisy ¢,ps derive from (i.e., are conditionally dependent
upon) the time ¢ of the measurement, the inferred initial
porosity (¢o) and the experimental temperature and stress
conditions by using model m and its parameters 6. It means
that if we have a creep model and know its parameters, we
just need to choose the temperature and stress conditions
and an initial porosity to simulate creep experiments. In the
direct (black arrow) sense, the graph is therefore called a
generative model. On the contrary, if the sense of the arrows
is reversed (thick arrows), the graph maps out the different
steps needed to perform the Bayesian inference. Starting
from the (inherently noisy) observations of porosity as a
function of time during creep experiments, it aims at
computing the distribution of the creep parameters that best
explains the data, assuming that model m is true.

[16] Note that although ¢y might be measured for some of
the experiments, it is meant here as a model parameter
inferred from the analysis of all the porosity measurements
at + > 0 for a given experiment. The accuracy of this
parameter (with uncertainties) estimated this way is indeed
much greater than by using one measurement. The standard
deviation for the observed porosities has to be defined for
each experiment. This way, we can account for varying data
quality, in particular when extreme values of temperature
and stresses are investigated. In principle, all the nodes
(except the model) are random variables. Since temperature,
stresses and time are determined much more accurately than
porosities, we simplify the problem, and assume that they
can be known perfectly (fixed values). We will also assume
that the porosity measurements follow a Gaussian distribu-
tion due to measurement uncertainties.

[17] The mathematical derivation is only outlined in
section 3.2.2 and is presented in detail in Appendix A.
3.2.2. Direct and Inverse Approaches: Equations

[18] Because we are using a creep law of the form of
equation (1), the compacted porosity ¢ as a function of the
porosity prior to compaction ¢ is given by

1
= f(py,t) = % log(03 17 +e ) (2)
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porosity
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Experimental
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measurement

(measured or
simulated)

t

Porosity

QDobs
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(e.g.,
pressure solution,
dislocation creep,
stress corrosion

cracking)

—— Generative model

Figure 1.

Compaction
parameters O

activation energy of
process m,

stress exponent,
etc.

== Inference

Simplest graphical model representing the creep compaction experiments. All the white nodes

are random variables. The black arrows show the dependence between them. This graph means that noisy
Oops derive from the time ¢ of the measure, the inferred initial porosity ¢, and the experimental
temperature and stress conditions, by using model m and its parameters 6. The thick arrow represents the
inference step. The inference starts from the (inherently noisy) observations of porosity as a function of
time during creep experiments and aims at computing the distribution of the creep parameters that best

explains the data, assuming that model m is true.

where

Y ==l ol e /D (3)
where t is the time since the onset of compaction and ¢, is
the initial porosity. Note that in our previous analysis
[Fitzenz et al., 2005] the time interval between successive
measurements of compacted porosity was assumed constant
and f(p, Af) was a function of v = 7/At.

[19] First, we need to reparameterize the problem, since it
is highly nonlinear [MacKay, 1998]. This consists of finding
an optimal parameterization, having a behavior as linear
as possible, performing whatever inference is required,
and finally going back to the original parameterization
(equation (2)). In contrast to the case of successive porosity
measurements where no initial porosity can be defined for
the whole data set and where the time interval between
measurements is constant [Fitzenz et al., 2005], the param-
eterization has to be adapted to account for the fact that the

duration of the compaction interval changes between each
observation and between experiments.

[20] Figure 2 shows the corresponding graphical model,
wherein the problem was decomposed into as many ele-
ments as needed to have the simplest possible relationships
between the variables used in our analysis. This makes both
the choice of the algorithm and the expression of the
corresponding probabilities much easier. Time, temperature,
and effective stress are now assumed perfectly known
(fixed), and porosity is decomposed as an ideal porosity
¢ resulting from equation (2), and an observed (noisy)
porosity ¢.,s of mean ¢. Spatial variabilities of porosity
within the samples are ignored.

[21] Since there are now more nodes (variables) on the
graph than just the data and the parameters we want to infer,
we first need to integrate the joint pdf over all possible
values of the variables we are not interested in. This is
called a marginalization step. In our case, these variables
include the initial porosity for each experiment, as well as
the intermediate random variables X, v, and © that were
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nant process during all of the experi-
b ments.

Figure 2. Detailed graphical model for the inference. The thin arrows indicate that the noisy ¢, can be
generated from (i.e., are conditionally dependent upon) the exact compacted porosity ¢ at time ¢ as
computed for each initial porosity ¢, and experimental setup by using model m and its parameters 6. In
contrast to this approach, the inference starts from the (inherently noisy) observations of porosity as a
function of time during creep experiments and aims at computing the distribution of creep parameters that
best explains the data, assuming that model m is true (thick arrows). The intermediate random variables
XN, v, and © were introduced only to make the problem more linear (i.c., easier to solve).

introduced only to make the problem more linear (i.e., easier
to solve), as will be explained in this section. Because of the
complexity of the problem, we use a hierarchical approach
in conducting the inference of constitutive parameters. In
step A, each one of the n experiments is treated individually
before proceeding to the final estimation of the parameters.
Indeed, in a “1 to n” tree structure, we can perform an
independent inference on the tree branches. This is why we
introduce the n parameters v in the graphical model
(Figure 2), which are the estimates of p for each experi-
ment. Thus, after step A is completed, we have n joint
posterior pdfs of (N, v) knowing the observations {¢.p}. In
step B we infer the parameters © using these posterior pdfs
as “observations.” This is equivalent to the message pass-
ing algorithm [Jordan and Weiss, 2002]. Last, we revert to
the original 6 and compute the covariance matrix between
the creep parameters using the Jacobian matrix of the
transform between {©} and {60}.

[22] If one is only interested in a subset of the parameters
0, the related distribution is simply obtained by keeping the
corresponding entries of the covariance matrix X = (J7BJ)~!;
this will be used in section 4.

3.3. Performing the Inference on Simulated
Compaction Data: A Planning Tool

[23] We model compaction numerically using the solution
f to the creep law (equation (5)). Such a creep law was
empirically derived by Rutter and Wanten [2000] from a

suite of experiments performed on synthetic mixtures of
quartz sand in a matrix of fine grained illite + muscovite. In
these experiments, the samples were hydrostatically com-
pacted at a range of effective pressures between 10 MPa and
210 MPa, with a constant pore water pressure of 70 MPa
and temperatures ranging between 300 and 450°C (i.e.,
between 573 and 723°K).

[24] We use equation (2) with the parameters listed as
“true” in Table 1 to compute the porosity time series for
three different series of simulated experiments (settings):
(1) six experiments, T from 300°K to 420°K and o from
15 to 105 MPa; (2) 12 experiments, same range of 7 and
oo (3) 12 experiments, T from 300°K to 720°K and o
from 15 to 200 MPa. All simulated experiments were run
for both 20 and 50 data points per experiment (cases a and
b, respectively). The purpose of this simulation is to
illustrate the effect of increasing (1) the number of experi-
ments, (2) the number of data points acquired per experi-
ment, or (3) changing the range of temperatures and
effective stresses investigated in these experiments on the
accuracy with which constitutive parameters for creep
compaction can be determined. We start with an arbitrary
initial porosity of 27%, and we choose increasing time
intervals as the (simulated) experiments progress. The time
intervals between two consecutive data points correspond to
a porosity variation of 0.8% for the 20-point experiments
and 0.5% for the 50-point experiments. Finally, we add
Gaussian noise to the porosity with a standard deviation of
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Table 1. Inference Results for Three Simulated Experimental Settings Compared to the True Values of the {0}

Parameters®
0o, 0>, Correlation Coefficients
Experimental Setting Result Type Case MPa ! 7! 0, kJ mol ™! 05 (01, 60,)
All true value 2.6 x 1077 3.13 114.5 0.73 0
1 optimum a 132 x 1077 317 115 0.76 0.44
b 1.46 x 1077 3.23 115.2 0.75 0.56
marginal SD a 3.8 x 107° 0.06 0.63 0.007
b 27 x 1078 0.05 0.55 0.004
2 optimum a 127 x 1077 3.16 115.5 0.77 0.48
b 1.89 x 1077 3.11 114.5 0.75 0.54
marginal SD a 3.13 x 107° 0.04 0.68 0.006
b 29 x 1078 0.03 0.50 0.003
3 optimum a 1 x 1077 3.15 114.8 0.77 0.03
b 1.80 x 1077 3.13 114.6 0.75 0.14
marginal SD a 1.9 x 1078 0.02 0.28 0.006
b 1.6 x 10°% 0.02 0.21 0.003

“See text. Case a refers to 20 data point experiments whereas case b refers to 50 data point experiments. SD, standard

deviation.

0.5% to simulate intrinsic uncertainties in laboratory data
acquisition.

[25] The results are given in Table 1 for settings 1, 2, and
3, for both 20 and 50 data points per experiment. The
absolute agreement between the stress exponent (¢,) and the
activation energy () inferred from the simulations versus
the true values is best for setting 3, intermediate for setting
2 and worst for setting 1, but only by relatively small
amounts. In addition, the marginal standard deviations are
systematically smaller for the 50-point cases than for the
20-point cases. As expected, this indicates that we recover
these constitutive parameters most accurately by using the
greater number of experiments over a wider range of
temperatures and effective stresses.

[26] More significantly, we can compare the correlation
coefficients (ratio between the covariance and the square
root of the product of the variances) between the activation
energy and stress exponent inferred from our analyses. They
are shown in Table 1. The correlation coefficients are about
0.5 for the four first sets of simulated experiments (1 a and b
and 2 a and b); uncertainty is essentially the same regardless
of the number of points per experiment or the number of
experiments for a given range of 7 and o.s. However, the
correlation coefficients decrease dramatically below 0.15
when the range of T'and o is increased (setting 3 a and b).
This situation is further illustrated by the corresponding
95% confidence regions for the activation energy and stress

exponent shown on Figure 3, at both 20 (Figure 3, left) and
50 (Figure 3, right) data points per experiment.

[27] Rutter and Wanten [2000] report that the wet phyl-
losilicate + quartz sand experiments showed significantly
more compaction than any of their control experiments (dry
sand, dry sand + phyllosilicate, and wet clean sand). The
corresponding petrographic analysis showed interpenetra-
tion of grain contacts, formation of quartz overgrowths, a
decrease in the amount of quartz embedded in the phyllo-
silicate matrix, and an increase in mean grain size of quartz
with progressive compaction. They attributed these effects
to solution and redeposition of quartz. For such fluid-
assisted compaction processes, we expect the apparent
activation energy to be essentially independent of stress,
as represented by equation (1). In this case, 6; and 6, are
independent variables and should be uncorrelated. Thus
the lower correlation coefficient for experimental setting
3 indicates that it is preferable to the other two settings,
showing that a greater range of temperature and stress is
preferable for independently resolving the stress exponent
and the activation energy. In contrast, the correlation coef-
ficients for settings 1 and 2 are relatively large and similar,
indicating that increasing the number of experiments, while
covering the same range of pressure and temperature con-
ditions, will not reduce the correlation significantly. Finally,
increasing the number of data points per experiment from
20 to 50 (see Figures 2a and 2b) maintains a similar

28 29 3 31 32 33 34
Stress exponent 6 4

29 3 31 32 33 34 35
Stress exponent 6 4

% T T T T T T T T T T T T 124000
£ L case1-20 _ case1-50 4 122000
3 case2-20 case2-50

o~ case3-20 7 case3-50 - 120000
a; L tue . . i true - 118000
(o)) POL-C b MR P N
= %" s g anmmy ? — 116000
[} . ,"o‘ ",0/ ’ "’d‘ el '| //
e[ dgt & ]
S + . - 112000
= L L 1 1 1 1 1 1 1 1 L L
g 110000
©
<

Figure 3. The 95% confidence regions for the stress exponent and the apparent activation energy
derived for the three settings (Table 1) with (left) 20 and (right) 50 data points.
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Table 2. Description of the Five Experiments Used in the Inference®

Confining Pressure, Fluid Pressure, Temperature, Final Grain Size, Initial Porosity,
Sample MPa MPa K pm %
CPf3 300 200 773 47.1 27.31
CPf4 300 150 773 429 29.39
CPf5 300 250 773 40.5 26.12
CPf6 300 200 673 40.9 25.14
CPf7 300 200 873 43.2 31.38

“Derived from Table 1 of Niemeijer et al. [2002].

covariance but results in a dramatic decrease in the exper-
imental uncertainties for each parameter (i.e., the size of the
corresponding error ellipse is dramatically reduced).

[28] In summary, increasing the range of temperature and
effective stress conditions in an experiment is clearly
desirable as it enables one to reduce the covariance between
the inferred constitutive parameters, whereas having more
experiments and more data points per experiment reduces
the uncertainties in these constitutive parameters. Were a
large correlation to be obtained despite these precautions, it
would be very useful information since it could indicate a
change in the dominant deformation mechanism during the
course of the experiments. This could be elucidated by
performing the same inference but on different time win-
dows. For other types of creep deformation processes (e.g.,
dislocation creep), such analyses would need to be per-
formed with the appropriate candidate creep laws, which
would have greatly different forms than equation (1).

4. Application of This Analysis to Actual Creep
Compaction Experiments

[29] We present an application of this analysis to isotropi-
cally stressed water-saturated drained compaction experi-
ments on quartz sand samples by Niemeijer et al. [2002]. In
these experiments (Table 2), temperatures ranged between
400 and 600°C, confining pressure was 300 MPa, and fluid
pressures ranged between 150 and 250 MPa. The porosity
ranged from 30% down to 10%. We use data from their
experiments Cpf3 to Cpf7, all with final grain sizes between
40.5 and 47.1 pum, so that we can ignore grain size effects
on compaction rates.

4.1. Inversion of the Global Data Set

[30] For each of the Niemeijer et al. [2002] experiments,
there are from 15 to 19 measurements of porosity, for a total
of 88 (¢, ¢) data points. We analyzed these data by
performing step A for each experiment and then step B,
as described in section 3.

[31] Through this analysis, we find 6, = 6.40 x 10!
MPa %0 s™'; the stress exponent (6;) = 2.55; an apparent
activation energy (6,) = 37 kJ mol '; the porosity term (65) =
0.53, with standard deviations of 3.0 x 107! MPa—% ¢~ !,
6.2 x 1072, 1.6 kI mol ', and 9.4 x 1073, respectively. The
covariance between the activation energy and stress
exponent is very small, with a correlation coefficient of
0.16, as illustrated by the confidence ellipses in Figure 4.

[32] These results are very different from those obtained
by Niemeijer et al. [2002] using more traditional analysis
techniques (outlined in section 4.2). They find a stress
exponent of 3.09 £ 0.17 and an apparent activation energy

between 60 and 85 kJ mol ', In section 4.2 we show why
these two different analyses led to such divergent results.

4.2. Restricting the Range of Analyzed Data to
Better Target Rate-Controlling Processes

[33] Niemeijer et al. [2002] used the ratio between the
instantaneous porosity at time ¢ and the porosity at the onset
of the experiment as a proxy for the state of the sample,
using the following methodology. First, they measured
porosity as a function of time and, from that, computed
the volumetric strain rate using the two-point central differ-
ence method. They then fit straight lines through log(strain
rate) versus ¢/¢q data for each experiment and interpolated
or extrapolated these strain rate curves to evaluate strain rate
at constant ¢/¢, (their proxy for constant state) under a
variety of temperature and pressure conditions. Then they
computed the slopes of log;o(strain rate) versus log;o(effec-
tive stress) to derive the stress exponent and that of log
(strain rate) versus 1000/RT to estimate the apparent acti-
vation energy, for five values of ¢/¢, ranging from 0.5 to
0.9. At each state, they had to rely on only two to three
points to compute the slope, because there are only three
experiments for which 7 was kept constant while the
effective stress was varied, and three other experiments
for which the effective stress was fixed and the temperature
varied. Finally, they took the average of the stress exponent

44- _
42- .
40 - -
38- -
36- .
34- -

32- .
30- 95% confidence
___99% confidence

28! !
2.0 2.

Apparent activation energy (kJ/mol)

1 1 1
24 2.6 28
Stress exponent

3.0

Figure 4. The 95% and 99% confidence regions for the
stress exponent and the apparent activation energy derived
from the global Niemeijer et al. [2002] data set. Note that
the axes of the ellipse are almost parallel to the axes of the
graph, denoting a very small correlation between the two
variables.
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Table 3. Results of the Inference Performed on the Niemeijer et
al. [2002] Data Set Restricted to 0.5 < ¢/¢py < 0.8%

Optimal 6o, 05,
Values MPa % ! 0, kJ mol ! 0y
4.20E-13 3.56 57.63 0.72
Covariance matrix ~ 5.59E-26  —2.35E-14 —2.19E-10 —3.02E-15 6,
- 1.22E-02 1.98E+02 1.58E-03 6,
- - 6.72E+06  3.44E+01 0,
- - - 2.74e-04 0,

*The covariance matrix is symmetric by definition. Read 5.59E-26 as
5.59 x 1077,

and apparent activation energy determined for all five
values of ¢/¢y.

[34] Niemeijer et al. [2002] found that in the beginning of
their experiments, the stress exponents and the apparent
activation energy both increase from 3.35 to 3.58 and from
65 to 85 kJ mol ', respectively, when ¢/, decreases from
0.9 to 0.7 but that for ¢/¢y = 0.6, the apparent activation
energy is about 62 kJ mol~' and the stress exponent is
decreased to 2.3. This might indicate that the rate-controlling
process changes during the experiment, or that there are
poorly controlled changes in packing geometry or other
state variables that complicate their (and our) interpretation
of constitutive parameters.

[35] To see if we can reconcile the divergent constitutive
parameters obtained by our different approaches, we
checked how the results of our inversion change when
we analyze subsets of the data over discrete domains of
the state variable ¢/¢,. If we take only the first eight data
points for each experiment (roughly ¢/¢o > 0.8), we get an
apparent activation energy of 23 kJ mol~'. If we take the
seven first points (¢/do > 0.9), we get 8.8 kI mol . In this
latter case, seven points per experiment make 35 points total
used in our analysis, to be compared with the three points
used by Niemeijer et al. [2002] to constrain activation
energy. However, in both cases, these values are likely to
reflect only the early deformation due to the injection of
water into the sample to reach the desired pore pressure
(C. Spiers, personal communication, 2006). In addition,
there was a sudden decrease in strain rate for these experi-
ments at ¢/¢g < 0.5, possibly due to the dissolution of
copper from the sample capsule or to a change in controlling
mechanism [Niemeijer et al., 2002].

[36] We therefore analyzed the “middle” part of the
Niemeijer et al. [2002] data set (i.e., points for which 0.5 <
dldo < 0.8). In this case, the residuals (difference between
predicted and measured porosities) are much smaller than
for the global inversion. Applying our Bayesian inference
method to this subset, we get an activation energy in the
range of 49.50 to 66.00 kJ mol™' (99% confidence interval)
with an optimal value of 57.6 kJ mol™' (Table 3 and
Figure 5). This range includes the 65.0 kJ mol ' that
Niemeijer et al. [2002] find for ¢/¢y = 0.6 and is not too
far from the 75.0 kJ mol~' that they found for ¢/¢, = 0.8.
We also get a stress exponent in the range of 3.23 to 3.90
(99% confidence interval) with a preferred value of 3.56.
This range includes the 3.45 and 3.58 values found by
Niemeijer et al. [2002] for ¢/¢9 = 0.8 and 0.7, respectively.
As expected, the confidence ellipses we obtain are much
larger for the subset than for the global inference (see
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Figures 4 and 5), due to the reduced number of data points
used (52) in the latter case. The axes of these ellipses are
oblique, indicative of a significant correlation (0.66) as
computed from the covariance matrix determined through
our analysis (Table 3). Please note that errors for the
constitutive parameters obtained by Niemeijer et al.
[2002] for each value of ¢/¢q are difficult to assess since
they are related to the residuals, which are poorly defined
for small data populations. Indeed, this measure of the
uncertainty strongly depends on the number of data points,
and in the extreme case of two data points, the apparent
error reduces to 0.

[37] In conclusion, there may be several competing defor-
mation mechanisms occurring during the course of the
Niemeijer et al. [2002] experiments that lead to variable
and state-dependent constitutive parameters that are not
adequately accounted for in their (or our) constitutive
model. Most published studies on rock deformation in the
laboratory aim to find the most probable processes and their
rate-controlling mechanisms as a first step toward developing
a constitutive law. This is usually done by performing a
data analysis following a methodology similar to that of
Niemeijer et al. [2002]. The experiments are technological
challenges and take a long time. However, once the results
are found to be roughly reproducible, the search for the
apparent activation energy and the stress exponent rely only
on a small fraction of the data points collected. Furthermore,
the values obtained for these constitutive parameters (and
their uncertainties) typically do not include the experimental
fluctuations observed in the porosity time series from one
sample to another at exactly the same conditions. What we
propose in this study is a robust inversion technique for the
same ‘“‘effective” or apparent parameters. This technique
allows the use of all the data, either simultaneously or in

85 |
80 |
75 |
70 |
65

D/Dy=0.7
®/0y=0.8

QICD(]:O.G ®/P4=0.9

50 95 and 99% Confidence ellipses

Mean values from our inference

Apparent activation energy (kJ/mol)

From Niemeijer et al 2002 *

3.4 3.6 3.8
Stress exponent

45 |
3.0

3.2 4.0

Figure 5. The 95% and 99% confidence regions for the
stress exponent and the apparent activation energy derived
from the Niemeijer et al. [2002] data set restricted to ¢/¢q
between 0.5 and 0.8. The axes of the ellipses are now at an
angle to the axes of the graph; that is, the correlation
between the two variables is now significant (0.66). Also
note that the uncertainties (i.e., size of the ellipses) are larger
than on Figure 4. The crosses refer to the results by
Niemeijer et al. [2002] at the indicated porosity ratios ¢/¢y.
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Figure 6. Generative model used to compute the time to failure and the porosity and stress conditions at
failure. The pdfs for the input parameters are discussed in the text. No a priori assumptions are made
regarding the form of the pdfs for time to failure; # is the time measured right after an earthquake.

overlapping subsets (i.e., sliding windows), thus making
more complete use of the experimental data and propagating
statistical variations in the data through to the final rate
constants.

[38] An interesting follow-up to this study would be to
choose a series of creep laws based on different grain-scale
deformation mechanisms and perform the inference again
for each of these laws. We could then compare the evidence
(that is, the pdf of the data, knowing the model [MacKay,
2003, Chapter 28]) for each model, and choose the model
that best describes the data as a way of more rigorously
identifying the rate-controlling mechanism. Again, such a
model selection could not be made with the usual inversion
method.

[39] The simple creep model used here does not capture
all the physics and chemistry at play. Extrapolation outside
of the range of T and o,y conditions investigated in a
particular suite of experiments without the basis of a
microphysical model would therefore be hazardous. The
inference scheme that we propose can nonetheless give
robust estimates of the main effective parameters for rele-
vant ¢/¢, intervals, under conditions comparable to those
investigated in the laboratory. It is our belief that such
“empirical” quantitative laws could already be used as a
proxy for more physically based constitutive laws in for-

ward models of interseismic compaction and pore pressure
evolution in fault zones. In section 5, we present a first
application of this type, and discuss the results in terms of
marginal probability densities for the time to failure and
stresses and porosity at failure.

5. Integration of the Derived Creep Law Into a
Fault Zone Compaction Model: Forward
Approach

5.1. Principles of the Method

[40] We show here an example of integration of lab data
into a model for the time-dependent compaction-driven pore
pressure buildup within a porous fault zone. For illustrative
purposes, we will use the empirical compaction creep law
derived in section 4 from the Niemeijer et al. [2002] data as
a constitutive law.

[41] We chose a very simple case in which only one fault
element is considered, but of course future applications
could add a number of adjacent and/or interacting fault
elements as well as more realistic fault zone mineralogies as
new laboratory data become available.

[42] The graphical model (Figure 6) shows the various
ingredients contained in our model computing the time to
failure of a fault element. The nodes of the graph are the
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porosity ¢, and the stress conditions (normal stress, shear
stress, pore pressure) at time #; the temperature (T); the static
friction coefficient; and finally the creep parameters {6,,}.
Additional model inputs are provided by the fluid pressur-
ization model, which describes coupled creep compaction
and fluid flow in the porous fault zone, the shear stressing
model, which describes the rate of increase in shear stress
resolved onto the fault due to plate motions or postseismic
relaxation, and the failure model, which defines the critical
resolved shear stress on the fault at failure according to the
Coulomb criterion. All of these inputs help determine the
time to failure, and the ¢ and stress conditions at failure.
The time evolution of the resistance to failure only stems
from that of the pore pressure.

[43] Time t is measured after an earthquake and we
consider the fault properties immediately after rupture to
depend mostly on the dynamics of the rupture rather than on
the previous interseismic period. Therefore they are stochas-
tically independent from the interseismic creep parameters.

[44] For simplicity, we assume here that the fault is
undrained and compacts following the creep law inferred
from our preceding analysis of the Niemeijer et al. [2002]
data (see section 5.2 for more discussion), and that 7'and the
static friction coefficient are constant with time. We further
assume that the normal stress is constant and that shear
stress increases linearly with time. We solve the coupled
differential equations giving the porosity reduction rate and
the fluid mass conservation using a Runge-Kutta fourth-
order integration scheme. Poroelasticity or time-dependent
normal stress could be introduced easily into this scheme,
but are not included in the present analysis. The rupture
criterion is 7 > coefficient of friction x (o, — Py, with
friction equal to 0.6 [after Byerlee, 1978)].

[45] Simply put, we have introduced a stochastic element
(through the parameters of the creep law) to an otherwise
uniform loading system and this will add random variability
to failure times. With such nonlinear problems, it is difficult
to predict the nature of the stochastic process and how it
affects the pdf of time to failure.

[46] Before engaging into the mathematically and com-
puter intensive task of finding the joint pdfs and the
covariance matrix of the results, we first check the shape
of the marginal probability distributions of the results. To do
so, we use the Bayesian network of Figure 6 to build a
generative model and we sample the input parameter space
using a Monte Carlo sampling technique. We generate a
large number (here 80,000) of samples of §,, and compute
histograms of time to failure and P,and 7 at failure. What
we want to achieve here is different than in the inference
sections. In this direct problem, we want to know how the
marginal distributions of the time to failure and properties at
failure are affected by the randomness of the input param-
eters, including the compaction parameters and the initial
porosity (or, e.g., the shear stress increase rate). In this
manner, we check if the parameter space in which we are
operating is the optimal one in which to solve the problem.
We also check the relative influence of uncertainties in the
other parameters (e.g., the porosity at time t) on the shape
and width of the histograms by generating samples of ¢,.

[47] This study differs from traditional Coulomb failure
stress studies in three main ways. First, interseismic fluid
pressurization within the fault zone (assumed undrained,
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here) is explicitly addressed. Second, the creep law used in
this modeling results from a quantitative analysis of a suite
of lab experiments, i.c., is explicitly lab-derived. Also,
finally, instead of yielding a mean time to failure, our
modeling produces the whole distribution of possible times
to failure and fault properties at the onset of failure. Finally,
we would like to emphasize that the shape of those
probability density functions are not chosen arbitrarily
before we start the modeling, but rather derive directly
from the distributions of the creep parameters which proved
to be Gaussian close to their optimum values and from the
set of deterministic relationships that link all the model
ingredients. In other words, the shape of the pdf for time to
failure that we obtain in this section directly reflects the
physics we put into our modeling.

5.2. Choice of the Creep Parameters

[48] When we analyzed the Niemeijer et al. [2002] data,
we found two posterior probability density functions for the
creep parameters with very different properties. For the
analysis of the global data set, for the reasons discussed
in section 4.2, the results are deemed less representative of
true creep compaction than those for subsets of the data.
However, the stress exponent and activation energy were
uncorrelated and were determined with more accuracy. On
the other hand, the creep parameters inferred from the
subset for 0.5 < ¢/¢g < 0.8 are deemed more realistic but
the correlation coefficient of the stress exponent and the
apparent activation energy is 0.7 (instead of 0.16 in the
former case) and the marginal standard deviation of each
parameter is larger.

[49] In the following, we will first describe the method
and show results using the well-determined, though less
physically meaningful creep parameters for the entire
Niemeijer et al. [2002] data set. Then we will show how
the shape of the marginal distribution of the time to failure is
affected by the use of the creep parameters derived from the
subset of data for 0.5 < ¢/, < 0.8. Obviously, what we
want to use is a well determined posterior pdf of the creep
parameters whose optimal values are most physically
meaningful.

5.3. Tests for Fixed and Random Initial Porosities

[50] In order to perform these tests, we chose a depth of
3 km, a normal stress equal to the lithostatic stress (for a
rock density of 2750 kg m™?), a hydrostatic initial pore
pressure, and a temperature corresponding to a thermal
gradient of 30°K km ™' [Williams et al., 2004]. The initial
shear stress is 20 MPa and the shear stress increase rate is
8 x 1072 Pa s (2.5 bars yr '). This is a relatively high
stressing rate (inferred 0.15 bar yr~' for the North Anatolian
Fault [Stein et al., 1997]) and is meant to represent an upper
limit (see discussion in section 6.2).

[51] The creep parameters were determined in sections 4.1
and 4.2 for the entire Niemeijer et al. [2002] data set as a
multivariate Gaussian distribution, defined by a mean (vec-
tor 0,,,) and a covariance matrix (X). Although the creep
law is deemed most relevant to temperatures and stresses
comparable to those investigated during the experiments,
we use our model to extrapolate these experimental results
to shallow conditions (i.e., lower temperatures) so that our
point source fault model can mimic the occurrence of
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Figure 7. Computation of the time to failure for three samples of {#} drawn from the pdfs obtained by
inference. The straight line shows the shear stress resolved on the fault, and the three curves show the
time evolution of the fault shear strength, friction coefficient x (o, — P)). The times to failure are the
intersections between the line and the curves, following the Coulomb criterion. The quantities in braces
are for 0, the stress exponent 6, the apparent activation energy 6,, and the porosity term 6.

shallow microearthquakes, such as observed at Parkfield,
CA.

[52] To draw a random vector 8 from the four-dimensional
Gaussian distribution, we first compute the Cholesky decom-
position (matrix square root) of ¥ (i.e., we find the unique
lower triangular matrix 4 such that AAT= ). LetZ=(zy, .., 24)
be a vector whose components are four independent standard
normal variables (which can be generated, for example, by
using the Box-Muller transform). Then 6 = 0,,,, + 4 Z.

[53] In an undrained system, the pore pressure evolution
can be computed by numerically integrating the coupled
differential equations

6¢ 0 — ) 3

o 0o (Cfn *Pf) e /T b0 (4)
OPr dp 1
=S _Zr 5
ot ot of’ )

where o, is the normal stress (taken here as equal to the
constant lithostatic stress) and (3 is the bulk compressibility
of the fault element (fluid and porous matrix).

[54] In Figure 7, we show the time evolution of fault
strength (coefficient of friction x (o, — Py)) and the shear
stress resolved on the fault for three sets of creep parameters
{6}. The intersections between the strength curves and the
shear stress curve define the corresponding three times to
failure. These three sets of parameters {#} were not arbi-
trarily chosen but are rather three samples drawn from the
multivariate pdf found in our previous analysis of the global
[Niemeijer et al., 2002] data set. The initial porosity (¢,) is
12%. In these examples the pore pressures at failure are very
close to each other for the three different creep laws, owing

to the relatively slow rate of shear stress increase relative
to compaction rate. In other words, the term friction
coefficient x (0, — P is between 20 and 22 MPa for all
three cases. However, these differences are enhanced when
translated into time to failure because of the slower shear
stress increase rate. Since the shear loading rate that we
chose is in fact rather large (2.5 bars yr ), even for plate
boundary faults, we can note that our model yields very
rapid fluid pressurization when the fault zones are sealed
(undrained).

[s5] Using the Cholesky decomposition method described
above, we generated 80,000 samples of 6 from the posterior
pdf obtained by our Bayesian analysis of the global data set
of Niemeijer et al. [2002] (i.e., with optimal values of {0,} =
6.4 x 107" 2,55, 37, 0.53). Figure 8 displays the
corresponding histograms of the input constitutive parame-
ters (Figure 8, top) and of the model results for time to
failure, and porosity, shear stress and pore pressure at failure
(Figure 8, bottom). First, we note that although pdfs for the
input parameters are symmetric (Gaussian), all histograms
of the model results are asymmetric. Although most of them
are difficult to characterize, the time to failure (#,;) seems
to follow a lognormal distribution. Our tests show that if
all 0, are kept constant (i.e., a single fixed value) and
only 0, varies, the distribution of #;,; is lognormal, for j =
1, 2, 3, 4. Although a linear dependence between log(#s:1)
and each 6, is difficult to prove analytically, we can check
numerically that log(#;,;) varies roughly linearly with each
parameter of the creep law since they graphically define a
cloud of points with a linear trend. Therefore, since each
8; follows a Gaussian distribution, the logarithm of the time
to failure follows the same type of distribution as the
product of Gaussians 0;, and #,; is expected to be lognor-
mal, as observed (Figures 8 and 9).
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Figure 8. Histograms of the input parameters and the results for a fixed initial porosity of 12%.
Although the creep parameters all follow a Gaussian, the results have asymmetric distributions. The creep
parameters result from our inversion of the global data set of Niemeijer et al. [2002].
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Figure 9. Comparison of the distributions of the log of
time to failure for (1) a fixed initial porosity of 12% and
(2) a random Gaussian porosity of mean 12% computed
using samples for the creep parameters drawn from the pdf
obtained for (a) the global data set and (b) the data set
restricted to 0.5 < ¢/¢y < 0.8 of the Niemeijer et al. [2002]
experiments. Figure 9a, both can be well approximated by
Gaussians of about the same mean. This is not the case in
Figure 9b. See details in Table 4.

[s6] To further test the robustness of the asymmetry in
time to failure, we now choose a Gaussian distribution for
the initial porosity ¢, of mean 12% and standard deviation
of 1%, truncated to keep values from 9 to 15% (99%
confidence interval), and rerun our Monte Carlo analysis
(using the same creep parameters inferred from the global
Niemeijer et al. [2002] data set). The main conclusion
remains, namely, that the time to failure is still lognormal.
In log space, the two distributions have approximately the
same mean (Figure 9). We can compute the 20 and 3o
confidence intervals for each lognormal distribution from
the parameters of the Gaussians in log space. We find that
for the Gaussian ¢; (case 2) the 20 confidence interval
corresponds to the 30 confidence interval for the fixed ¢,
(case 1) (Table 4).
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[57] We can also compute the marginal pdf of the time to
failure using values for the creep parameters drawn from the
pdf obtained by our inversion of the subset of the Niemeijer
et al. [2002] data for 0.5 < ¢/¢y < 0.8. Since the covariance
of {#} is much larger, indicating larger variances and larger
correlations between the creep parameters, we get a differ-
ent shape for the distribution of time to failure (Figure 9b)
and for all the other model results as well. In particular, the
pdf of time to failure is not a lognormal distribution. Two
properties still hold, though. First, model results for time to
failure, ¢, Prand 7 at failure have asymmetric marginal pdfs
as for the analysis using the global data set inference results.
Second, as shown in Figure 9b, the 20 confidence interval
of the time to failure computed with a Gaussian initial
porosity of mean 12% and standard deviation 1% corre-
sponds to the 30 confidence interval of #;,; computed with a
fixed initial porosity of 12%. However, the skewness of the
distribution of time to failure is different from that of a
lognormal distribution. Our experiments show that this
change in skewness is related to the covariance between
the creep parameters and not to their mean values (hence,
not to the rate of shear stress increase relative to the rate of
pore pressure increase). Indeed, we tested an hypothetical
multivariate pdf with the mean creep parameters as inferred
from the Niemeijer et al. [2002] restricted to 0.5 < ¢/¢py < 0.8
but with the covariance matrix obtained for the global data
set, and we get a heavier tail for large times to failure (i.e.,
consistent with the form of a lognormal distribution).
Finding the type of asymmetry therefore requires analysis
of the nonlinear transform between the multidimensional
Gaussian of the creep parameters and the pdf of the time to
failure. This is beyond the scope of the present study.

[58] We can draw two main conclusions from the pre-
ceding analysis. First, in the case of mostly uncorrelated
distributions for the creep parameters, the marginal pdf of
the time to failure can be approximated by a lognormal
distribution. This might allow one to solve the direct model
without using a (computer intensive) Monte Carlo sampling
technique by reparameterizing the problem (e.g., trying to
solve for the logarithm of the time to failure). Second, we
showed that not knowing precisely the porosity in the
deformed core of a fault zone after an earthquake might
not be a big impediment in the estimation of the time to
failure (i.e., time of the next earthquake). Even though the
variability of time to failure increases when we add this
source of uncertainty, the mean values do not differ greatly,
and the pdfs keep the same forms.

[59] A logical extension of this work would be to conduct
a reparameterization of the problem working with Gaussians
to allow us to derive the pdf of the time to failure semi-
analytically. This would prove most useful when modeling
interacting fault elements in a more complex rupture model.

6. Discussion and Implications
6.1. On the Analysis of Lab Data

[60] We developed a robust Bayesian inference scheme to
help analyze and/or plan laboratory rock deformation
experiments. Although we chose a simple creep compaction
law for this analysis, similar inference schemes could be
derived for a wide variety of deformation mechanisms and
their corresponding creep laws. Indeed, the use of this
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Table 4. Confidence Intervals for the Time to Failure for the Global Data Set of Niemeijer et al. [2002]

Assuming a Fixed or a Gaussian Initial Porosity ¢,"

Case 1 ¢p = 12%

Case 2 ¢ = Gaussian Around 12%

20 lower bound = exp(v)/exp(c)®
upper bound = exp(v) x exp(c)’
30 lower bound = exp(v)/exp(o)

upper bound = exp(v) x exp(c)’

5.11 x 107 s 3.66 x 107 s
1.91 x 10% s 271 x 10% s
3.67 x 107 s 222 x 107 s
2.66 x 10%s 446 x 10%s

“The v and o represent the mean and the standard deviation of the Gaussian distributions in log space.

inference scheme to analyze lab experiments removes the
need to compare strain rates at the same state, thus allowing
the simultaneous use of the whole data set, leading to a
more robust determination of the constitutive parameters.
Although it is best to choose the appropriate creep law for
the analysis of a particular data set before conducting the
Bayesian inference (through microstructural observations or
other means), the formal error analysis made possible by
this Bayesian inference scheme allows one to evaluate the
validity of a wide range of creep laws for any particular data
set. An additional advantage of the method presented here is
that the physical state of the sample does not have to be
arbitrarily fixed in order to obtain the relevant constitutive
parameters, since, if our assumed model is correct, then the
time evolution of state is explicitly included in our analysis.

[61] We show on simulated data that despite the high
degree of nonlinearity of the problem, we can retrieve
accurate estimates of both the stress exponent and the
activation energy, even when the porosity data are noisy.
We also show that, whereas adding observation points and/or
experiments reduces the uncertainty on all parameters,
enlarging the range of temperature and/or effective stress
conditions explored in a particular suite of experiments
reduces the covariance between stress exponent and activa-
tion energy significantly, allowing these parameters to be
determined with greater accuracy.

[2] When adapted to porosity-time series and applied to
the hydrothermal quartz data of Niemeijer et al. [2002], our
analysis suggests that this simple model does not capture all
of the physics involved throughout the experiments, espe-
cially at high initial porosities (i.e., short elapsed times).
However, for a subset of the data corresponding to a ratio of
instantaneous porosity over initial porosity between 0.5 and
0.8 (i.e., the interval over which Niemeijer et al. [2002]
focus their analysis), the 99% confidence regions for the
stress exponent and the apparent activation energy agree
with those obtained using conventional analysis at compa-
rable compacted porosities (i.c., similar states). Our analysis
also suggests that those mechanisms that have an activation
energy lower than 49 kJ mol ' or higher than 66 kJ mol
can be rejected at the 99% confidence level, given the
assumed creep law.

[63] The value of 57.6 + 2.6 kJ mol~' for the apparent
activation energy obtained using our Bayesian inference
scheme is thus in agreement with the interpretation by
Niemeijer et al. [2002] (based also on microstructural
observations) that compaction creep was rate-limited by a
dissolution-precipitation creep process, although the high
stress exponents obtained in both their analyses and ours do
not allow one to rule out a significant contribution from

cataclasis and stress corrosion cracking over the range of
porosities investigated.

[64] More comparisons between results published by the
rock deformation community and those obtained via the
type of methods presented here could lead to an enhanced
understanding of the usefulness and limitations of lab data
by modelers and, perhaps, the planning and execution of
laboratory rock deformation experiments that were of the
greatest possible use in modeling the earthquake source.

6.2. On the Integrative Bayesian Framework for
Rupture Models

[6s5] We examined the influence of interseismic creep
compaction on the time to failure using quantitative, semi-
empirical compaction laws derived from laboratory experi-
ments as a proxy for micromechanistic constitutive laws.

[66] We showed how we can propagate the uncertainties
in creep compaction parameters through a deterministic
(forward) model of both the pore pressure evolution and
the rupture process to get the time to failure and conditions
at failure.

[67] The ingredients of this forward model were rather
simple and included undrained conditions, constant shear
stress increase rate, and Coulomb failure criterion. However,
the numerical integration scheme can accommodate more
complex coupled differential equations, to include factors
such as diffusion out of the fault zone, or time-dependent
“tectonic loading” impacting both the normal stress and the
shear stress.

[68] We show in the case of a shallow fault (3 km depth),
that precise estimates of porosity right after an earthquake
(within a bounded interval) may not be required to compute
time to failure. Indeed, when the initial porosity varies
between 9 and 15% around a mean of 12%, the 20
confidence interval of the time to failure coincides with
the 30 confidence interval for a fixed ¢y = 12%. This is true
regardless of the “quality” of the estimates for the consti-
tutive parameters obtained through analysis of lab compac-
tion data of Niemeijer et al. [2002], encompassing both the
uncorrelated posterior distribution of the creep parameters
obtained with the global data set and the more correlated
one obtained using the subset of porosities thought to best
represent the creep compaction process.

[69] Using the Coulomb failure criterion in models such
as that presented here shows that when the rate of shear
stress increase is rather low compared to the rate of pore
pressure increase, the time to failure will be controlled by
the creep law. What our simulations allow us to compute is
the variability of the time to failure. We show that in the
situation where the pore pressure increase rate dominates
the time evolution of the Coulomb failure stress, the pdf of
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the time to failure is wide (i.e., time to failure will vary
significantly with minor variations in compaction creep
parameters) regardless of the precision with which the initial
porosity or other variables can be estimated. This has
important implications for applying physics-based models
to predictions of earthquake recurrence rates. In addition,
with the constitutive law that we chose to use in inverting
the Niemeijer et al. [2002] creep data, in the undrained case
and with a constant shear stress increase rate the marginal
distributions of the time to failure are lognormal if the
inferred stress exponent and apparent activation energy are
almost uncorrelated. Again, this form of the time to failure
pdf was not imposed in the model, but only reflects the
interplay between the pdfs of the creep parameters, which
proved to be Gaussian close to their optimum values, and
the set of deterministic equations chosen to describe the
evolution of fault zone fluid pressure, the shear stress
loading rate, and the failure criterion.

[70] Our simple model using a single finite fault element
seems to be well suited for integrative studies of small
earthquakes with short recurrence intervals such as seen
along the central San Andreas Fault, and the spatial and
temporal interactions between these earthquakes. However,
it is important to note that the creep law that we developed
here may not be appropriate to the long time scales and
large rupture dimensions appropriate to larger earthquakes.

[71] Our model is modular and the numerical methods
used to solve coupled differential equations make it very
flexible. More complicated behaviors, such as time-dependent
friction, fluid diffusion out of the fault, time variations in
fault-normal compressive stresses (5, # 0), postseismic
relaxation (7 # constant) and other factors could therefore
be incorporated. Future work could also include more
sensitivity analyses to test the influence of variations in
temperature, friction, fluid leakage out of the fault, and
other parameters on pore pressure evolution and time to
failure.

[72] In addition, we currently use a compaction law
derived for the isotropic compaction of porous media
between 10 and 30% porosity. Shear-enhanced compaction
is therefore ignored. If data become available for a large
range of porosities (e.g., down to 5%) under a deviatoric
stress, we could apply the inference scheme used here with
a different model to expand this modeling result to more
realistic initial porosities and loading conditions. In partic-
ular, shear-enhanced compaction would release some of the
shear stress accumulating on the fault, effectively reducing
the shear stressing rate, while at the same time increasing
the compaction rate and hence the rate of fluid pressure
increase. The effect of these competing mechanisms on time
to failure is difficult to predict without additional modeling.

[73] Finally, other attempts at deriving physically based
probability density functions for time to failure or earth-
quake recurrence include works by Matthews et al. [2002]
and Ellsworth et al. [1999]. They considered a fixed,
seismic source loaded by steady tectonic forcing. They
further assumed that it was rupturing in repeated occurren-
ces of its characteristic earthquake. In Matthews et al.’s
[2002] model, the loading of the system has two compo-
nents, a constant rate component, and a stochastic compo-
nent, that is defined as Brownian motion, or random walk
(e.g., due to stress interaction between faults or other
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processes). An event occurs when the state variable (e.g.,
stress, strain or moment deficit) reaches a fixed threshold
and the times between events are independent, identically
distributed random variables. The steady loading uniformly
increases the value of that state variable while the scale of
the random walk controls the irregularity of the failure
intervals. The distribution function of ‘“passage times”
across the failure threshold is known as the Brownian
passage time (BPT) distribution. The state variable is a
formal parameter of a point process model. The resulting
BPT therefore potentially captures many sources of irregu-
larity of earthquake times, including the stochastic nature of
the accumulating tectonic stress but also time-dependent
changes in fault strength caused by a compacting fluid-
saturated fault zone with constant friction coefficient as long
as they can be modeled by additive Brownian motion.

[74] In the context of our study, it is noteworthy that the
BPT and the lognormal pdfs have very similar behaviors for
times up to twice the mean time to failure [Matthews et al.,
2002]. However, they diverge at long times and have very
different asymptotic failure rates: a finite rate for the BPT
and a rate equal to O for the lognormal pdf.

[75] As discussed in section 5.3, from a technical stand
point, knowing that the pdf of the time to failure in our
model can be approximated by a lognormal distribution
close to its optimum is enough to enable us to work on a
reparameterization of the problem that allows solution of the
problem analytically. However, it is obvious that in terms of
seismic hazard assessment, this difference in asymptotic
behavior becomes crucial.

[76] Matthews et al. [2002] showed in Table 1 of their
appendix how difficult it was to discriminate between the
two laws from synthetic catalogs containing 50 samples.
This indicates that it will not be easy to discriminate
between these two different laws using observations from
actual earthquakes.

[771 In our model, since we can generate as large a
number of samples as we want, we are currently investi-
gating whether we can discriminate between a lognormal
pdf and other time-to-failure models (BPT, Weibull, Gamma,
etc.) for the time to failure that we generate.

6.3. On the Use of Bayesian Methods in the Solid
Earth Sciences in General and for Seismic
Hazard Assessment in Particular

[78] Although applications of Bayesian methods in the
Earth sciences are still scarce compared to other fields,
Bayesian methodologies have been used in several types of
geophysical investigations. Agostinelli and Rotondi [2003]
present a detailed description of the methodology as applied
to model selection for seismic hazard assessment. They use
Bayesian Belief Networks to analyze the stochastic depen-
dence between several types of observations recorded in a
parametric catalogue of damaging earthquakes in Italy,
namely, the time since the last earthquake, the time to the
subsequent event, and the maximum (epicentral) intensity of
the event (discrete variables). Bayesian inference has also
been used to incorporate prior knowledge in an inversion
scheme where a deterministic model links the random
variables [Tarantola and Valette, 1982; Mosegaard and
Tarantola, 2002]. A recent application by Johnson and
Segall [2004], for example, uses Bayesian inference to
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invert contemporary and post-1906 velocity fields for the
rheology of the lithosphere and asthenosphere in northern
and southern California. Finally, Bayesian techniques can
also provide a powerful data integration (fusion) tool.
Ezzedine et al. [1999] present a stochastic Bayesian approach
for combining well logs and geophysical surveys to enhance
the resolution of subsurface characterization.

[79] Quantifying seismic hazard requires working with
data sets obtained using widely varying techniques with
different spatial or temporal resolutions and precision,
analyzed in the light of, or fed into, competing conceptual
and numerical models of interacting physical or chemical
processes. All of the aforementioned Bayesian methods
could therefore help solve parts of this very complicated
problem in a consistent way. In addition, combining these
partial analyses into a unified model would be made easier
by the use of a rigorous illustration of the relationships
between all its components using the types of graphical
models presented here. Finally, in the recent efforts to
quantify uncertainties in seismic hazard assessment [see
Field et al., 2003], two main sources of errors were
identified. The aleatory uncertainties are related to the
inherent variability in any type of measurement or observa-
tion; these are the uncertainties we quantified and propa-
gated in the present study. In contrast, the epistemic
uncertainties arise when one is trying to explain a data set
with a wrong model. To reduce this source of uncertainty,
we again strongly advocate the use of Bayesian frame-
works, for the inversion of lab or field data, in our case as a
means of correctly identifying the underlying physics and
relevant constitutive law. As previously mentioned, this
would involve the extension of our present work to include
a step of model selection in which the “scores” of several
competing creep models are compared. The model that can
best explain the data is thus identified and can then be used
for all follow-up studies aiming at the integration of lab data
into fault modeling.

Appendix A: Mathematical Formulation of the
Inference Scheme

[so] The reparameterizatioin we use is

!
-7

@ :F(H) = {log(—HO)/Gg,91/03,92/937 1/93}

1
N = o log(057), and
3

which reduces equation (2) to a new expression, with the
new constants k = {log o, 1/(RT)}:

f(@g,t) = —ulog(tg*X/# + e*%/u) (A2)
where
N = h(@) = — @0 7k1@1 +k2@2
(A3)
+0310gO; and =05
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[s1] For each experiment n, the joint probability of the
variables of step A is

P(o: {&s s b X v.m) = Plgg) P(m) [ [ P(6sl ')

- P(¢'|pg, N, v, m)

(A4)

where i spans the number of observations for each
experiment and P(¢o) and P(m) are the a priori constraints
(prior) on ¢, and on the model m, respectively.

[s2] For step B, the joint probability is given by

PO, {N", ", N, Vs }-m) = P(©)P(m) [ [ P(X", 1O, m)

PO )

(A3)

In this study, all the model parameters were introduced in
reference to the same model. To simplify the equations, we
will therefore omit m and write P(¢'|go, X', v) instead of
P(¢l|(p07 )‘l’ v, m)

[83] Each expression can be greatly simplified by noting
that there are deterministic relationships between some of
the variables, such as f (equation (A2)) between ¢’ and (¢,
£, X, v), or h (equation (A3)) between © and \. The pdf
P(¢'|@o, N, v) is simply the Dirac distribution (¢ — f(¢o, £,
N, v)). Further simplification is achieved by assuming that
the observations (¢,ps in step A) follow a Gaussian distri-
bution around their mean (e.g., ¢') with a variance (e.g., o).

[s4] For both steps, there are more nodes in the graphs
than just the parameters and the observations. However, the
posterior pdfs we are looking for in steps A and B are
proportional not to the complete joint pdfs but rather to the
corresponding restricted joint pdfs P(\, v, {¢ops}) and P(O,
(Nl Vins)), respectively. The restricted joint pdfs are
simply the integral of the complete joint pdfs over all
possible values of the parameters we are not interested in
(corresponding on the graph to the intermediate nodes
between the observations and the parameters we want to
infer, e.g., for step A, @y and ¢'). This is the marginalization
step.

[s5s] For step A, the complete joint pdf is

o 1
P(po {60t} Xov) = Plon) [T~

o <_1 = ¢)>
2 o

O6(f (gt X v) = &)

(A6)

so that, after switching the product and the integral, the
restricted pdf becomes simply

P{od 30 = [ P TT
i i \/ 2
-exp (—% (¢obs *f((Zo,t,/\,V)) >d%
(A7)
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[s6] Once we reduced the dimensionality of the problem,
the last step of the inference is the optimization which is
achieved by approximating the posterior pdf by a Gaussian
around its mode (i.e., making the Laplace approximation
[see MacKay, 2003]). Maximizing a posterior pdf P is
equivalent to minimizing the energy U = —log(P). The
minimum of U provides the optimal values of the param-
eters and the second derivatives of U at the optimum give
the uncertainties.

[s7] To solve step A, we use the fact that, thanks to the
reparameterization, U({¢hust, N, v, @o) is approximately
quadratic with respect to )\ and v close to the optimum. We
couple the marginalization and the optimization by
performing iteratively the several steps that can be charac-
terized as Newton descent. For given initial values for X’
and v we compute the optimal @, using a line search. We
then compute the first and second derivatives of U with
respect to X' and v using the (locally) optimal ¢y At
iteration k + 1, the updated values for ) and v are then

PU U  0*U oU
— o= 2= = A
1 = M (a TN oNow D )/det (A%)
O*U oU PU OU
o=~ (G52 fT’W@T) fdet,  (A9)
where det = M% - %(ﬁ# For these values of \ and

v, a new optimal ¢, is computed. After a few iterations, the
X and v converge to the actual optimum and the second
derivatives of U at the optimum (in o, X, and v) provide
the entries of the inverse of the covariance matrix.

[s8] Step B is identical to that described by Fitzenz et al.
[2005]. Let us just note that once the optimal {©} and their
inverse covariance matrix B are found, an additional step is
needed to get the solution in terms of the constitutive
parameters. Let us denote by F the transform such that © =
F(0), as specified by equation (Al). Let J denote the
Jacobian matrix of the transform (i.e., the matrix of
derivatives of ©, with respect to ;). We make a Laplace
approximation, considering the multidimensional pdf of 0 as
a multivariate Gaussian close to its optimum. Then we can
write the final result, where J is evaluated at the optimum, as

P(OI{{&n}"}) ~

~ Gy (F’

PO Nopss Vs })
! (é), (JTBJ)’I)

(A10)

where Gy [F' 71(@) V" BJ) s the multivariate Gaussian
distribution of 6 of mean value '~ (@) and of covariance
matrix (J7 B J)~".
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