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Atomistic computer-simulation evidences are presented for the
possible existence of one-dimensional silicon nanostructures: the
square, pentagonal, and hexagonal single-walled silicon nano-
tubes (SWSNTs). The local geometric structure of the SWSNTs
differs from the local tetrahedral structure of cubic diamond
silicon, although the coordination number of atoms of the SWSNTs
is still fourfold. Ab initio calculations show that the SWSNTs
are locally stable in vacuum and have zero band gap, suggesting
that the SWSNTs are possibly metals rather than wide-gap
semiconductors.

Low-dimensional nanostructures are known to have properties
that can be markedly different from their bulk counterparts.

For example, as shown in a recent experiment (1), Ho and
coworkers demonstrated atom-by-atom evolution of electronic
band structure of 1D gold chain. For semiconductor nanostruc-
tures, when the carriers (electrons and holes) are confined to
dimensions less than their de Bröglie wavelength (typically a few
nanometers), quantum-mechanical size effects can emerge. The
carrier confinement at the nanoscale can be in 0D (quantum
dots), 1D (quantum wires), or 2D (quantum wells) (2). Indeed,
the current interest in fabricating low-dimensional semiconduc-
tor nanostructures, coined as band-structure engineering, has
largely relied on novel quantum-mechanical size effects.

The crystalline structure of 3D bulk silicon is cubic diamond,
similar to that of carbon diamond. However, unlike the carbon
counterpart (3), a 1D single-walled silicon nanotube (SWSNT)
has not been found in nature yet, largely because silicon prefers
sp3 bonds rather than sp2 bonds (4). Indeed, silicon has been
viewed as nontubular solid rather than tubular solid, similar to
carbon and boron nitride. The cubic diamond silicon is known as
a semiconductor with an energy band gap of 1.17 eV (1 eV �
1.602 � 10�19 J). At high pressures, however, the cubic-diamond-
structured silicon can undergo a phase transformation to highly
coordinated (sixfold or above) metallic phases such as the �-tin
and hexagonal closed-packed structures (5). To date, experi-
mentally produced 1D-like nanostructures of silicon [e.g., po-
rous silicon (6) and silicon nanowires (7–12)] all assume either
the cubic diamond crystalline structure or the local structure of
amorphous silicon. A commonly reported electronic property of
the 1D silicon nanostructures is that they all have wider band gap
than the cubic diamond silicon. Here we present atomistic
computer-simulation evidences of three thinnest SWSNTs: the
square, pentagonal, and hexagonal silicon nanotubes. The local
geometric structure of these SWSNTs differs from that of cubic
diamond silicon and the surface-passivated 1D silicon nanow-
ires. It also differs from that of the carbon-nanotube-like ‘‘hy-
pothetical’’ SWSNTs (4, 13–15), because the latter types of
SWSNTs are composed of both sp3 and sp2 bonds. Moreover, ab
initio quantum-mechanical calculations show that the present
SWSNTs exhibit an entirely opposite trend in the band-gap
change compared with the 1D silicon nanowires. Consequently,
the SWSNTs are likely metals rather than wide-gap semicon-
ductors.

Preliminary evidence for the existence of 1D SWSNTs was
derived from the classical molecular dynamics (MD) simulation
of confined molten silicon within a cylindrical nanopore. We
used the Stillinger–Weber potential for the bulk silicon (16),
which is known to yield nearly the same melting point (1691 K)

as the measurement (1683 K) (17, 18). The model nanopore is
merely to provide a chemically inert confinement for the molten
silicon. For this purpose, we simply used a structureless infinite
Lennard–Jones nanopore. The potential function of the nano-
pore is the Lennard–Jones integrated over the cylindrical area of
the nanopore with Steele’s potential parameters for graphite
(19). The diameter of the nanopore ranges from 8.98 to 10.86 Å.
We carried out constant-temperature and axial-pressure (the
pressure tensor in the axial direction was set at 200 MPa) MD
simulation by using Nosé–Andersen’s method (20). The simu-
lation cell contains 120 Si atoms. The periodic boundary con-
dition was applied in the axial direction. The temperature was
lowered in step from 2503 toward 1633 K and then raised back
to �2000 K. At each given temperature, 5–20 million MD time
steps (each MD time step is 0.3 fs) were used for the equilibra-
tion, and thereafter the instantaneous configurations of the
system were mapped onto corresponding potential-energy local-
minimum configurations by using the constant-volume steepest-
descent method. The minimized energy, excluding the interac-
tion energy between silicon and the nanopore, is denoted as the
quenched potential energy of the confined system.

Fig. 1A displays the quenched potential energy versus tem-
perature. It shows that the quenched potential energy exhibits an
abrupt drop on cooling and jump on heating. This marked
hysteresis-loop behavior evinces a first-order phase transition for
the confined silicon within the nanopore. In the 10.65-Å-
diameter nanopore, the lower temperature phase is found to be
a hexagonal SWSNT (Fig. 1B). At 1877 K, we find that the
diffusion constant (along the axial direction) is �10�8 cm2�s�1,
indicating that the hexagonal SWSNT is solid-like. In the 9.82-
and 8.98-Å-diameter nanopores, the observed low-temperature
solid-like phase is a pentagonal and square SWSNT, respectively
(Fig. 1 C and D). Note that the geometric structure of these
SWSNTs resembles that of the hydrogen-bonding network of 1D
ice nanotubes (21).

Because the initial evidence for the existence of SWSNTs was
obtained from the classical MD simulation with the empirical
Stillinger–Weber potential (developed to fit bulk properties of
silicon), questions may arise regarding whether the potential
function is applicable for silicon in the highly confined environ-
ment or whether this evidence is an artifact of the empirical
potential. To confirm that the 1D SWSNTs seen in the MD
simulation are indeed a stable allotropic form of silicon, we first
examined local stability of a finite-size stacked-pentagon silicon
cluster terminated by hydrogen atoms at the ends, that is, Si5nH10
(n � 3, 4, 5, 8) (Fig. 2). This is because the bonding feature of
the Si5nH10 (n is an integer) clusters is very similar to that of the
infinite SWSNTs; namely, the coordination number of every Si
atom (except those at the ends) is fourfold. Note that previous
ab initio calculations have shown that small-sized silicon clusters
tend to favor a higher coordination number than fourfold

Abbreviations: SWSNT, single-walled silicon nanotube; MD, molecular dynamics; B3LYP,
Becke’s three-parameter and Lee–Yang–Parr correlation functionals; DFT, density-
functional theory; MP2, Møller–Plesset perturbation theory of second order; HOMO,
highest occupied molecular orbital; LUMO, lowest unoccupied molecular orbital; DOS,
density of states.
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(22–24). Hence, without the hydrogen termination at the ends,
the stacked-pentagon silicon clusters will be unstable.

The geometries of the four clusters were optimized at the
all-electron Becke’s three-parameter and Lee–Yang–Parr cor-
relation functionals (B3LYP)�6-31G(d) level of density-
functional theory (DFT) (25). Harmonic vibrational analysis at

the same level was performed to assure that the optimized
clusters are stable. In addition, for the two smaller clusters, the
geometric structures were also optimized at the Møller–Plesset

Table 1. Si–Si bond distance (Å) for cluster Si15H10 calculated at
the MP2�6-31G(d) level of theory

Bond Distance, Å

Si1–Si2 2.4151
Si1–Si5 2.4151
Si1–Si8 2.3791
Si1–H25 1.4973
Si2–Si3 2.4151
Si2–Si9 2.3791
Si2–H24 1.4973
Si3–Si3 2.4151
Si3–Si10 2.3791
Si3–H23 1.4973
Si4–Si5 2.4151
Si4–Si11 2.3791
Si4–H22 1.4973
Si5–H6 1.4973
Si5–Si7 2.3791
Si7–Si8 2.3336
Si7–Si11 2.3336
Si7–Si12 2.3788
Si8–Si9 2.3336
Si8–Si13 2.3788
Si9–Si10 2.3336
Si9–Si17 2.3788

Si10–Si11 2.3336
Si10–Si19 2.3788
Si11–Si21 2.3788
Si12–Si13 2.4148
Si12–H16 1.498
Si12–Si21 2.4148
Si13–H15 1.498
Si13–Si17 2.4148
H14–Si17 1.498
Si17–Si19 2.4148
H18–Si19 1.498
Si19–Si21 2.4148
H20–Si21 1.498

Fig. 1. (A) Quenched potential energy (excluding nanopore–Si interaction)
versus temperature for the confined silicon inside a Lennard–Jones nanopore
with a diameter of 10.62 Å. Open and filled symbols denote the cooling and
heating process, respectively. (B–D) Snapshots of quenched structure of the
hexagonal (B), pentagonal (C), and square (D) SWSNTs.

Fig. 2. Stacked-pentagon clusters Si5nH10 (n � 3, 4, 5, 8). Gray spheres are Si
atoms, and white spheres are H atoms. The point-group symmetry of the
clusters is D5h.
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perturbation theory of second order (MP2)�6-31G(d) level of
molecular-orbital theory. The calculated geometric parameters
[at the MP2�6-31G(d) level] for the smallest cluster is given in
Table 1. Table 2 gives the calculated energies at the B3LYP�6-
31G(d) and MP2�6-31G(d) levels, as well as the highest occupied
molecular orbital (HOMO)-lowest unoccupied molecular or-
bital (LUMO) gaps at the B3LYP�6-31G(d) level. We noticed
that the HOMO–LUMO gap decreases appreciably as the
number of pentagons increases in the clusters. Table 3 lists the
calculated vibrational frequencies and the associated IR inten-
sities at the B3LYP�6-31G(d) level. No imaginary frequencies
were found for all four clusters.

The fact that the finite-size Si5nH10 clusters are locally stable
and that the HOMO–LUMO gap decreases with the increasing
size of the clusters prompts us to examine further the local
stability of the infinite stacked-polygon silicon nanotubes (i.e.,
the pentagonal SWSNT) and their band gaps by means of ab
initio calculations. Toward this end, we used the plane-wave-
based DFT within the Perdew–Wang generalized gradient ap-
proximation (26), which is implemented in the CASTEP computer
code (Accelyrs Inc., San Diego) (27). The wave functions were
expanded in terms of a plane-wave basis set with a kinetic energy
cutoff of 180 eV. The ion–valence electron interactions were
represented by ultrasoft pseudopotential (28). The Brillouin
zone was sampled with (1 � 1 � 5)k points of a Monkhorst–Pack
grid (29). The supercell geometry was taken to be a tetragonal
cell with the dimension L � L � Lz, where the z direction is
defined as the axial direction of the nanotubes. In the ab initio

calculations, L was fixed at 50 Å, whereas the initial value of Lz
was set at 4.8 Å, twice the mean interlayer distance for the
Si40H10 cluster. During the geometry relaxation, only Lz varies to

Fig. 3. (A) Electronic band structure of the hexagonal SWSNT (the Fermi
energy is set to zero). (B) The electronic DOS of the hexagonal SWSNT.

Table 2. Single-point energy and HOMO–LUMO gap calculated at
the B3LYP�6-31G(d) level for clusters Si5nH10 (n � 3, 4, 5, 8) and
single-point energy calculated at the MP2�6-31G(d) level for
clusters Si5nH10 (n � 3, 4)

Cluster Energy (Hartree) Energy (Hartree) HOMO-LUMO gap, eV

Si15H10 �4348.404087 �4340.7459234 2.263
Si20H10 �5795.8483941 �5785.7223773 1.512
Si25H10 �7243.3072149 — 1.445
Si40H10 �11585.6609068 — 0.888

Table 3. Vibrational frequency (cm�1) and IR intensity (in parentheses) calculated at the
B3LYP�6-31G(d) level for the clusters Si5nH10 (n � 3, 4, 5)

Cluster Frequency (intensity)

Si15H10 118.75 (2.84) 271.13 (0.85) 353.30 (0.97) 486.87 (0.52)
567.47 (10.25) 590.83 (130.26) 659.43 (99.41) 2167.06 (3.36)

2168.62 (630.95) 2173.42 (1173.36) 2178.59 (0.52)

Si20H10 91.29 (1.19) 92.20 (1.20) 216.07 (0.13) 216.4 (0.12)
317.48 (8.91) 350.90 (8.83) 351.80 (0.84) 363.01 (0.78)
382.07 (6.78) 540.45 (4.35) 541.10 (1.92) 542.28 (2.70)
581.64 (133.61) 582.05 (0.75) 583.95 (4.02) 584.36 (23.35)
588.82 (0.88) 590.74 (2.32) 646.24 (79.62) 646.72 (79.5)

2167.83 (23.16) 2160.05 (17.47) 2168.90 (0.14) 2169.08 (36.11)
2173.90 (1.64) 2174.22 (524.65) 2175.38 (30.12) 2175.73 (563.85)
2179.95 (1404.82) 2183.65 (5.04)

Si25H10 73.37 (0.56) 73.98 (0.55) 108.24 (2.04) 193.62 (0.50)
193.62 (0.49) 194.00 (0.49) 309.65 (27.45) 326.48 (2.01)
348.00 (4.50) 355.25 (1.15) 355.98 (1.14) 375.60 (0.29)
376.78 (0.28) 411.33 (1.00) 488.64 (37.60) 528.92 (8.27)
530.27 (7.98) 550.49 (0.19) 582.78 (0.14) 584.77 (1.30)
603.29 (211.67) 642.57 (0.10) 643.42 (0.21) 644.18 (64.67)
664.89 (64.5) 2165.00 (2.95) 2165.22 (8.47) 2170.45 (8.34)

2170.77 (563.56) 2171.37 (8.45) 2171.70 (581.71) 2175.94 (1805.9)
2179.91 (1.05)
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achieve zero-pressure condition in the axial z direction. To study
the square, pentagonal, and hexagonal SWSNTs, the supercell
contains 8, 10, and 12 Si atoms, respectively. The energy
convergence criterion for geometry relaxation is 5 � 10�6 eV per
atom. It is found that the optimized value of Lz is 4.77 Å for the
square, 4.78 Å for the pentagonal, and 4.79 Å for the hexagonal
SWSNTs. As mentioned above, these Lz values represent twice
the lattice constant in the axial direction. The calculated energy
per atom is �107.934 eV (hexagonal SWSNT), �107.959 eV
(pentagonal SWSNT), and �107.803 eV (square SWSNT). The
pentagonal SWSNT seems to be the more stable 1D allotrope
among the three. We also calculated the energy per atom for the
cubic diamond silicon, which is �108.685 eV, and that for a
silicon dimer, which is �105.536 eV. Clearly, compared to the
bulk silicon, all SWSNTs are metastable allotropes in vacuum.

Fig. 3 A and B show the calculated band structure and density
of states (DOS) of the hexagonal SWSNT. It can be seen that the
conduction band is slightly overlapped with the valence band,
which indicates that the band gap of the hexagonal SWSNT is
zero. That the DOS is nonzero at the Fermi energy (Fig. 3B) is
also consistent with the zero-gap characteristic of the hexagonal
SWSNT. Similar electronic band features have been observed
for the pentagonal and square SWSNTs. Thus, the ab initio
calculations suggest that all three SWSNTs are possibly metals.
In contrast, for H-terminated 1D silicon nanowires, previous ab
initio calculations (30–34) have shown that they possess wider
band gap than that (1.17 eV) of cubic diamond silicon. The
narrower the silicon nanowires, the wider their band gap. To
confirm this 1D quantum-confinement behavior, we used the
same plane-wave-based DFT with the same approximation

(Perdew–Wang generalized gradient approximation) to calcu-
late the band gap of a 3 � 3 silicon nanowire having a width of
7.7 Å (see Fig. 4A). Indeed, the calculated band gap is 2.5 eV (see
Fig. 4B), which is in good agreement with the previous study
(32). We note that, for the cubic diamond silicon, the same DFT
gives a band gap of only 0.753 eV, appreciably smaller than the
measured band gap of 1.17 eV. It is known that DFT usually
underestimates the band gap of semiconductors and insulators
(35). Consequently, our conclusion on the metallic behavior for
the SWSNTs should be considered as tentative. Nevertheless,
the predicted opposite trend in the band-gap change for the 1D
SWSNTs and for the 1D H-terminated silicon nanowires most
likely is a valid conclusion.

We attribute the likelihood of metallic characteristics of the
SWSNTs to their distinct local geometric structure, which differs
from the perfect tetrahedral structure of the cubic diamond

Fig. 4. Electronic band structure of the 3 � 3 1D silicon nanowire (defined
as in ref. 32), with the dangling bonds terminated by H atoms (white spheres).

Fig. 5. Electron-density distribution (eV�Å3) within the (111) plane of the
diamond silicon (A) and within one of six side planes of the hexagonal SWSNT
(B). The zero electron density is highlighted by red. The gold-colored spheres
denote Si atoms.
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silicon. Fig. 5A shows the electron-density distribution within the
(111) plane of the cubic diamond silicon, whereas Fig. 5B shows
the density distribution within one of the six side planes of the
hexagonal SWSNT. The zero electron density is highlighted by
red. The appearance of numerous red-colored holes in Fig. 5A
indicates that valence electrons in bulk silicon are localized in
between Si atoms (forming the sp3 bonds). On the other hand,
a no-red-colored region can be seen in Fig. 5B, indicating that,
in the SWSNT, valence electrons are distributed more uniformly
in between Si atoms, thereby enhancing the probability of
electron conduction in the axial direction.

In conclusion, the present, thinnest 1D SWSNTs may be
produced within nanoscale confinement. Because the bulk sili-

con has a high melting point (1683 K), the confinement walls
must be able to stand high temperatures and be inert from
chemical attack of molten silicon. Ab initio calculations confirm
that the SWSNTs are locally stable in vacuum at zero temper-
ature. A unique structural feature of these SWSNTs is that the
coordination number of every Si atom is fourfold, which differs
from that of single-walled carbon nanotubes. Ultimate confir-
mation of this type of SWSNT must await experiments.

We thank Professors K.-M. Ho, K. N. Houk, K. Koga, and S. Sastry for
valuable discussions. This work is supported by the National Science
Foundation, Office of Naval Research, University of Nebraska, Lincoln,
research computing facility, Mitsubishi Foundation, and Japan Ministry
of Education.
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