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Two-dimensional seismic image of the San Andreas Fault 
in the Northern Gabilan Range, central California' 
Evidence for fluids in the fault zone 

C. Thurber 1, S. Roecker 2, W. Ellsworth 3, Y. Chen 2, W. Lutter 1, and R. Sessions 1 

Abstract. A joint inversion for two-dimensional P-wave 
velocity (Vp), P-to-S velocity ratio (Vp/Vs), and earthquake 
locations along the San Andreas fault (SAF) in central 
California reveals a complex relationship among seismicity, 
fault zone structure, and the surface fault trace. A zone of low 

Vp and high Vp/Vs lies beneath the SAF surface trace (SAFST), 
extending to a depth of about 6 km. Most of the seismic 
activity along the SAF occurs at depths of 3 to 7 km in a 
southwest-dipping zone that roughly intersects the SAFST, 
and lies near the southwest edge of the low Vp and high Vp/Vs 
zones. Tests indicate that models in which this seismic zone 

is significantly closer to vertical can be confidently rejected. 
A second high Vp/Vs zone extends to the northeast, 
apparently dipping beneath the Diablo Range. Another zone 
of seismicity underlies the northeast portion of this Vp/Vs 
high. The high Vp/Vs zones cut across areas of very different 
Vp values, indicating that the high Vp/Vs values are due to the 
presence of fluids, not just lithology. The close association 
between the zones of high Vp/Vs and seismicity suggests a 
direct involvement of fluids in the faulting process. 

Introduction 

Progress in understanding earthquakes is limited by the lack 
of in-situ information on physical and chemical properties and 
processes in active fault zones. One of the ongoing debates is 
whether the San Andreas fault (SAF) is weak due to high pore- 
fluid pressures or low fault friction [Lachenbruch and Sass, 
1992]. This fundamental uncertainty has led to the proposal 
to drill into the S AF at seismogenic depths [Hickman et al., 
1994]. Geophysical methods are also being used to probe 
fault zone structure. Fault-zone guided wave (FZGW) studies 
provide the highest-resolution seismic information about fault 
zone structure, but at present the models are mostly limited to 
ones with velocity varying perpendicular to the fault only. 
Modeling of FZGW's generated by earthquakes and explosions 
on the SAF [Li et al., 1990; Li et al., 1997] suggests that the 
fault zone is about 500 m wide, with a 100 to 160 m inner 

"core layer" and 350 to 400 m "transition layer." Magneto- 
telluric imaging of the SAF at Parkfield, CA, yields a similar 
model, with a zone ~500 m wide of very low resistivity 
extending to a depth of at least 3 km [Unsworth et al., 1997]; 
the low-resistivity zone is interpreted to be fluid-rich. 

The relationship between the SAF surface trace (SAFST) and 
the seismicity at depth is also uncertain. It has been 
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recognized for over 25 years that the epicenters of most 
routinely-located earthquakes along the SAF in the Bear Valley 
to Northern Gabilan Range (NGR) section of the central 
California tend to lie 2 to 3 km SW of the mapped surface trace 
of the fault [Brown and Lee, 1971]. Most workers have 
interpreted this offset as a bias due to the neglect of 
heterogeneous velocity structure [Boore and Hill, 1973; 
Ellsworth, 1975; Healy and Peake, 1975; Bakun et al., 1980]. 
From refraction studies, it is known that the rocks of the NGR 
(mainly Salinian granites) SW of the SAF have significantly 
higher velocities than those of the Diablo Range (mainly 
metamo;phosed sedimentary and volcanic rocks) northeast of 
the SAF [Stewart, 1968; Walter and Mooney, 1982]. In 
addition, the rocks within the fault zone are slow relative to 
the surrounding basement rocks [Healy and Peake, 1975; Feng 
and McEvilly, 1983; Thurber, 1983]. Several studies in the 
Bear Valley area have shown that the use of station corrections 
or relatively simple laterally-heterogeneous velocity models 
can yield relocated epicenters quite close to the SAFST [Boore 
and Hill, 1973; Ellsworth, 1975; Healy and Peake, 1975; 
Bakun et al., 1980]. 

In contrast, Aki and Lee [1976] concluded that the SW offset 
of epicenters is real, based on a one-step inversion for hypo- 
centers and velocity structure in Bear Valley. The gravity 
model of Pavoni [1973] in the NGR supports this result, with a 
SW-dipping boundary between the lower-density rocks of the 
fault zone and the higher-density Gabilan granites to the SW. 
One could argue that the one-step nature of the Aki and Lee 
[1976] inversion and the nonuniqueness of the gravity model 
of Pavoni [1973] lessen the robustness of these results. 
However, recent tomography studies in central California also 
find that the seismicity along the SAF defines a SW-dipping 
fault [Dorbath et al., 1996; Lin and Roecker, 1997]. 

We have examined these questions regarding the structure of 
the SAF and the location of seismic activity with respect to 
the SAFST using data from a combined passive and active 
seismic array experiment carried out in the NGR area. An 
additional motivation for this study is in relation to the 
proposed program for deep scientific drilling into the SAF 
[Hickman et al., 1994]. Although this section of the SAF is 
not the primary candidate for drilling, our study may be useful 
for designing seismic imaging studies of locked portions of 
the SAF. The NGR area has the advantage of abundant 
seismicity that improves our imaging capability, especially 
with regard to the S-wave velocity structure. 

We deployed an array of 48 IRIS-PASSCAL seismic 
instruments in the NGR area from mid-November 1994 to late 

May 1995 (Figure 1) for recording of local earthquakes. In 
addition, we carried out an active seismic experiment in May 
1995, consisting of 13 shots and about 200 stations 
distributed along 3 profiles, plus the passive array sites. This 
suite of local earthquake and explosion seismograms is used 
for high-resolution, two-dimensional (2D) imaging of Vp and 
Vp/Vs structure along the SAF zone. 
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Figure 1. Map of USGS network stations (large triangles), 
passive array stations (medium triangles), refraction profile 
sites (small triangles), and shot locations (stars) for the 
active-source experiment, mapped (solid lines) and inferred 
(dashed lines) faults, and USGS (open circles) and our final 
locations (filled circles) for the earthquakes used in the 
inversion. The index map indicates the study area location. 

Inversion Method, Results, and Tests 

The modeling approach used is based on the iterative 
damped-least-squares method of Thurber [1983, 1993] and 
Evans et al. [1994]. P arrival times and S-minus-P times are 
inverted for earthquake locations and Vp and Vp/Vs 
perturbations. We elected to invert for a 2D velocity model 
oriented normal to the local trend of the SAF for several 

reasons. The array coverage is elongated in the fault-normal 
direction (Figure 1) and the local geologic structure varies 
predominantly in the same direction. Also, our goal was to 
achieve the highest possible spatial resolution of the structure 
across the fault zone, at the expense of modeling along-strike 
variability. Future work will extend the modeling to 3D. 

The 2D velocity model had a grid spacing of 1 km near the 
SAFST and 2 to 3 km elsewhere (Figure 2). A finer grid (0.5 
km spacing near the fault) failed to improve the data fit 
significantly. The 2D Vp model of Thurber et al. [1996], 
derived from the inversion of explosion P-wave data, was used 
as a starting model for the joint inversion for Vp, Vp/Vs, and 
hypocenters, assuming an initial Vp/Vs value of 1.90 (inferred 
from Wadati diagrams). Data used for the inversion included 
4373 P arrival times and 2363 S-minus-P times from 77 

earthquakes and 13 explosions (Figure 1). Damping values 
were selected using a trade-off analysis [Eberhart-Phillips, 
1986]. Alternate starting models were also tested; velocity 
model results differed only in details in low resolution areas, 
and hypocenter differences were small (~ 100 to 300 m). 

The variance reduction achieved by the inversion after 4 
iterations was 56%, with a final root-mean-square (RMS) 
misfit of 0.11 s. The P-wave data were fit better than the S-P 

data (RMS of 0.07 s versus 0.19 s). Contours of the resolution 
matrix diagonal elements for Vp and Vp/Vs are shown in 
Figure 2. Velocity model standard errors were about 1 to 3%, 
and hypocenter uncertainties ranged from about 20 to 50 m. 

The shallow low Vp zone northeast of the SAF reported 
previously by Thurber et al. [1996] is clearly evident (Figure 
2a), extending to a depth of about 3 km. It is interpreted to 
represent the Hollister trough [Dibblee, 1980]. In addition, a 
low Vp zone lies beneath the SAFST, extending to about 6 km 
depth. Most of the seismicity near the SAF lies 1 to 3 km on 
either side of the SAFST, along the edges of two high Vp 
bodies. Very little seismic activity is found directly beneath 
the SAFST. Another cluster of seismicity lies near the 
Calaveras fault (CF) (6 km NE of the SAFST; Figures 1 and 2a). 

Strong variations in Vp/Vs are also evident (Figure 2b). 
The SAF appears as a zone of high Vp/Vs, dipping steeply to 
the SW. Most of the seismicity along the SAF lies along the 
SW edge of this zone. The central part of the model is 
dominated by a zone of high Vp/Vs (>1.9) that appears to dip 
NE beneath the Diablo Range. Another zone of seismicity 
underlies the northeast portion of this Vp/Vs high. Normal 
Vp/Vs values appear in the NGR to the SW, consistent with its 
granitic lithology, and in the Diablo Range to the NE, in 
agreement with Boore and Hill [1973]. The Vp/Vs model 
correlates well with the geologic interpretation of the area by 
Dibblee [1980]. 

A variety of tests were conducted to assess the robustness of 
the model. In particular, we were concerned that the sparser 
array coverage SW of the SAF might be leading to a 
southwestward bias of the hypocenters near the SAF. The tests 
included: (a) synthesizing and then inverting arrival-time data 
sets for hypothetical earthquakes located directly beneath the 
SAFST as well as at a range of SW offsets (1 to 3 km), (b) 
inverting the actual data treating the explosions as if they 
were earthquakes (that is, inverting for their locations rather 
than holding them fixed), (c) inverting the actual data for the 
explosions plus just the southwestern group of earthquakes 
(that is, those lying SW of the SAFST) but applying a 
constraint to fix the epicenters of these earthquakes to lie at a 
particular distance from the SAFST (from 0 to 4 km SW). The 
inversions in test (a) recovered the velocity models and 
hypocenters quite accurately (velocity values within about 5%, 
epicenters generally within 100 to 300 m). Thus, if the actual 
hypocenters had occurred directly beneath the SAFST, our 
inversion procedure would most likely have located them 
within a few hundred meters of the fault trace. In test (b), the 

true explosion epicenters were recovered with an average error 
of about 200 m; depths errors averaged about 500 m. For test 
(c), we found that the data were fit best when the epicenters 
were constrained to lie about 1.8 km SW of the SAFST, with a 

95% confidence region extending from 1.5 to 2.1 km SW of 
the SAFST (determined by an F-test). Taken together, these 
test results give us confidence that our results are robust. 

Discussion and Conclusions 

We conclude that most of the seismic activity near the SAF 
in the Northern Gabilan Range occurs in the depth range of 3 
to 7 km in a steeply-dipping zone (~ 70 ø SW). Projected to the 
surface, the plane of activity lies within about 400 m of the 
SAFST. Given the 1-km grid spacing and other uncertainties, 
the surface projection could certainly intersect the SAFST. 
This result provides support for the gravity model of Pavoni 
[1973] that has a low-density zone extending SW of the 
SAFST, and supports the findings of Dorbath et al. [1996] and 
Lin and Roecker [1997] that the seismically-defined SAF is 
SW-dipping in this region. It is also consistent with the 
suggestion of Unsworth et al. [1997] that the zone of current 
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Figure 2. 2D models of (a) Vp and (b) Vp/Vs in a plane normal to the San Andreas fault, with earthquakes 
included in the inversion indicated by the circles (magnitudes 0.5 to 3.0). Note that the earthquakes are 
concentrated in areas adjacent to or beneath high Vp/Vs zones. Grid nodes are indicated by '+' and resolution 
contours are shown (0.25 contour interval). 

seismicity and the active surface trace of the SAF at Parkfield, 
CA, are separated by about 1 km, on opposite sides of a zone 
of low resistivity. 

Unsworth et al. [1997] attribute the low resistivity zone 
along the SAF at Parkfield to the presence of fluids. Vp/Vs 
structure can also indicate fluid content [O'Connell and 
Budiansky, 1974; Eberhart-Phillips et al., 1995; Julian et al., 
1996]. One might expect to find earthquake activity within 
high Vp/Vs zones if high fluid pressures are responsible for 
the "weakness" of the SAF [Byerlee, 1990; Rice, 1992]. 

Michelini and McEvilly [1991] found a high Vp/Vs zone 
(about 2.0) in the vicinity of the hypocenter of the 1966 
Parkfield earthquake. We find that the main zone of seismicity 
lies on the SW edge of a zone of very high Vp/Vs and low Vp 
(Figure 2). High Vp/Vs values can be due to lithology (e.g., 
serpentinite [Christensen, 1996]). However, the high Vp/Vs 
regions in our model cut across substantial Vp variations, 
making it unlikely that a single lithology is responsible. Our 
preferred interpretation is that the high Vp/Vs zones represent 
fluid-rich regions, where the possible sources include 
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metamorphic fluids [Irwin and Barnes, 1975], sediment 
dewatering, meteoric water, or fluids rising from the mantle 
[Rice, 1992]. The juxtaposition of the high-Vp/Vs zones and 
the zones of seismicity suggests a direct involvement of fluids 
in the faulting process. 
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