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Assimilating Remote  Sensing-Based ET into SWAP Model for 
Improved Estimation of Hydrological Predictions 

Baburao Kamble1, 2, Ayse Irmak1
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2Member IEEE 

An agro-hydrological simulation model is useful for agriculture monitoring and Remote Sensing provides useful information over 
large area. Combining both information by data  assimilation  is  used  in  agro-hydrological modeling and predictions,  where multiple 
remotely sensed data, ground measurement data and model forecast routinely combined in operational mapping procedures. Remote 
sensing cannot observe input parameters of agro-hydrological models directly.  A method to estimate input parameters of such model 
from Remote Sensing using data assimilation has been proposed by Ines [2002] using the SWAP (Soil, Water, Atmosphere and Plant) 
model. A Genetic Algorithm (GA) loaded stochastic physically based soil-water-atmosphere-plant model (SWAP) was extended for the
discussed problem and used in the study.  The  objective  of  this  study  was  to  implement  a data assimilation  scheme  to estimate
hydrological parameters (e.g soil moisture)  of SWAP model.  For this study six Landsat TM/ETM satellite images were obtained for
part of the Great Plains (Path 29, Row 32) in the states of Nebraska (NE) for the 2006 growing season (May -October). Then a land
surface energy balance model (METRIC) was used to map spatiotemporal distribution of evapotranspiration. The ability of METRIC 
accuracy was compared with the measurements at several flux sites with Bowen Ratio Energy Balance System units. Remotely sensed
ET data and ground measurement data from experiment fields were then combined in a data assimilation to estimate parameters of 
the SWAP model. The system is initialized with a population of random solutions and searches for optima by updating generations.
The result shows that the reasonable parameters (sowing date and harvesting date, Ground water level) were successfully estimated. 
On the basis of estimated parameters, soil moisture is predicted by SWAP model. The agro-hydrological model driven by the observed
ET produces reasonable water cycle states and fluxes, and the estimates are moderately improved by assimilating ET measurements
that provides information on the surface soil moisture state, while it remains challenging to improve the results by assimilating
regional ET estimated from satellite-based measurements.  
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I. INTRODUCTION

ccurate estimation of evapotranspiration (ET) plays an 
important role in quantification of the water balance at the 
pixel, watershed, basin and regional scale for better 

planning and managing water resources (Irmak et al., 2008a). 
Unfortunately, ET estimation under actual field conditions is 
still a very challenging task for scientists and water managers 
(Kamble et al, 2007). Furthermore, quantification of ET at 
multiple scales is spatially restricted because in-situ 
observations provide only point measurements. Techniques 
such as bowen ratio energy balance system and eddy 
correlation measure ET on a field scale. These systems may 
not be practical when quantifying water use at watershed or 
larger scale. Remote sensing techniques have emerged as a 
very useful tool to provide such information at various 
temporal and spatial scales (Courault et al. 2003). ET 
estimated from remote sensing observations can be used to 
calibrate hydrology model or estimate uncertain model 
parameters in the model via data assimilation.   

With advances in remote sensing in recent years, there has 
been an increasing attention on estimating uncertain model 
parameters from remote sensing observations via data 
assimilation. Benard et al. [1981] demonstrated that 
evaporation could be modeled very accurately with the 
contribution of surface moisture measurements every 3 days.
Prevot et al. [1984] continued this work and showed that the 
soil water balance could be determined with equal accuracy 
using remotely sensed surface soil moisture estimates 
substituted for in situ observations. Ines and Honda [2002] 
developed an assimilation methodology of the SWAP (Soil, 

Water, Atmosphere, Plant) crop model with RS data using 
Genetic Algorithm (GA). Similar works by Ines [2003], 
Srinuandee [2005], Chemin [2005], Kamble[2006], Kulkarni 
[2006], Thapa [2006] used remotely sensed information 
combined  with  a  binary  GA  and  SWAP  model  for 
optimizing  soil  hydraulic  parameters. Furthermore, Kamble 
[2006] implemented SWAP-GA model (Modified SWAP-GA) 
with a new methodology to assimilate RS evapotranspiration 
(ETa) data for satellite images by MODIS for Sirsa Irrigation 
Circle-Haryana India.  
In this study, METRIC model was first used to map 
spatiotemporal distribution of ET in Nebraska. We have then 
combined METRIC-derived ET with a SWAP model Genetic 
Algorithm to (1) update and correct SWAP ET estimations at 
the field level and (2) assess its impact on scheme water use. 
Additionally, we show here that such ET estimates may be 
used together with on-farm measurements of applied irrigation 
water to provide reliable estimates of soil moisture. 

II. STUDY AREA

The study was conducted at the South-central Nebraska.   
The long-term average rainfall in south central part of the state 
is about 680 mm although the annual total rainfall shows 
significant variations from year to year (e.g., 420 mm in 1988 
to 1,040 mm in 1993). The dominant cropping system in south 
central Nebraska is corn-soybean rotation with increasing 
continuous corn production as the demand for ethanol 
production has been increasing. Most of the croplands in the 
region are irrigated with center pivots with the ground water 
pumped from the Ogallala aquifer being the dominant water 
supply for irrigation. The weather data used in this study were 
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measured with an automated weather station operated by the 
High Plains Regional Climate Center 
(http://www.hprcc.unl.edu).  

III. METHODOLOGY

A. Evapotranspiration monitoring with METRIC 
The landsat TM/ETM satellite images were obtained for 

part of the Great Plains in the states of Nebraska (Path 29, 
Row 32) for the 2006 growing season (May -October). The 
hourly in situ meteorological observational data were acquired 
from South Central Agricultural Laboratory (SCAL) of the 
University of Nebraska-Lincoln located near Clay Center, NE. 
A total of 6 cloud free images from May through October 
were processed to calculate ET. The hourly in situ energy flux 
observational data were acquired from South Central 
Agricultural Laboratory (SCAL) research farm of University 
of Nebraska located at Clay Center. The energy flux data were 
measured using Bowen Ratio Energy Balance System (Irmak 
et al., 2006) and were used for METRIC model.  

B. SWAP-GA Model Framework
Genetic algorithm used in this research comprises of three 

components that are Remote sensing, SWAP model and 
Genetic algorithm. Ines [2002] has proposed a data 
assimilation scheme using GA as an optimizer. This process is 
termed as SWAP-GA method. We used SWAP-GA to 
estimate starting date of cropping, irrigation scheduling start 
time, time extent of cropping and the groundwater depths. The 
newly proposed parameters were fed to SWAP by GA 
according to the evaluation of the difference processes 
between SWAP output ETa values and the target ETa values.  

 Consider C the cost function, having (x,y,d) parameters, 
x the longitude [0-180/E-W], y the latitude [0-90/N-S], d the 
date [yyyymmdd] .With d = [i,...,j], with i to j being the 
different satellite overpass dates, n is the sum of i to j.  

                  |ETaETa|
n

=C
j

i
xydSWAPxydxy

1
mm              (1)   

Where xydETa is the measured ET from RS at time t; n the 
time domain; Cxy is the objective function. The environment 
pressure is the SWAP model ETa output that has to match the 
remote sensing ETa target. When a minimum-difference 

defined threshold will be reached, SWAP parameters will be 
stored for reconstruction of high spatial ETa for any required 
day in the cropping season. 
 The fitness of an individual having xy pixel location 
characteristics is the inverse of the cost function times the 
constraints aiming at minimizing the differences between 
SWAP simulation and target ETa.  

                    
)Constraint0.1(*

1

xy
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The constraint is function of date of emergence of first crop 
and the date of emergence of second crop. 

40121365Constraint DECdoyi                           (3) 
  Subject to: Possible range of sowing dates:  

jj bsdb maxmin                  (j=1,…,6)                    (4) 

IV. RESULTS AND DISCUSSION 

A. Evapotranspiration monitoring with METRIC 
Figure 2 shows ET map corresponding to the 2006 season 

for the entire Clay, York, Hamilton Adams and Fillmore 
counties in NE. The study site SCAL is located in Clay county 
at latitude 40o 34’, longitude 98o 08’.  ET map resolution is 
30X30m and the range is 400 mm/season (bare soil) to 
950mm/season (irrigated crops). Seasonal ET varied from 
950 mm for well-irrigated fields to 400 mm for non-
agricultural areas. Rain fed areas surrounding the Fillmore (in 
the south east) had ET values around 400 mm which depicted 
the bare fields and fallow lands, the ET over Adams county 
shows the mixed ET in between 400mm to 650mm, while ET 
values are for the SCAL fields located towards the south in 
York and Hamilton county due to shallow water table, lateral 
seepage from the SCAL fields and a open network of 
irrigation canals. The ET map further shows a spatial gradient 
of increasing ET from the Southern parts towards the Northern 
parts of the irrigation system except low ET in the Howard 
due to settlements. All of these ET values are important for the 
agro-hydrological balance of the area as well as ground water 
modeling.  

Fig. 1.  Study area:  South Central Agricultural Laboratory near Clay Center,
Nebraska

Fig. 2.  Spatial distribution of remotely sensed Evapotranspiration from
Landsat ETM+ for the 2006 
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According to table 1, average daily ET (ET24) was 0.426 cm
d-1 with a mode and maximum values of 0.75 and 0.71 cm d-1,
respectively, for the study field.  It is evident from the 
numerical figures in table that some crops are still developing 
on May and others are transpiring at higher rates. On June23, 
all the crops in the area are established. This indicates the 
variability of sowing dates and water management practices as 
influenced by water availability.  

B. Remotely sensed Evapotranspiration Data Assimilation  
 In simulations, hydraulic properties were based on 
measured values where possible; some values were altered 
slightly by optimizing the model to the local conditions until 
good agreement with measured ET was attained. Given these 
constraints, it was not possible to achieve perfect agreement 
with measurements for the wide range of ET conditions that 
occurred during the study.  The objective of assimilation is to 
obtain the best estimate of the state of the system by 
combining observations with the forecast model first guess. 
ET data from METRIC model were used as the “observed” RS 
data for the investigated pixel. Above results showed good 
fitness between the observed and simulated ET. As expected, 
there is bias due to the comparison of point observation with 
model. Some of this bias could be attributed to uncertainty in 
SWAP model parameters.   

 Overall, the ET data assimilation results (figure 3) indicated 
that SWAP-GA performs well for the advective conditions of 
the study area with prediction errors of 10-20%. Some errors 
in the evaluation may have been introduced by the hydraulic 
parameters. According to Wright and Jensen (1978), a 
common standard error for ET prediction equations based on 
weather data using Penman or Penman-Monteith type 
equations is as much as 10% of daily estimates. 

C. Optimization of crop growth parameters from Data 
Assimilation  
The goal of the calibration process is to find optimal sets of 

configuration parameters for SWAP models. Optimal 
configuration parameters are determined by comparing the 
RMSE of the derived parameters, the convergence, the amount 
of a priori information used. The RMSE and Square of 
correlation coefficient then calculated from the observed and 
optimized values (Table 2). Good agreement was found 
between the optimized and observed ET. RMSE and r2 
improvements occurred with the observed data when 
generation and population increased from 10 Generation 10 
Population to 100 Generation and 100 Population.   

D. Soil Moisture Estimation from Data Assimilation  
Soil-based measurements may be a far more practical and easy 
method for corn growers to use to schedule irrigations and 
assess current irrigation practices. Figure 6 shows soil 
moisture content in cm3/cm3 from January-2006 to December 
2006 obtained from SWAP-GA data assimilation for effective 
irrigation management and illustrates how readings typically 
fluctuate from spring through corn harvesting. At the start of 
the season the soil is moist from winter and spring rains; the 
readings are less than 0.3 cm3/cm3. Gradually the soil dries 
and the readings increase, beginning with the simulation at 
0.5, 9.5, 27.5, 52.5 cm. The uppermost 0.5 and 9.5 reading 
normally climbed first, as there was greater root activity in the 
upper portion of the soil profile than at deeper depths. 
Furthermore, moisture readings at the 27.5 and 52.5 cm depth 
were typically lower (more soil moisture) and fluctuated far 
less than the shallow depths. When the soil moisture content 
dropped to near 80 in late March, rainfall started and the soil 
moisture readings at all four depths went to above 0.3, 
indicating the soil profile had been refilled. The drying cycle 
resumed until a partial irrigation occurred in early May. The 
reason for the partial irrigation was that it was needed to 
replenish enough soil moisture to sow the crop through the 
germination process without excessive soil moisture depletion 
and crop stress.  

Fig. 3.  Results of Actual Evapotranspiration Simulated (ETa from SWAP)
and Observed (ETa from Remote Sensing) in SWAPGA model 

Date ET
22/05/2006 0.095 
23/06/2006 0.58 
17/07/2006 0.75 
25/07/2006 0.71 
19/09/2006 0.24 
13/10/2006 0.18 

Table 1: Remotely sensed Evapotranspiration to satellite overpass dates 

  (r2) RMSE (mm) 
10Gen10Pop  0.86 7.28 
50Gen50Pop 0.22 10.808 

100Gen100Pop 0.962 3.94 
500Gen500Pop 0.96 5.38 

Avg Gen Avg Pop 0.97 3.21 
Table 2: Remotely sensed Evapotranspiration to satellite overpass dates 

Fig. 3.  Results of Actual Evapotranspiration Simulated (ETa from SWAP)
and Observed (ETa from Remote Sensing) in SWAPGA model 
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V. CONCLUSION

This study used remote sensing data to characterize system 
via a GA based hydrological data assimilation approach in 
Great Plain environment, and then the derived data were used 
as inputs to our water management optimization model. 
Reasonable parameters were successfully estimated and the 
ETa output from SWAP model matched with the actual ETa 
reasonably well. Although the analyses were limited to the 
conditions imposed in the water management optimization 
model, some basic but useful findings have been drawn on 
how to make use to the best possible way the limited soil 
moisture estimation and best possible utilization of maximum 
irrigation water. Soil moisture in the unsaturated zone in study 
area responded strongly to rainfall events because of the 
shallow water table in the great plain and additional net inputs 
from lateral saturated subsurface flows. Short drought 
episodes also occurred in rainfall events January to march, 
even causing short-term water stress in the relatively dry low 
areas. In most real applications, the model needs to be 
evaluated (i.e., given a parameter set, compute a synthetic 
dataset and its associated goodness of fit) a great many times. 
If this evaluation is computationally expensive, the forward 
modeling approach can become impractical. GA-based 
optimization retains the advantageous features of forward 
modeling, while reducing the number of required function 
evaluations to a level that is often much more computationally 
manageable. These conclusions suggest that it is indeed 
necessary to couple a remotely sensed ET with a pixel-based 
hydrological model in order to study and explore the water 
management options. 
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