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Abstract
Cultivation of roses in various soil-less media was studied with the aim to identify the op-
timum soil condition for rose production. Madelon roses grafted on rootstock of Rosa indica 
var. major were transplanted to polyethylene bags containing zeolite and perlite (at ratios of 
25z:75p, 50z:50p, 75z:25p and 100z:0p, v/v) in a climate-controlled greenhouse. Net photosyn-
thesis (Anet), stomatal conductance (gs) and water use efficiency (WUE) of roses were followed 
for 5 months. Flower production and quality were recorded in three flowering flushes during 
a 5-month period. Analysis of variance of repeated measurements showed that even though 
the overall Anet did not differ among treatments (average 18.7 μmol m−2 s−1), trends in Anet sea-
sonality for roses in 25z:75p substrate differed significantly from those in 50z:50p, 75z:25p or 
100z:0p. Stomatal conductance did not show any significant seasonality or trends in response 
to substrate mixtures, averaging 0.89 mol m−2 s−1. Water use efficiency was significantly lower 
for roses in 25z:75p than in 100z:0p mixtures (1.8 ± 0.15 and 2.0 ± 0.13 μmol m−2 s−1 CO2/
mmol m−2 s−1 H2O, respectively). Cumulative production of rose plants did not differ among 
substrate mixtures. Productivity significantly differed among flower stem classes. Stem class I 
(>70 cm) and class V (≤30 cm) exhibited the least production, contributing to only 7.6 and 3.7% 
of the total production, respectively. The highest productivity was observed in classes III (51–
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60 cm) and IV (31–50 cm), contributing to the bulk of productivity (68.4%). Class II contributed 
a 20.3% of the production. Results showed that zeolite and perlite acted as inert materials. Ze-
olite did not exert any positive effect on productivity, in contrast to what has been reported in 
literature recently. Use of perlite resulted in a little improvement in photosynthesis, however 
this improvement was not reflected by a significant increase in production.

Keywords: Madelon rose, soil-less substrate, zeolite, perlite, gas exchange

1. Introduction

Soil-less cultures have been successfully used for several decades with the aim to in-
tensify production and reduce cost (Maloupa et al., 1992). Cultivation of roses in var-
ious soil-less media is being achieved with promising commercial potentials. Roses 
have been produced in almerian sand culture, nutrient flow cultures (Takano, 1988), 
gravel culture (Sarro et al., 1989), volcanic materials (Raviv et al., 1999), organic sub-
strates, mineral wool, aeroponics (Zieslin and Snir, 1989), rockwool (Kool and Van de 
Pol, 1991) and perlite (Katsoulas and Baille, 1999). The cost, local availability and ex-
perience in substrate use, are usually the determining factors for choosing a particular 
substrate type. Among the various soil-less culture practices, the use of substrate is the 
easiest to be adopted by growers.

Hydroponic cultivation in substrates containing zeolite has gained popularity in the 
last decade as an alternative to conventional soil-less production. Zeolite is reported to 
increase yields in several crops, i.e. wheat, eggplant, carrot, tomatoes, peppers (Mump-
ton, 1999). In floriculture, Issa et al. (2001) reported that gerbera performed better on ze-
olites than on perlite or rockwool. Zeolites are crystalline, hydrated alumino-silicate of 
alkali and alkaline earth cations, with an open three-dimensional structure, a unique 
adsorption capacity, and a high cation exchange and dehydration–rehydration ability 
(Mumpton, 1999). In contrast to the majority of production media which have a limited 
nutrient retaining capacity (Williams and Nelson, 1997), zeolite with its high cation ex-
change capacity (2–4 mequiv. g−1), has the potential to be used in soil-less media as a 
slow release nutrient source, positively affecting yields.

Perlite on the other hand has been widely used in soil-less cultures. Perlite, an alu-
mino-silicate of volcanic origin, is rather inert (low buffering and cation exchange ca-
pacities of 0–1 mg L−1). In general, it has a closed cellular structure, with the majority 
of water being retained superficially and released slowly at a relatively low tension, 
providing excellent drainage of the medium and aeration of rhizosphere. Therefore, it 
requires frequent irrigation to prevent a fast developing water stress (Maloupa et al., 
1992). Perlite also contains 6.9% aluminum which at low pH may be released into the 
solution and adversely affect the plants.

Because of their complementary properties, zeolite and perlite might be used to-
gether in substrates for soil-less cultivation and could potentially provide optimum 
growth conditions for roses. To test this hypothesis, we have studied the physiology, 
productivity, growth and flower quality of Madelon roses grown in zeolite (z) and per-
lite (p) substrates at various ratios (25z:75p, 50z:50p, 75z:25p and 100z:0p) in a climate 
and drip fertigation controlled greenhouse.
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2. Materials and methods

2.1. Growth conditions
Madelon rose plants grafted on rootstock of Rosa indica var. major were grown in a cli-
mate-controlled greenhouse (Agricultural Research Center of Macedonia and Thrace, 
Thessaloniki, Greece). Plants were transplanted in January, into 71 L black inside 
and white outside polyethylene bags (2 m length, 60 cm perimeter, 19 μm thickness). 
Bags were filled with zeolite:perlite mixtures with ratios of 25z:75p, 50z:50p, 75z:25p 
and 100z:0p (v/v). Particle sizes of zeolite and perlite were 3–6 mm and 3–5 mm, 
respectively.

Sixteen slabs placed on 16 PVC gullies were formed and supported by polysty-
rene blocks placed 30 cm above the ground. Each slab represented one treatment, each 
treatment was replicated 4 times and carried 16 plants (total of 64 plants/treatment). 
Plants were spaced 12 cm apart. The rate of the irrigation (fertigation) was electroni-
cally controlled to obtain an average of 30% drainage. Irrigation was applied between 
8 and 16 times per day for 10 to 20 min. The final concentrations in the nutrient solu-
tion (mequiv. L−1) were 9.6 N-NO3

−, 0.8 N-NH4
+, 4.0 K+, 6.8 Ca2+, 1.6 Mg2+, 1.6 H2PO4

2−, 
1.6 SO4

2−, while the concentrations of microelements (μequiv. L−1) were 93.6 B, 2.32 Cu, 
144.67 Fe, 2.02 Mn, 1 Mo, 11.4 Zn. The pH was adjusted to 5.8 with the addition of 65% 
HNO3 (this addition was taken into account when measuring the final N-concentra-
tion), and the electrical conductivity (EC) was 1.9 mS cm−1.

Winter and summer temperatures in the greenhouse were set at 13 and 25 °C, respec-
tively. Summer temperatures were controlled using automatic fans and cooling system, 
and excessive radiance was controlled using a shading net applied in June. The shading 
net allowed a maximum photosynthetic active radiation (PAR) of 700–900 μmol m−2 s−1. 
These PAR values were adequate to saturate photosynthesis in roses (Jiao et al., 1991). 
Yellow sticky traps, vaporized sulphur and spider mites predators (Ambliseious califor-
nia and Phytoseiulus persimilis) were used in conjunction with Vendex and Pyrimor to 
control black and green aphids, white flies, spider mites and powdery mildew.

2.2. Gas exchange measurements
Seasonal oscillations in gas exchange were followed on a monthly basis from May (when 
rose production started) till September using a portable photosynthetic system (LI-6250, 
LI-COR Inc. Lincoln NE, USA). A fully developed, five-leaflet compound leaf (the fourth 
or fifth from the top of the flowering shoot) was chosen for the measurement. Three vari-
ables were determined: net photosynthetic rates (Anet, μmol m−2 s−1), stomatal conduc-
tance (gs, mol m−2 s-1) and water use efficiency (WUE, μmol m−2 s−1 CO2/mmol m−2 s−1 
H2O). Measurements were conducted on clear sunny days between 10 am and 1 pm 
(time of highest photosynthetic rates). Difference between air and leaf temperatures in 
the chamber were maintained close to air temperature (difference between 1 and 2 °C) 
by manipulating the fan speed in the chamber. Vapor pressure deficit (VPD, mbar) be-
tween the leaf and the air was maintained near ambient (Awada et al., 2003). A total of 
20 plants was selected per treatment (five plants per replication) for gas exchange mea-
surements, the remaining plants were used for productivity measurements.
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2.3. Flower production and quality measurements
Flower production and quality were recorded between May and September in three 
flowering flushes (from May 9th to June 10th, June 11th to July 18th, and July 19th to 
September 7th). Stem length, thickness (at both top and bottom) and mass were mea-
sured. To evaluate quality, flowers were separated into five classes: class I (flowering 
stem length >70 cm), II (61–70 cm), III (51–60 cm), IV (31–50 cm), and class V (≤30 cm).

2.4. Data analysis
Repeated measures analyses of variance were performed using the Mixed Model Pro-
cedure in SAS statistical package to evaluate seasonal trends in gas exchange and the 
effect of substrate mixtures on gas exchange. Linear and/or quadratic contrast analy-
ses for treatment (substrate mixture) effects were also performed. Treatment and month 
were considered fixed factors, while plants within replications were random (Steel et 
al., 1996). Rose productivity, stem width and weight were analyzed using the General 
Linear Model in SAS. Pairwise mean comparisons were performed using the probabil-
ity of difference (P = 0.05) (Steel et al., 1996).

3. Results

3.1. Gas exchange measurements
Seasonal and diurnal trends of photosynthetic active radiation (PAR), air temperature 
(TA) and vapor pressure deficit (VPD) are presented in Figure 1. Environmental variables 
did not differ among treatments within sampling dates, and therefore, data were pooled 
together. There was a drop in total PAR received in July compared to June, due to the 
installation of the shading system. The lack of differences between treatments suggests 
that differences in gas exchange should be mainly attributed to differences in substrate 
characteristics and seasonality. Analysis of variance of repeated measurements over the 
5-month period (May–September, Table 1) showed that roses exhibited significant sea-

Figure 1. Average monthly course of photosynthetic active radiation (PAR, μmol m−2 s−1), air 
temperature (TA, °C), and vapor pressure deficit (VPD, mbar) between 8:00 and 20:00 h in the 
greenhouse.
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sonality in net photosynthesis (Anet), and that this trend in seasonality was to some ex-
tent influenced by substrate mixture treatments. More specifically, even though the over-
all Anet rates (values ranging between 18.36 and 19.11 μmol m−2 s−1) were not significantly 
influenced by substrate treatment, orthogonal contrasts (Table 1) showed that trends 
in Anet for roses grown in 25z:75p differed significantly from those grown in 50z:50p, 
75z:25p and 100z:0p. Significantly higher Anet values for roses grown in 25z:75p than in 
100z:0p were observed in May, August and September (Figure 2A). These differences in 
Anet were not reflected by differences in stomatal conductance. Stomatal conductance did 
not show any significant seasonality or trends in response to substrate mixtures, averag-
ing 0.89 mol m−2 s−1 (Table 1, Figure 2B). Water use efficiency on the other hand, exhib-
ited significant variability among treatments and seasons. Roses in 25z:75p mixtures had 
significantly lower WUE than roses in 100z:0p mixtures (1.8 ± 0.15 and 2.0 ± 0.13, respec-
tively). WUE in 50z:50p and 75z:25p mixtures averaged 1.9 and values were not signifi-
cantly different from either 25z:75p or 100z:0p mixtures (Figure 2C).

3.2. Production and quality
Analysis of variance (Table 2) showed that cumulative production of rose plants 
(n = 10) did not differ among substrate mixtures. The average cumulative production 
per plant ranged from 50 to 55 for 100z:0p and 25z:75p substrate mixtures, respectively 
(Figure 3). Productivity significantly differed among classes (Table 2, Figure 3). Stem 
class I (>70 cm) and class V (≤30 cm) exhibited the least production, averaging 4.1 and 2 
flowers per plant and contributing to 7.6 and 3.7% of the total production, respectively. 
The highest productivity was observed in classes III (51–60 cm) and IV (31–50 cm), with 
17 (31.4%) and 20 (37%) flowering stems per plant. Classes III and IV did not differ be-

Table 1. Analysis of variance of repeated measurements and orthogonal contrasts of seasonal 
changes (May–September)

Analysis of variance	                                 d.f.           Anet (F-value)           gs (F-value)     WUE (F-value)

Month	 4	 44.27**	 1.69 ns	 138.4**
Treatment	 3	 2.54 ns	 0.67 ns	 7.55**
Treatment × month	 12	 3.49**	 1.00 ns	 3.93**

Orthogonal contrasts
 25z:75p vs. 50z:50p	 1	 96.7**	 0.01 ns	 85.9**
 25z:75p vs. 75z:25p	 1	 95.3**	 3.21 ns	 17.2**
 25z:75p vs. 100z:0p	 1	 54.5**	 0.02 ns	 139.3**
 50z:50p vs. 75z:25p	 1	 2.55 ns	 3.6 ns	 42.9**
 50z:50p vs. 100z:0p	 1	 4.99*	 0.01 ns	 443.6**
 75z:25p vs. 100z:0p	 1	 1.51 ns	 3.49 ns	 315.9**
 25z:75p vs. (50z:50p, 75z:25p and 100z:0p)	 1	 20.59**	 1.42 ns	 174.5**

Net photosynthesis (Anet, μmol m−2 s−1), stomatal conductance (gs, mol m−2 s−1) and water use efficiency 
(WUE, μmol m−2 s−1 CO2/mmol m−2 s−1 H2O) in hydroponic roses grown in four substrates (treatments) 
of zeolite:perlite (z:p) mixtures.
ns denotes not significant at 0.05. 
* F-values significant at 0.05. 
** F-values significant at 0.01.
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tween each other, but differed significantly from the remaining classes. They contrib-
uted to the bulk of the production with 70% of the total. Class II contributed to an aver-
age of 11 flowering stems per plant, or 20.3% of total production.

Stem width at the top and base, and average mass did not differ among substrate 
treatments (Table 2), therefore data were pooled together (Figure 4). Stem width and 
weight declined, as expected, significantly with decline in stem length (classes I–V). The 
decline was steeper, mass and width-wise, at the base than with the width at top. The 
latter was the least affected by the decline in stem length.

Figure 2. Seasonal variation of (A) net photosynthesis (Anet, μmol m−2 s−1), (B) stomatal conductance 
(gs, mol m−2 s−1) and, (C) water use efficiency (WUE, μmol m−2 s−1 of CO2/mmol m−2 s−1 of H2O) 
and respective standard error bars in hydroponic roses, grown in four zeolite:perlite (z:p) mixtures 
in the greenhouse. An asterisk indicates significant differences between treatments within a month 
at P = 0.05, n = 20.
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4. Discussion

Data on the physiology of roses, including water use and photosynthesis and their im-
pact on growth and yield, are either scarce (Jiao and Grodzinski, 1998) or unreliable 
(Raviv and Blom, 2001). The importance of radiation and temperature on the other 
hand, has been studied by Zieslin and Mor (1990) and Jiao et al. (1991) among others. 
Jiao et al. (1991) reported that irradiance accounts for 70% of the total variability in as-
similation rate in roses. A decrease in light intensity below the saturation point due to 
either seasonal changes or shading is believed to reduce yield in roses (Zieslin and Mor, 
1990). In the Mediterranean area, however, the high light intensity during summer re-
duces yield and flower quality in the greenhouse due to its direct effect on temperature, 
relative humidity and the resulting vapor pressure deficit, transpiration and stomatal 
conductance (Bredmose, 1993). Decreased length and mass of rose stems following sup-
plementary lighting have been reported (Jiao et al., 1988). Partial shading and green-
house ventilation are therefore, common practices in this region in an effort to decrease 
temperature, reduce vapor pressure deficit, and to control insects and diseases.

Table 2. Analysis of variance table of stem production

Analysis of                                             Production          Width (T)              Width (B) (T)       Weight (T) 
variance                            d.f.                 (F-value)              (F-value)                 (F-value)              (F-value)

Class	 4	 95.6**	 145.6**	 305.3**	 518.4**
Treatment	 3	 0.06 ns 	 2.24 ns 	 0.28 ns 	 0.86 ns 
Class × treatment	 12	 0.17 ns 	 1.16 ns 	 1.13 ns 	 1.42 ns 

Stem width at the top (T) and base (B), and stem weight in five stem length classes (I–V) of hydro-
ponic roses, grown in four zeolite:perlite mixtures (treatments).
ns denotes not significant at 0.05. 
** F-values significant at 0.01.

Figure 3. Cumulative flower production of hydroponic roses (n = 10 plants) in five stem classes (I–
V), grown in four zeolite:perlite (z:p) mixtures in the greenhouse. All treatments (25z:75p, 50z:50p, 
75z:25p and 100z:0p) within the same class are not statistically different at P = 0.05. Means with the 
same letter within a treatment are not statistically different at P = 0.05.



210    Sama r tz i d i s et al. i n Sc i e nti a Hor t i c ul tu r a e  106 (2005)

Photosynthetic rates for rose leaves have been reported to range from 6.9 μmol m−2 s−1 
for the “Forever yours” (Aikin and Hanan, 1975) to 13 μmol m−2 s−1 for “Samantha” 
cultivar (Bozarth et al., 1982). Aikin and Hanan (1975) and Bozarth et al. (1982), re-
ported that photosynthesis reached the point of saturation at 450–500 μmol m−2 s−1. 
Maximum rates reported in the current study (18.36 and 19.11 μmol m−2 s−1, PAR 700–
900 μmol m−2 s−1) are consistent with those reported by other authors for outdoor-grow-
ing rose plants (e.g. Lieth and Pasian, 1990). Net photosynthesis was higher and WUE 
was lower in 25z:75p than in 100z:0p on several sampling dates. It is known that plants 
under increasing water stress respond by an increase in WUE. In the current study, 
the observed trend of a lower WUE in 25z:75p substrate suggests that roses in this me-
dia had more readily available water than roses in 100z:0p. Both substrates (zeolite and 
perlite) were coarse, however, during establishment (bag filling and transplanting,) 
and cultivation periods, an alteration (fragmentation) of perlite material usually occurs 
(Orozco and Marfa, 1995). Zeolite, though subjected to the same procedure, is usually 
not affected because of its hardness. Consequently, the 25z:75p substrate was altered 
the most, resulting in the presence of particles with sizes smaller than 3 mm in the me-
dium. The latter is believed to decrease the percentage of pores with large diameters 
(60 μm), containing the gravitational water that is easily drained, and to increase the 
percentage of those with a diameter between 30 and 60 μm. Consequently, an increase 
in the total available water content of the growing media occurred, improving water 
status, resulting in a better water and nutrient uptake, and avoiding a pronounced mid-
day water stress. These favorable conditions in the 25z:75p media resulted in a slight, 
but not significant, increase in rose productivity compared to the other treatments.

First flush in flower production was observed in May, 4 months after planting. Pro-
ductivity did not significantly differ among treatments. Similar observations were re-
ported in the literature for other rose cultures (Brun and Tramier, 1988). Production 
and quality results indicated that particle size of coarse zeolite (3–5 mm) and perlite (3–
6 mm) ensured sufficient aeration in all four growing media (Maloupa et al., 1992; Issa 

Figure 4. Overall average and respective standard error bars of stem width at the base (B) and top 
(T) and corresponding stem mass in five classes (I–V) of hydroponic roses.
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et al., 2001). The fertigation management and the cultural practices implemented (open 
hydroponics system) lead both substrates to react as inert materials, therefore, impos-
ing no direct effects on nutrient availability in the rhizosphere. Results on positive ef-
fects of zeolite on productivity reported in the literature (e.g. Mumpton, 1999; Issa et al., 
2001) may be explained by the powdery form of zeolite material used, which provided 
a higher surface available for absorption and cation exchange and/or by the fertiliza-
tion management applied. We conclude that coarse zeolite in soil-less cultures sim-
ply acts as an inert material and does not exert any positive effect on productivity. The 
use of perlite, on the other hand, resulted in some photosynthetic improvement which, 
however, was not reflected by a significant increase in productivity.
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