University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln

Faculty Publications, Department of Physics and Astronomy

Research Papers in Physics and Astronomy

1982

The Light Curves of RR Lyrae Field Stars

Norman R. Simon University of Nebraska-Lincoln, nsimon@unl.edu

Terry J. Teays University of Nebraska-Lincoln, tteays1@jhu.edu

Follow this and additional works at: https://digitalcommons.unl.edu/physicsfacpub

Part of the Physics Commons

Simon, Norman R. and Teays, Terry J., "The Light Curves of RR Lyrae Field Stars" (1982). *Faculty Publications, Department of Physics and Astronomy*. 86. https://digitalcommons.unl.edu/physicsfacpub/86

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications, Department of Physics and Astronomy by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

THE LIGHT CURVES OF RR LYRAE FIELD STARS

NORMAN R. SIMON AND TERRY J. TEAYS Behlen Laboratory of Physics, University of Nebraska-Lincoln Received 1982 February 8; accepted 1982 April 23

ABSTRACT

Fourier decompositions have been made of the light curves of a large sample of RR Lyrae field stars. The coefficients have been tabulated. Following the scheme of an earlier investigation of classical Cepheids, certain combinations of the low-order coefficients— ϕ_{21} , R_{21} , and ϕ_{31} —are plotted against period. The Bailey-type c pulsators stand out from the type *ab* stars, particularly on the R_{21} plot which is found to be a more sensitive discriminator of Bailey type than is the traditionally employed amplitude-period diagram. We compare the RR Lyrae plots of ϕ_{21} , R_{21} , and ϕ_{31} with those previously obtained for classical Cepheids. It is noted that, while the Cepheid plots display a tightly defined progression with period, reflecting the influence of a modal resonance, in the RR Lyrae case there is much more scatter. However, some evidence is shown to exist for a Cepheid-like progression appearing among the longer period RR Lyrae pulsators and culminating in the unique small-amplitude variable XZ Ceti. New observations will be required to confirm the reality of such a progression.

Subject headings: stars: pulsation — stars: RR Lyrae

I. INTRODUCTION

In a recent investigation, Simon and Lee (1981) performed Fourier decompositions of the light curves of a large selection of classical Cepheids. It was shown that certain combinations of the low-order Fourier coefficients changed with period in such a way as to provide a quantitative description of the Hertzsprung progression. In the present work we extend the technique to the RR Lyrae domain. The light curves of 70 RR Lyrae pulsators, all field stars, are subjected to Fourier analysis, and combinations of the coefficients again plotted against period. In analyzing the data we seek to answer two questions: (1) Do the RR Lyrae stars show any regular progression similar to that displayed by the classical Cepheids? and (2) Is the well-known qualitative dichotomy in curve shape between the Bailey type c stars and the Bailey type *ab* stars confirmed quantitatively by the Fourier decompositions?

II. FOURIER DECOMPOSITIONS

The Fourier fitting is described by Simon and Lee. Fits to the observed visual magnitudes have the form:

$$V = A_0 + A_i \cos \left[i\omega(t - t_0) + \phi_i \right], \qquad (1)$$

where, in the present investigation, the index i runs from 1 to 8 in all but one case. Thus, while many of the Cepheid light curves in Simon and Lee could be fitted by four terms, the RR Lyrae fits were noticeably improved by going to eighth order. Criteria for the suf-

ficiency and appropriateness of the fits are the same as those given by Simon and Lee.

The fits described in equation (1) are always to observations expressed in the standard UBV system. Data published in other systems were converted before fitting. The time t in equation (1) is employed in the form

$$t = JD - \tau$$
,

where JD is the time of the observation in Julian days. The quantities τ and t_0 are constants but in general have different values for each star. The former quantity is given in Table 1, the latter in Table 2.

The list of stars chosen for study is displayed in Table 1. The bulk of the sample comes from the work of Lub (1977), who has kindly supplied us with his observations in tabular form. These and other observations are referenced in the source column of Table 1. Other columns in the table give the published Bailey type, the period, the amplitude, the number of observations presented to the fitting routine, and the standard deviation of the fit, multiplied by 100. As explained by Simon and Lee, the periods given here should not be considered definitive.

For a number of stars, the data sets were larger than could be accommodated by the fitting program. In these cases a selection of data was made, as indicated in the final column of Table 1. For yet other stars, a variable light curve is suspected, either because such a suspicion has already been voiced in the literature or because our examination of the data has indicated some question. This circumstance is also noted in the last column.

Star	Star	Bailey				No. of	σ	
No.	Name	Туре	Source	Period	Amplitude	Obs.	(x 100)	Notes
1	BB Hyi	С	L1	.287131	0.54	69	2.31	
2	CG L1D	C	LI	.3068674	0.63	103	2.74	1
3		C	P	.308645	0.56	200	0.67	T
4	RV Evi	C a		.311331	0.53	100	0.99	
5		C		216000	0.55	152	2.34	
7		C C	11	.310099	0.02	106	1.40	
8		C C	11	3201385	0.40	88	1.04	
g	ΔΔ Δα]	ab	11	3617860	1 33	126	3 38	
10	RW TrA	ab	11	3740351	0.77	84	1 95	
11	SV Scl	C C	11	.37760	0.52	97	1.59	
12	RU Psc	c	P	.39040	0.49	158	1.26	
13	HH Pup	ab	i 1	.3907463	1.40	139	2.87	
14	V445 Oph	ab	L1	.3970228	0.90	129	1.85	
15	AM Tuc	C	L1	.405689	0.46	105	2.11	3
16	W Crt	ab	L1 .	.4120134	1.33	142	2.78	
17	V494 Sco	ab	L1	.4273326	1.00	175	2.00	
18	SW And	ab	Μ	.44227	0.95	127	2.05	
19	RV Cap	ab	D2	.4477502	1.15	83	2.96	2
20	ST Oph	ab	L1	.4503564	1.31	108	3.28	
21	S Ara	ab	L1	.451883	1.33	180	2.30	
22	RR Leo	ab	0	.45238172	1.38	244	3.40	
23	V455 Oph	ab	L1	.4539182	0.90	110	3.05	
24	VX Her	ab	L1 -	.45537280	1.35	149	2.51	
25	SW Aqr	ab	L1	.4593029	1.31	147	3.26	
26	CP Aqr	ab	L1	.463407	1.31	119	2.50	
27	DN Pav	ab	L2	.46844376	1.39	200	4.10	1
28	DX Del	ab	L4	.4/26239	0.75	200	1.69	1
29	V440 Sgr	ab	LZ	.4//4/883	1.29	200	2.44	1
30	SV Hya	ab		.4/85439	1.32	191	2.72	
31	BB Pup	ab		.480544	1.06	143	2.88	
32	EW Lup	ab		.4818/85	1.19	160	2.55	
37	ST Dic	aD ab	L3 D1	.4041/12	0.41	109	1.04	
35	AV Ser	ab		4875571	1 14	13/	2 23	
36		ab	11	4922558	1 12	133	2 28	
37	SS For	ab	11	495432	1 36	124	2.60	
38	TY Ans	ab	11	5016935	1 09	136	3.85	2
39	RZ Cet	ab	12	.5106077	0.98	164	3.49	
40	V499 Cen	ab	11	.521210	1.22	200	2.38	1
41	AN Ser	ab	LĪ	.52207070	1.05	149	1.88	
42	AF Vel	ab	LĪ	.5273984	0.96	157	2.64	
43	RY Psc	ab	L1	.5297291	0.84	138	2.94	
44	VY Lib	ab	L1	.5339377	1.04	182	2.90	
45	RR Cet	ab	L1	.5530253	0.98	139	1.67	
46	V452 Oph	ab	L1 .	.55716230	1.02	115	2.94	
47	RV Oct	ab	L1	.571130	1.16	200	3.21	1
48	TZ Aqr	ab	L1	.5711943	0.86	119	2.62	
49	WY Ant	ab	L2	.57433095	0.93	68	1.93	_
50	V341 Aq1	ab	L2	.57802054	1.27	200	2.27	1
51	RX Eri	ab	D1	.5872462	0.90	200	2.08	1
52	V413 CrA	ab	Ll	.5893240	0.70	165	1.72	
53	RV Phe	ab	Ll	.5964182	0.69	135	2.26	1
54	II Lyn	ab	0	.59/43406	0.74	200	2.10	L I
55	UU Cet	ab		.606081	0./0	1/2	2.4/	
50 F7		ab		.035021	1.19	131	2.28	1
5/ E0	ri nya Veze Sen	dD		.030051	1.19	200	4.05	1 I
20	voro sgr	dD	L I	.0422899	0.9/	200	1.00	T

TABLE 1List of Stars in the Survey

Star No.	Star Name	Bailey Type	Source	Period	Amplitude	No. of Obs.	(x 100)	Notes
59 60 61 62 63 64 65 66 67 68 69	UY Boo X Ari AV Vir SU Dra TV Leo BO Aqr TY Pav VY Ser X Crt IU Car AT Ser	ab ab ab ab ab ab ab ab ab ab ab	L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	.6508446 .6511336 .656908 .6604189 .6728430 .6940186 .7104425 .7140931 .7328332 .737108 .74656820	1.18 0.99 0.79 1.03 1.29 1.13 0.92 0.73 0.71 1.01 0.92	200 200 140 96 184 142 152 177 166 162 163	3.25 1.76 2.33 1.71 2.93 2.69 2.33 1.51 1.51 1.79 1.85 1.75	1,2
68 69 70	IU Car AT Ser XZ Cet	ab ab ab ?	L1 L1 D1	.737108 .74656820 .8231	1.01 0.92 0.48	162 163 234	1.85 1.75 1.00	

TABLE 1—Continued

NOTES.-(1) Selected data set. (2) Light curve may be variable. (3) Fourth-order fit.

Sources. --D1: Dean et al. 1977, $\tau = 2,440,000$; D2: Dean et al. 1977, $\tau = 2,442,600$; L1: Lub 1977, $\tau = 2,441,000$;

L2: Lub 1977, $\tau = 2,440,000$; L3: Lub 1977, $\tau = 2,442,000$; L4: Lub 1977, $\tau = 2,439,000$; M: McNamara and Feltz 1977, $\tau = 2,433,000$; O: Oláh and Szeidl 1978, $\tau = 2,436,000$; P: Paczynski 1965, $\tau = 2,438,000$.

Tables 2 and 3 give the Fourier coefficients (A_i, ϕ_i) according to equation (1) for all of the stars in our sample. Following Simon and Lee, we shall attempt to quantify the structure of the light curves by employing combinations of the low-order coefficients, viz.,

$$R_{21} = A_2/A_1, \quad \phi_{21} = \phi_2 - 2\phi_1, \quad \phi_{31} = \phi_3 - 3\phi_1.$$

Figures 1, 2, and 3 display the plots versus period of ϕ_{21} , R_{21} , and ϕ_{31} respectively. We may compare these plots with Figures 1, 2, and 4 of Simon and Lee which show the same quantities versus period for classical Cepheids. It is immediately obvious that the RR Lyrae graphs display considerably more scatter, a circumstance which argues for a much greater inhomogeneity in the RR Lyrae sample as compared with that of the Cepheids. That this should be the case is not surprising since most observed Cepheids are thought to be on a particular crossing of the instability strip, whereas the RR Lyrae stars may not have a single, common, interior structure or evolutionary history.

The Bailey type ab stars are indicated by filled circles in Figures 1–3, while the type c stars are denoted by crosses. The two groups are segregated in all three figures but most decisively by far in Figure 2. For comparison, we plot in Figure 4 the standard amplitude-period diagram for the stars of our sample. Not only is there much more scatter in this diagram compared with Figure 2, but two of the circles are seen to lie among the crosses. These stars are FW Lupi and ST Pictoris. Although the former star was classified abby Lub (1977), neither of the two light curves (which appear very similar to the eye) conform very well to the classical categories. However, on the basis of Figure 2, these stars may now indeed be classified as type ab. The R_{21} -period diagram thus seems to provide a clearer test of Bailey type than do the criteria previously employed.

Traditionally, the type c stars are accepted as a distinct group, generally taken to be characterized by first-overtone pulsation. The Fourier decompositions, discussed above, contain nothing which disputes this. However, our sample does include a unique star, which is not easily fitted into the general picture. This object is XZ Ceti, represented in Figures 1-4 by a circle containing a cross. XZ Ceti is a small-amplitude pulsator whose light curve is rather typical of Bailey type c and whose values of ϕ_{21} , R_{21} , and ϕ_{31} fall well within the type c ranges. On the other hand, this star has a period of 0.823 days, the longest of any star in our sample. In addition, a careful perusal of Figures 1-3 yields the following interesting observation. If one considers only the longer period stars, say $P \gtrsim 0.55$ days, then the progressions of ϕ_{21} , R_{21} , and ϕ_{31} with period resemble those detected for the classical Cepheids, as may be seen by comparing Figures 1, 2, and 4 from Simon and Lee. In particular, the sharp rise of ϕ_{21} and ϕ_{31} , and the sharp fall of R_{21} , around 0.8 days parallel the behavior of the classical Cepheids near 10 days.

To be sure, these parallels rest upon somewhat sketchy evidence. In the first place, as noted earlier, the RR Lyrae stars show considerable scatter. Secondly, and more important, the inference we have advanced depends strongly upon one star, namely, XZ Ceti itself. While it thus seems premature to assert the existence of a "Hertzsprung progression" for the RR Lyrae stars, the possibility of such a progression is intriguing. In the classical Cepheids, the abrupt changes of the Fourier coefficients at 10 days are believed to be due to a

	_										
Star No.	Star Name	t _o	A _o	A ₁	^ф 1	A ₂	^ф 2	A ₃	^ф 3	A ₄	^ф 4
1	BB Hyi	993	12.06	2.50(-1)	6.28	4.14(-2)	4.61	2.03(-2)	2.88	2.11(-2)	1.46
2	CG Lib	143	11.50	2.68(-1)	5.50	5.66(-2)	3.10	1.79(-2)	2.78(-1)	1.97(-2)	4.38
3	RZ Cep	250	9.43	2.68(-1)	4.62	6.34(-2)	1.30	2.52(-2)	3.94	1.77(-2)	9.08(-1)
4	HD16456	2350	9.02	2.65(-1)	1.44(-1)	4.60(-2)	4.95	2.83(-2)	3.28	1.71(-2)	2.26
5	BY Eri	640	12.39	2.34(-1)	3.93	4.60(-2)	1.76(-1)	2.32(-2)	1.85	1.64(-3)	5.25
6	MT Tel	126.45	9.01	2.60(-1)	1.93	7.35(-2)	1.89	1.66(-2)	1.85	1.00(-2)	1.95
7	T Sex	372	10.06	2.15(-1)	3.88	2.23(-2)	3.12(-1)	1.31(-2)	3.00	8.32(-3)	4.92
8	V487 Sco	473	11.37	2.18(-1)	2.58	1.70(-2)	3.68	1.30(-2)	5.93	1.29(-2)	1.02
9	AA Aal	116	11.90	4.34(-1)	4.72	2.37(-1)	7.41(-1)	1.53(-1)	3.45	1.06(-1)	6.01
10	RW TrA	494	11.36	2.85(-1)	6.05	1.37(-1)	3.75	7.34(-2)	1.57	3.48(-2)	5.82
11	SV Scl	924	11.42	2.52(-1)	5.81	3.57(-2)	4.13	2.30(-2)	2.26	1.58(-2)	9.15(-3)
12	RU Psc	293	10.17	2.30(-1)	2.88	1.47(-2)	3.89	1.75(-2)	6.60(-1)	8.57(-3)	1.95
13	HH Pup	361	11.43	4.28(-1)	5.75	2.53(-1)	3.23	1.62(-1)	1.60(-1)	1.02(-1)	4.04
14	V445 Oph	195.8	11.05	3.12(-1)	6.20	1.56(-1)	4.04	8.76(-2)	2.05	4.32(-2)	1.15(-1)
15	AM Tuc	960	11.65	2.16(-1)	3.35	2.11(-2)	5.76	1.88(-2)	1.65	7.30(-3)	2.40
16	W Crt	448	11.63	4.38(-1)	9.27(-1)	2.45(-1)	5.80	1.44(-1)	4.75	1.06(-1)	3.56
17	V494 Sco	108	11.41	4.05(-1)	2.42	1.72(-1)	2.53	8.46(-2)	2.59	4.05(-2)	3.21
18	SW And	69	9.68	3.18(-1)	2.19	1.74(-1)	2.26	1.06(-1)	2.56	5.51(-2)	2.87
19	RV Cap	82	11.15	4.54(-1)	4.29	1.87(-1)	6.09	9.75(-2)	1.67	6.40(-2)	3.86
20	ST Oph	860	12.24	4.54(-1)	8.13(-1)	2.19(-1)	5.41	1.56(-1)	4.08	9.65(-2)	2.72
21	S Ara	148	10.84	4.32(-1)	3.82	2.12(-1)	5.16	1.64(-1)	5.51(-1)	1.05(-1)	2.25
22	RR Leo	200	10.83	4.55(-1)	6.91(-1)	2.28(-1)	5.16	1.61(-1)	3.69	9.91(-2)	2.33
23	V455 Oph	836	12.35	3.39(-1)	1.07	1.46(-1)	6.06	6.62(-2)	4.92	3.28(-2)	4.07
24	VX Her	439	10.78	4.58(-1)	4.51(-1)	2.12(-1)	2.61(-1)	1.64(-1)	2.56	1.06(-1)	4.96
25	SW Aar	198	11.29	4.65(-1)	5.35	2.19(-1)	1.92	1.61(-1)	5.07	9.82(-2)	2.03
26	CP Aar	527	11.86	4.32(-1)	5.13	2.44(-1)	1.67	1.40(-1)	4.81	9.84(-2)	1.83
27	DN Pav	135	12.54	4.57(-1)	2.18	1.99(-1)	1.88	1.54(-1)	1.73	1.06(-1)	1.88
28	DX Del	365	10.00	2.52(-1)	2.72	1.34(-1)	3.34	7.34(-2)	4.21	3.06(-2)	5.12
29	V440 Sar	802	10.42	4.21(-1)	4.73	2.02(-1)	7.03(-1)	1.55(-1)	3.32	9.95(-2)	5.95
30	SV Hva	88	10.60	4.58(-1)	2.69	2.24(-1)	2.84	1.29(-1)	3.24	7.94(-2)	3,90
31	BB Pup	389	12.21	3.24(-1)	3.61	1.82(-1)	5.07	1.12(-1)	4.31(-1)	6.62(-1)	2.21
32	BR Aar	153	11.50	3.77(-1)	3.07	2.00(-1)	3.84	1.38(-1)	4.93	8.33(-2)	6.13
33	EW Lun	185	9.05	1.61(-1)	3.51	6.19(-2)	4.96	2.36(-2)	5.75(-1)	6.58(-3)	2.48
34	ST Pic	2200	9.55	1.87(-1)	1.38	7.41(-2)	7.69(-1)	3.14(-2)	3.01(-1)	8.24(-3)	6.08(-1)
35	AV Ser	515	11.56	3.98(-1)	5.63(-3)	1.94(-1)	3.81	1.37(-1)	1.81	7.90(-2)	5.90

 TABLE 2

 FOURIER COEFFICIENTS (A_i, ϕ_i) (where i = 1-4)

Star No.	Star Name	t _o	A _o	A ₁	^ф 1	A ₂	[¢] 2	A ₃	[¢] 3	A ₄	[¢] 4
36	V690 Sco	668	11.48	3.66(-1)	6.56(-1)	2.04(-1)	5.42	1.24(-1)	4.12	8.26(-2)	2.98
3/	SS For	951	10.26	4.59(-1)	2.32(-1)	2.51(-1)	4.20	1.48(-1)	2.52	7.57(-2)	3.38(-1)
38	IY Aps	513	11.94	3.35(-1)	4.63	1.83(-1)	/.40(-1)	1.04(-1)	3.52	6.14(-2)	5.98
39	KZ LET	1900	11.86	3.49(-1)	2.51	1.64(-1)	2.74	1.05(-1)	2.98	5.55(-2)	3.48
40	V499 Cen	125	11.1/	4.23(-1)	0.21	1.92(-1)	3./1	1.40(-1)	1.44	1.00(-1)	5.55
41	AN Ser	464 410 F	11.00	3.66(-1)	1.32	1.85(-1)	6.34(-1)	1.04(-1)	2.21(-1)	0.58(-2)	5.83
42	AF Vel	410.5	11.48	3.//(-1)	/.01(-1)	1.38(-1)	5.30	9.37(-2)	3.94	0.10(-2)	2.01
43		300	12.42	2.89(-1)	1.30	1.4/(-1)	1.10(-1)	8.40(-2)	5.81	4.20(-2)	4.97
44		104	11.75	3.33(-1)	2 16	1./1(-1)	5.00	1.20(-1) 1.12(-1)	4.09	7.40(-2)	2 41
40	KK LEL	943	9.70	3.20(-1)	2.10	1.01(-1) 1.40(-1)	1.90	1.13(-1) 1 10(1)	2.15	0.95(-2)	2.41
40	RV Oct	027	12.30	3.34(-1)	2.09	1.49(-1)	2 11	1.10(-1) 1.22(-1)	2 77	9.03(-2)	2 10
4/		572	12 10	2 0 (-1)	2.33	1.20(-1)	2.44	1.33(-1)	2.77	5.97(-2)	5.19
40	WV Apt	572	10 00	2.01(-1)	7.25(1)	1.30(-1)	5 22	1 16(1)	2.00	$\frac{5.00(-2)}{7.33(-2)}$	2 74
49		625	10.90	3.22(-1)	5 36	2 25(-1)	5.04	1.10(-1) 1.34(-1)	3.53	0.06(-2)	2.74
51	DY Fri	1500	9 70	3.09(-1)	5.61	1.56(-1)	2.75	1.00(-1)	1 18(-1)	5.68(-2)	3 96
52	V413 (rA	491	10.63	2 49(-1)	3 11	1 15(-1)	4 07	7 70(-2)	5 23	3.64(-2)	248(-1)
53	RV Phe	906.5	11.98	2.45(-1)	1.66	1.24(-1)	1.02	6.51(-2)	7.95(-1)	3.96(-2)	5.72(-1)
54	TTIVn	650	9.88	2.52(-1)	7.73(-1)	1.16(-1)	5.56	8.06(-2)	4.41	4.08(-2)	3.40
55	UU Cet	198	12.09	2.39(-1)	5.93	1.09(-1)	3.33	6.85(-2)	1.16	4.16(-2)	5.49
56	YY Tuc	920	12.07	4.04(-1)	3.37	2.21(-1)	4.40	1.37(-1)	5.72	9.02(-2)	9.37(-1)
57	FY Hva	104	12.63	3.93(-1)	2.85	1.61(-1)	3.31	1.31(-1)	3.95	8.33(-2)	4.49
58	V675 Sar	166	10.39	3.25(-1)	6.37(-2)	1.53(-1)	4.03	1.18(-1)	2.05	7.59(-2)	1.11(-1)
59	UY Boo	416	11.03	3.78(-1)	3.35	1.78(-1)	4.23	1.37(-1)	5.38	9.02(-2)	3.02(-1)
60	X Ari	447	9.59	3.40(-1)	4.29	1.60(-1)	6.19	1.22(-1)	2.17	8.57(-2)	4.42
61	AV Vir	467	11.84	2.72(-1)	2.40	1.34(-1)	2.71	8.28(-2)	3.32	4.03(-2)	3.98
62	SU Dra	500	9.86	3.43(-1)	1.79	1.86(-1)	1.40	1.10(-1)	1.27	6.73(-2)	1.19
63	TV Leo	430	12.17	4.06(-1)	4.89	2.03(-1)	1.16	1.29(-1)	4.04	9.61(-2)	7.35(-1)
64	BO Aqr	608	12.23	3.63(-1)	2.36	1.89(-1)	2.56	1.21(-1)	2.96	6.97(-2)	3.58
65	TY Pav	537	12.62	3.07(-1)	5.98	1.56(-1)	3.59	9.15(-2)	1.32	5.09(-2)	5.52
66	VY Ser	442	10.15	2.62(-1)	3.50	1.26(-1)	4.91	/.83(-2)	2.38(-1)	3.53(-2)	2.08
67	X Crt	803	11.49	2.24(-1)	4.67	1.05(-1)	1.09	6.31(-2)	4.05	2.92(-2)	8.24(-1)
68	IU Car	756	11.99	3.63(-1)	4.10	1.66(-1)	6.01	1.01(-1)	1.66	6.84(-2)	3.90
69	AT Ser	804.5	11.53	3.23(-1)	1.94	1.59(-1)	1.8/	1.02(-1)	1.80	5./6(-2)	1.91
70	XZ Cet	2000	9.47	2.20(-1)	5.42	3./6(-2)	3.24	2.33(-2)	8.24(-1)	6.08(-3)	4.84

TABLE 2—Continued

590

TABLE 3FOURIER COEFFICIENTS (A_i, ϕ_i) (where i = 5-8)

Star No.	Star Name	A5	φ2	A ₆	φ 6	A7	¢ 7	A ₈	¢ 8
1	BB Hyi	9.82(-3)	3.68(-2)	1.12(-2)	3.32	1.22(-2)	1.42	4.25(-3)	4.03
2	CG Lib	1.36(-2)	2.18	1.39(-2)	5.26	8.17(-3)	2.78	8.92(-3)	5.57
ŝ	RZ Cep	1.35(-2)	3.61	1.17(-2)	6.22	5.01(-3)	2.31	4.63(-3)	4.89
4	HD16456	1.22(-2)	4.62(-1)	9.97(-3)	4.94	6.66(-3)	3.41	3.36(-3)	7.91(-1)
ۍ ۲	BY Eri	4.94(-3)	7.46(-1)	9.50(-3)	3.73	3.89(-3)	2.49	9.53(-3)	8.11(-1)
9	MT Tel	5.60(-3)	1.35	4.89(-3)	1.48	4.53(-3)	1.62	1.51(-3)	1.11
7	T Sex	6.05(-3)	1.02	3.99(-3)	2.61	4.27(-3)	5.90	2.41(-3)	1.10(-1)
ω	V487 Sco	6.31(-3)	1.12	2.80(-3)	3.68	5.13(-3)	6.71(-1)	3.56(-3)	3.52
6	AA Aq1	6.59(-2)	2.36	4.53(-2)	4.93	3.93(-2)	1.28	3.07(-2)	3.84
10	RW TrA	1.69(-2)	3.64	6.20(-3)	7.43(-1)	5.65(-3)	4.83	1.03(-2)	4.83
11	SV Sc1	6.18(-3)	4.23	4.68(-3)	2.05	9.78(-4)	4.36	3.70(-3)	2.44
12	RU Psc	5.85(-3)	2.76	6.53(-3)	4.76	3.78(-3)	5.58	2.76(-3)	4.05(-1)
13	dnd HH	7.35(-2)	1.13	4.49(-2)	5.08	3.73(-2)	1.98	3.16(-2)	5.88
14	V445 0ph	2.85(-2)	4.13	1.89(-2)	2.10	9.20(-3)	5.73	4.75(-3)	3.30
15	AM Tuc		ł	-		1			
16	W Crt	6.75(-2)	2.65	4.19(-2)	1.27	3.72(-2)	1.91(-1)	2.31(-2)	5.48
17	V494 Sco	1.34(-2)	3.40	1.11(-2)	4.10	5.00(-3)	1.52	2.62(-3)	3.89
18	SW And	3.54(-2)	2.93	1.99(-2)	3.24	1.38(-2)	3.88	4.05(-3)	3.32
19	RV Cap	2.34(-2)	1.62	8.77(-3)	2.33	9.61(-3)	3.67	9.46(-3)	1.50
20	ST Oph	7.14(-2)	1.37	5.11(-2)	1.90(-1)	3.12(-2)	5.11	2.28(-2)	3.57
21	S Ara	7.74(-2)	3.94	4.88(-2)	5.68	2.60(-2)	9.57(-1)	2.55(-2)	2.59
22	RR Leo	7.79(-2)	1.02	4.91(-2)	5.81	3.27(-2)	4.45	3.14(-2)	2.97
23	V455 Oph	9.67(-3)	2.78	4.62(-3)	2.85	4.28(-3)	2.34	1.15(-2)	1.85
24	VX Her	7.33(-2)	1.07	5.92(-2)	3.57	3.62(-2)	6.07	2.70(-2)	2.20
25	SW Agr	7.62(-2)	5.24	5.39(-2)	2.28	3.88(-2)	5.55	2.48(-2)	2.31
26	CP Aqr	5.85(-2)	5.00	4.11(-2)	1.59	3.23(-2)	4.87	2.41(-2)	1.56
27	DN Pav	7.93(-2)	1.83	5.69(-2)	2.17	4.10(-2)	2.25	2.72(-2)	2.52
28	DX Del	1.85(-2)	5.93	7.52(-3)	7.87(-1)	3.17(-3)	3.51	7.16(-3)	4.22
29	V440 Sgr	7.39(-2)	2.35	4.61(-2)	4.95	2.90(-2)	1.25	2.68(-2)	3.77
30	SV Hya	3.74(-2)	4.15	2.06(-2)	4.23	1.19(-2)	4.26	1.09(-2)	4.32

591

	m l][(-1)		(1-)					(1)	(1-)				(
	Å ∣	2.74	4.00	1.60	4.21	3.80	5.13	2.98	4./9	7.9/2	2.74	3. CJ	5.59	3.44	2.09	4.64	4.08	4.17	7.4/	5.47	1.18	5.62(4.51	2.82(4.87	4.94	1.30	1.68		4.57	4.38	3.65	1.24	7.63	3.58 5.33
	_	$\widehat{\mathbb{C}}$	i ei	(m)	-7	$\widehat{\mathbf{n}}$	-73	27		22	2	2) M	\tilde{r}		-2)	(r)	-2			$\widehat{\mathbf{n}}$	2	$\widehat{\mathbf{n}}$	21) (m -) (m) (r 	$\widehat{\mathbf{n}}$	<u>.</u>		1.0) (r	\tilde{r}	-3 1	$\widehat{\mathbf{r}}$	
	A	9.25(3.04(3.13(1.62(9.24(3.40(1.2/(10.1	Z.14(7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1110	6.61	8.46(7.44(1.41(6.39(1.13(1.90 09.1	06.0	6.18(1.04(5.41(1.66(9.03(3.59(7.10(/.31(10/01	1.10	8.50(6.81(9.99(6.95(9.00(2.24(
	¢7	1.72 2.96	3.33	1.05	5.76	5.33	6.54(-1)	3.70(-1)	4.0/	5.43 1.12	4.43 20	4.04 211	6.27	2.70	2.20	4.02	6.23	4.96	3.//	د 10 د 57	6.23	7.87(-1)	8.41(-1)	5.10	6.18(-1)	3.94	5.13	2.39(-1)	9./9(-1)	4 81	6.01	2.02	4.70	4.31	2.82 1.76
		-2)	<u>, </u>	-3)	-2)	-2)	-5)	() - 5		2)				-2)	-2)	-2)	-3)	(e-	() 	ی م ا		λ Γ	(r)	() 		-2)	-2)	() - 73) n l	<u>) (</u>	-3)	-2)	-3)
	A	1.10(3.51(4.58(2.28(2.21(3.88(1.82(1.18(3.35(1/2.0	0.96	1.37(1.03(1.68(3.36(4.30(5.70(2.73(7 25(5,19(9.85(3.75(2.60(1.12(1.63(1.41(5.38(100.7	100	8.22(9.24(1.16(1.16(
ntinued	φ	.48	.07(-1)	.22	.79	.87(-3)	.70	53	90.0	33	11	. 99 60	22	82	.22	.02	.73	.40(-1)		71 56	80	86	74	.50	. 59(-1) 63	.97	01	.48	(T-)/A	-29(-1) 30	41	82	.31	.15	.31 09
3-C6		. 2	10)	- -	2	~ ~ ~	4	4,4				i		5	(с С	5 ()	ن ن س	- C	~~ `~		C		~~	5	() (~ ~	20	+ +	2)	5	. 4
TABLE	A ₆	2.59(-2 3.65(-2	2.54(-3	7.12(-3	3.22(-2	3.29(-2	5.13(-2	2.21(-2	2-13(-2	5.24(-2	1.03(-2	1.9/(-C	1 98(-2	1.94(-2	2.41(-2	3.52(-2	1.49(-2	2.58(-2	3.58(-2	1.48(-2 7 13(-2	1,03(-2	1.16(-2	6.62(-3	2.91(-2	2.30(-1 2.30(-1	3.26(-2	2.83(-2	8.37(-3	3.1/(-/	3.31(-2 2 67(_2	1 33/-2	1.10(-2	1.34(-2	2.52(-2	1.21(-2 3.50(-3
			/ -]		1)	-					1)	-	(1						
	ϕ^2	3.81	5.59	3.52	3.86	1.67	4.49	2.20	3.85	3.45	5.4/	L.39	2.37	2.60	1.82	3.76	1.55	1.43	8.98(-	1.40	5.35(-	2.56	3.79	2.46	5,43 4,50	1.56	5.93(-	4.38	-)/T.6	3./8 2.03	2.75 2.56	3.78	3.91	6.22	2.31 2.30
		-2)	-3) -3)	-4)	-2)	-2)	-2)	-2)	-2)	-5)) (1	100	, c ()	-7 i	-2)	-2)	-2)	-2)	() - / (20	-26	-2)	-2)	20	121	-2)	-2)		() - / /	10		-2)	-2)	-3)
	Ρ	4.19(6.91 (8.53(5.85(3.85(7.32(3.04(2.79(6.93(3.40() C/ • C	7 01/	4,06(5.07(5.00(2.23(4.17(5.14(3.55(1 56/	1 75(1.83(1.27	5.25(7.01()	6.04(4.90(2.11(3.8U(5.50(4.0c/	1.73(1.22(4.52(3.40(1.69(
	tar ame	Pup	Lup	Pic	Ser	0 Sco	For	Aps	Cet	9 Cen	Ser	Vel	L sc	Cet	2 0ph	0ct	Agr	Ant	I Aq1	Erl 2 CuA	Dhe	L VN	Cet	Tuc	Hya 5 Sar	Boo".	ri	Vir	Ura	Leo	The	Ser	rt	Car	Ser Cet
	νz	88		ST	AV	V69	SS	<u>≻</u>	RZ	V49	AN	AF V	22	RR	V45	RV	Z 1	ΜY	V34	KX V V	RV 4		B	23	r Y V 67	Ξ'n	XA	A	P.		2 2	- >	с ×	Π	AT XZ
	Star No.	31	33.00	34	35	36	37	38	39	40	41	7 V	0 4 V	45	46	47	48	49	20	51	22	540	55	56	ر م	59	60	61	29	63	0 t V	60 99	67	68	69 70

FIG. 1.— ϕ_{21} vs. period. Crosses are Bailey type c stars; dots are type ab. The circle containing a cross is the variable XZ Ceti. FIG. 2.— R_{21} vs. period. Notation as in Fig. 1.

FIG. 3.— ϕ_{31} vs. period. Notation as in Fig. 1.

FIG. 4.—Amplitude vs. period. Notation as in Fig. 1.

resonance in the linear normal mode spectrum of these stars (Simon and Schmidt 1976). From the models of King, Cox, and Hodson (1981) it may be plausible to associate XZ Ceti with the resonance $P_2/P_0 = 0.5$, provided that the star is near the red edge of the instability strip and is very bright. Further observations will be necessary to determine if this is indeed the case.

On the other hand, if XZ Ceti is really a type c star, and thus presumably pulsating in the first overtone, it would have the longest period by far of any such known object. In that case, it could be a unique example of blue to red evolution on the horizontal branch (see Cox 1980). A handful of photometric light curves with good phase coverage for stars of period $P \gtrsim 0.75$ days would go a long way toward settling these matters. We strongly urge that such observations be undertaken.

We are very grateful to J. Lub for forwarding his observations to us. Without them, this investigation could not have been performed. One of us (N. R. S.) is pleased to acknowledge support from the National Science Foundation under grant AST 8105064.

REFERENCES

Cox, A. N. 1980, Space Sci. Rev., **27**, 475. Dean, J. F., Cousins, A. W. J., Bywater, R. A., and Warren, P. R. 1977, Mem. R. A. S., **83**, 69.

King, D. S., Cox, A. N., and Hodson, S. W. 1981, Ap. J., 244, 242. Lub, J. 1977, Astr. Ap. Suppl., 29, 345.

McNamara, D. H., and Feltz, K. A. 1977, Pub. A.S.P., 89, 699.

Oláh, K., and Szeidl, B. 1978, Mitt. Stern. Ungarischen Akad. *Wissenschaften*, No. 71. Paczynski, B. 1965, *Acta Astr.*, **15**, 115. Simon, N. R., and Lee, A. S. 1981, *Ap. J.*, **248**, 291.

Simon, N. R., and Schmidt, E. G. 1976, Ap. J., 205, 162.

NORMAN R. SIMON and TERRY J. TEAYS: Behlen Laboratory of Physics, University of Nebraska-Lincoln, Lincoln, NE 68588