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S U M M A R Y  

RNAs of soil-borne wheat mosaic virus (SBWMV) from virions 281 nm, 138 nm and 
92 nm long (designated here by relative lengths as 1-0L, 0-SL and 0-35L, respectively), 
were isolated and purified by three cycles of sucrose density gradient centrifugation. 
Infectivity assays with these RNAs proved the bipartite nature of SBWMV, the 
combination of 1-0L and either 0.5L or 0.35L RNAs being required for infection and 
for multiplication of progeny viruses. The 0.5L RNA underwent deletion mutation, 
producing smaller variants with various sizes, of which 0-4L and 0.35L RNAs were 
confirmed to be functional in combination with 1-0L RNA. The coat proteins of all 
isolates had mol. wt. of 19700. The mol. wt. of 1-0L, 0.5L, 0-4L and 0.35L RNAs, 
determined under denaturing conditions, were 2-28 × 106 (6500 bases), 1.23 x 106 
(3500 bases), 0-97 x 106 (2800 bases) and 0.86 x 106 (2450 bases), respectively. A new 
virus group, furovirus (fungus-borne rod-shaped virus), is proposed for SBWMV. 

INTRODUCTION 

Soil-borne wheat mosaic virus (SBWMV) causes mosaic, stunting, and up to 50 % loss of yield 
in winter wheat in the United States, Japan and Italy (Brakke, 1971 ; Palmer & Brakke, 1975; 
Campbell et al., 1975). Polymyxa graminis Led., a plasmodiophoraceous fungus, is the vector and 
is responsible for persistence of the virus in infested fields (Estes & Brakke, 1966; Rao & 
Brakke, 1969; Brakke et al., 1965). 

SBWMV has hollow, stiff rod-shaped virions 20 nm in diameter with single-stranded RNA 
(Gumpf, 1971). All isolates have at least two components, the larger designated virion I (281 to 
300 nm long) and the smaller, virion II  (138 to 160 nm, or 92 to l I0  nm long) (Gumpf, 1971 ; 
Brakke et al., 1965; Tsuchizaki et al., 1973; Brakke, 1977). Part of the variation in reported 
length is artefactual, and part is real. In this report, the virions will be designated by,he  ratio of 
their lengths to that of virion I, i.e. 281 to 300 nm, 138 to 160 nm and 92 to 110 nm long virions as 
1-0L, 0-5L and 0-35L virions, respectively. This nomenclature has been adopted because it does 
not depend on function or relationships of the various components, it is easily expanded as 
virions with additional characteristic sizes are found, and it can be based on either electron 
microscopic determination of virion length or on estimates of RNA molecular weight. 

Interpretation of previous research on function of components of SBWMV has been 
complicated by incomplete separation due to aggregation of the virions. Intact 0.35L or 0.5L 
virion IIs and RNA from 0-5L virions, fractionated by sucrose density gradient centrifugation, 
were non-infectious (Gumpf, 1971; Tsuchizaki et al., 1975). Preparations of virion I separated 
by sucrose density gradient centrifugation were infectious, but these results did not prove that 
virion I by itself was infectious, because 0.35L or 0.5L virions were detected in the preparations 
by electron microscopy (Gumpf, 1971; Tsuchizaki et al., 1975). Brakke (1977) found 
approximately half the 0.5L virion IIs had sedimented in a sucrose density gradient as dimer s to 

t Present address: Faculty of Agriculture, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai 980, 
Japan. 

0022-1317/84/0000-5783 $02.00© 1984 SGM 



120 Y. SHIRAKO A N D  M. K. BRAKKE 

the  same depth  as v i r ion  I. Tsuchizak i  et aL (1975) repor ted  that  m ix ing  the  v i r ion  I f rac t ion  
f rom sucrose densi ty  gradients  wi th  the v i r ion  II  f rac t ion e n h a n c e d  infect ivi ty .  In  r eassor tment  
exper iments  wi th  v i r ion  Is and IIs  f rom di f ferent  strains, they ob ta ined  some progeny  wi th  
proper t ies  cor responding  to those o f  the strain furnishing vi r ion  II.  These  results suggested tha t  
both  v i r ion  I and v i r ion  II are needed  for infect iv i ty  and bo th  are  genet ica l ly  act ive ,  but  tha t  
conclus ion mer i t s  conf i rmat ion  because  of  the incomple te  separa t ion  o f  the  v i r ions  by sucrose 
densi ty  gradient  centr i fugat ion.  

T h e  re la t ionship  be tween  0.35L and 0.5L vi r ion  IIs  has also been  uncer ta in .  Vi r ions  purif ied 
f rom natural ly infected whea t  in the  spring always have  1.0L vi r ions  and 0.5L vir ions,  and in 
addi t ion  somet imes  have  major  amoun t s  o f  vir ions wi th  a moda l  length  be tween  0-35L and 0-5L, 
as well  as the usual minor  amounts  o f  rods of  o ther  lengths as is c o m m o n  to all rod-shaped  p lan t  
viruses (Brakke,  1977). Successive manua l  t ransmiss ion  of  a cul ture wi th  v i r ions  o f  three  lengths  
(0.35L, 0-5L and 1-0L) resulted in separa t ion  o f  two types o f  cultures,  one  wi th  0.5L and 1.0L 
vir ions,  and the o ther  wi th  0-35L and 1.0L vir ions  (Brakke,  1977). The re  are  two  exp lana t ions  
for the re la t ionship  be tween  0.35L and 0-5L components .  T w o  strains (one be ing  0.5L plus 1.0L, 
the  o ther  0.35L plus 1.0L) m a y  coexist  in the field, or  the 0.35L, and others  shor ter  t han  0-5L, 
m a y  arise by delet ion muta t ion  f rom the 0.5L componen t .  Resul ts  p resen ted  here  suggest that  
the lat ter  hypothesis  is correct.  

METHODS 

Virus sources and maintenance. Two isolates of SBWMV were used. One (wild-type; WT) was obtained in the 
spring from naturally infected wheat near Lincoln, Nebraska. Another (Lab 1) originated from WT by successive 
manual transfers at bimonthly intervals for 2 years. For manual transfers, the infected leaves were ground in 0.1 M- 
K 2HPO4 in a mortar and pestle and the extract was inoculated to wheat plants (Triticum aestivum L. cv. 'Michigan 
Amber') at the two-leaf stage with Celite as an abrasive. The inoculated plants were kept in the dark for 5 days to 
enhance virus spread in the plant and subsequently were grown in environmental chambers at l 7 °C with 20000 
lux of cool white fluorescent light (Rao & Brakke, 1970). Infected leaves were stored a t ' - 20  °C until purification. 

Virus purification. One-hundred g of infected leaves was ground in 150 ml of 0.5 M-sodium borate pH 9.0, 1 mM- 
NazEDTA in a Waring blender. The extract was squeezed through a double layer of cheesecloth and centrifuged 
at 10000 rev/min for 10 min in a Beckman JA-20 rotor. After addition of Triton X-100 to 2~,  the supernatant was 
layered onto a pad of 6 ml of 20~ sucrose in grinding buffer and centrifuged at 28000 rev/min for 2 h at 4 °C in a 
Beckman type 30 rotor. The resulting pellet was resuspended in 0.05 M-sodium borate pH 8.0, 1 mM-NazEDTA 
and subjected to the second cycle of differential centrifugation. The final pellet was resuspended in 2 ml of distilled 
water. This viral suspension was frozen at - 20 °C overnight, thawed without shaking, and centrifuged at 6000 
rev/min for 5 min in a Beckman JA-20 rotor. The supernatant was stored at - 20 °C until use. The approximate 
virus yield was 2 mg per I00 g of infected leaves. 

Extraction o f  viral RNA. Purified virus was dissociated by storage for l 6 h at 4 °C in 0.1 M-ammonium carbonate, 
1 ~ SDS, 1 mM-Na2EDTA, pH 9-0, containing 200 ~tg bentonite/ml (Brakke & Van Pelt, 1970). The released RNA 
was separated from the residual proteins by centrifugation through a 10 to 40~, linear sucrose density gradient 
prepared in 0.1 M-ammonium carbonate, 0.3 M-ammonium chloride, pH 9-0, at 38000 rev/min for 7 h at 14 °C in a 
Beckman SW41 rotor. The gradient was fractionated with an ISCO Model 183 density gradient fractionator and 
zones of each RNA were collected with the aid of an ISCO UA-5 absorbance monitor. Each isolated RNA was 
precipitated in 70~ ethanol at - 2 0 ° C  overnight, pelleted by a low-speed centrifugation, suspended in 
dissociation buffer, and subjected to two additional cycles of sucrose density gradient centrifugation as described 
above. The final RNA fractions were stored in 70~ ethanol at - 2 0  °C until use. 

Inoculation o f  viral RNA. RNA in 70~ ethanol was pelleted by a low-speed centrifugation and resuspended in 
0.05 M-glycine, 0.05 M-K2HPO4, pH 9.2, containing 200 ktg bentonite/ml. Each RNA suspension was rubbed 
singly and in combination with others onto wheat plants at the two-leaf stage with Celite as an abrasive. 
Inoculated plants were kept in the dark for 5 days and grown at 17 °C subsequently. The number of plants with 
symptoms were counted 6 weeks after inoculation. 

RNA gel electrophoresis. Virus was disrupted by incubation for 5 min at 60 ~C in 2% SDS, 1 ~o 2-mercaptoethanol 
in E buffer (10 mM-NaH2PO~, 20 mM-Na2HPO4, 1 mM-NazEDTA, pH 7.2) containing 200 Ixg bentonite/ml. 
Protein was extracted into an equal volume of 80% phenol containing 0-1 ~ 8-hydroxyquinoline. The RNA in the 
aqueous phase was denatured by incubation at 65 °C for 10 min in 2.2 M-formaldehyde, pH 7.0 (Boedtker, 1971 ; 
Lehrach et al., 1977). A 25 Ixl sample, containing approximately 0. l txg of each species of RNA, was loaded into 
each well ofa 2~  acrylamide, 0.5~ agarose (Bio-Rad) 3 mm thick, 8 × 9 cm slab gel. The E buffer was used in the 
gel and buffer reservoirs (Peacock & Dingman, 1968). After electrophoresis, the gel was stained in 0.005 ~ 'stains- 
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Fig. 1. Sedimentation profiles of SBWMV-RNAs in 10 to 40~/o linear sucrose density gradients. (a) 
Viral RNAs from WT; (b) 0.5L RNA from a slower-sedimenting zone of (a); (c) 1.0L RNA from a 
faster-sedimenting zone of  (a); (d) viral RNAs from Lab 1 ; (e) 0-35L RNA from a slower-sedimenting 
zone of (d); ( f )  1.0L RNA from a faster-sedimenting zone of (d); arrows indicate the positions of 1.0L, 
0.5L and 0.35L RNAs from the right. 
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all' (Kodak) in 50~  formamide and destained in distilled water under a dim light (Dahlberg et al., 1969). For 
molecular weight determinations, 1.7~ agarose tube gels 9 cm long by 6 mm diam. were used. To get a fiat surface, 
the gels were placed upside down until set. Size standards were tobacco mosaic virus (TMV) R N A  (mol. wt. 
2;19 x 106, sodium salt, 6395 bases) (Casper, 1963; Goelet et al., 1982) and Escherichia coli ribosomal RNAs 
(mol. wt. 1.01 x 106, 2904 bases; and mol. wt. 0.53 × 106, 154l bases) (Brosius et al., 1978, 1980). 

SDS-polyacrylamide gel electrophoresis. Proteins were electrophoresed in a polyacrylamide vertical 14 x 16 × 
0.15 cm slab gel with the discontinuous buffer system of  Laemmli (1970) and stained with Coomassie Brilliant 
Blue R. The running buffer was sometimes supplemented with 0.l ~ 3-mercaptopropionic acid (Lane, 1978). 
Phosphorylase A (mol. wt. 92.5 x 103), human transferrin (80 x 103), bovine serum albumin (66 x 103), glutamic 
dehydrogenase (55-4 x 103), ovalbumin (45 x 103), aldolase (39 x 103), brome mosaic virus coat protein (20.3 x 
103), TMV coat protein (17.5 × 103) and lysozyme (14.3 × 103) were the molecular weight standards. 

RESULTS 

Extraction and purification of viral RNAs 

The two species of RNAs were separated from each isolate by sucrose density gradient 
centrifugation after high pH, SDS disruption (Fig. 1). 0-5L and 1.0L RNAs were isolated from 
WT (Fig. la), whereas 0.35L and 1.0L RNAs were isolated from Lab 1 (Fig. ld). Each RNA 
species was purified further by another two cycles of sucrose density gradient centrifugation. 
Judged by the ultraviolet absorption profile, each RNA was free from other RNAs (Fig. 
lb, c,e,f).  The ratio of the amount of 0.35L or 0.5L RNA to that of 1.0L RNA was always 
higher than 10 : I, indicating that the number of 1.0L virions was always less than one-twentieth 
of that of 0.35L or 0.5L virions. This component ratio confirmed previous ratios obtained by 
counting virus particles observed in the electron microscope (Tsuchizaki et al., 1973; Brakke, 
1977). 
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Table 1. Infectivity determined by inoculation of single and mixed RNAs purified by three cycles 
of sucrose density gradient centrifugation 

RNA component(s) Expt. I Expt. 2 
0.35L (Lab 1) + buffer* 0/27t (13)~ 0/51 (21) 
0.5L (WT) + buffer 0/25 (7) 0/52 (21) 
1-0L (Lab 1) + buffer 0/32 (0.4) 1/54 (2.2) 
1.0L (WT) + buffer 0/24 (1.1) 0/46 (1.8) 
0.35L (Lab 1) + 1.0L (Lab l) 13/54 (21 + 2.2) 
0.35L (Lab 1) + 1.0L (WT) 8/68 (13 + 1.1) 9/57 (21 + 1-8) 
0.5L (WT) + 1.0L (Lab 1) 4/99 (7 + 0.4) 9/59 (22 + 2.2) 
0.5L (WT) + 1-0L (WT) 10/44 (22 + 1-8) 
Buffer only 0/54 (0) 

* Buffer consisted of 0.05 M-glycine, 0.05 M-KzHPO4, pH 9.2, containing 200 ~tg bentonite/ml. 
t The number of plants showing mosaic leaf symptoms in the numerator and the number of plants inoculated in 

the denominator. 
++ Concentration of RNA in the inoculum, in ~tg/ml. 

Infectivity assay 
Infectivity assays were performed by the inoculation of  isolated R N A s  singly and in 

combinations. Infectivity of R N A  was always low, i.e. at the highest 2 4 ~  of  the inoculated 
plants were infected, but the results clearly indicated an essential role for each R N A  (Table 1). 
Neither 0.35L nor 0.5L R N A  was infectious by itself, even if the concentration in the inoculum 
was relatively high. The 1.0L R N A  had only a trace of  infectivity, one of  54 inoculated plants 
developing symptoms in Expt. 2. Analysis by gel electrophoresis of extracted R N A  showed this 
particular plant to be infected with 0-35L and 1-0L virions, indicating that the infection was 
probably due to the contamination by 0.35L R N A  in the 1-0L R N A  preparation. On the other 
hand, inoculation with mixtures of  0-35L and 1.0L RNAs and of 0.5L and 1.0L RNAs  infected 
in all homologous and heterologous combinations. Infection by reassorted heterologous 
combination of R N A s  indicates that 1.0L R N A s  from both W T  and Lab 1 isolates were 
compatible with both 0.35L and 0.5L RNAs.  Therefore, there seems to be no specific difference 
between the two 1.0L virions in terms of  their role in infectivity and multiplication with 0.35L or 
0.5L virions. 

Progeny viruses from reassorted RNA inoculation 

Plants infected with the Lab 1 isolate had a severe yellow mosaic and were more stunted than 
those infected with WT isolate, which caused a green mosaic (Fig. 2). Among assay plants, those 
inoculated with 0.35L and 1.0L RNAs  had a severe yellow mosaic and stunting. The virus from 
these plants contained only 0-35L and 1.0L R N A s  regardless of  the source of 1.0L R N A  (Fig. 3). 
On the other hand, the individual assay plants inoculated with 0-5L and 1.0L RNAs  developed 
different symptoms ranging from a mild mosaic to stunting accompanied by a severe mosaic. 
Progeny viral RNAs  from combined assay plants inoculated with 0.5L R N A  (WT) and 1.0L 
R N A  (either WT or Lab 1) had three R N A  peaks after density gradient centrifugation, one 
R N A  smaller than 0.5L as well as 0.5L and 1.0L RNAs (data not shown). To examine the 
possible causes of the differences in symptoms and to confirm the unexpected density gradient 
centrifugation results, viruses were purified from the individual plants and their R N A  
compositions were analysed (Fig. 4). The virus from individual plants showed different patterns 
of RNAs.  In some cases, RNAs smaller than 0.5L were detected along with 0.5L and 1.0L 
RNAs  (Fig. 4, C, F, H, J, K, L, M, N, O and S). In other cases, there was no 0.5L RNA,  but only 
smaller RNAs (Fig. 4, D, E, G, I, P, Q and R). There was an apparent positive correlation 
between the severity of  symptoms and the amount of virion II  R N A  smaller than 0.5L. 

Evidence of  deletion mutation 
In the particular case of plant P in Fig. 4, the virions consisted of  1-0L and an intermediate 

size between 0-5L and 0-35L, designated as 0.4L here. To examine the function and the progeny 
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Fig. 2. SymptomsofSBWMV-infectedwheatplants(TriticumaestivumL. cv. 'Michigan Amber'). Lelt 
(A); infected with Lab 1. Right (B), infected with WT. 

Fig. 3. Polyacrylamide-agarose composite gel pattern of progeny viral RNAs after the inoculation 
with reassorted 0.35L and 1.0L RNAs. RNAs from WT (a) and Lab 1 (b) were inoculated after 
reassortment; (c) progeny viral RNAs after the inoculation with 0-35L and 1.0L RNAs both from Lab 
1 ; (d) progeny viral RNAs after the inoculation with combination of Lab 1 0.35L RNA and WT 1.0L 
RNA; (s) mol. wt. standards: TMV-RNA (2.19 x 10 6) and E. coli ribosomal RNAs (1.01 x 106 and 
0.53 x 106). 

of  this isolate (Lab 2), an extract of plant  P was inoculated manual ly to wheat  plants,  which later 
developed symptoms. The progeny virus had only 0.4L and 1-0L R N A s  2 months after 
inoculation. These results indicate the genetic function and the structural stabil i ty of0-4L R N A .  
However,  further analysis of  the progeny virus purified from infected plants after another  
several months showed the occurrence of0.35L R N A  in addi t ion to 0.4L and 1-0L R N A s  in one 
of  six plants (data not shown). 

Molecular weight of RNAs 

The R N A  molecular weights were determined after formaldehyde denaturat ion (Fig. 5). A 
prel iminary investigation revealed that  a plot of logari thm of  molecular  weight against  distance 
of migrat ion after formaldehyde denaturat ion of E. coli r ibosomal R N A s  and TMV R N A  was 
l inear when 1 .7~  agarose was used, but curved at  higher or lower concentrat ions of  agarose. 
Similar results were obtained after denaturat ion with 1.0 M-glyoxal as recommended by 
McMaster  & Carmichael  (1977). The molecular weights of  1.0L, 0-5L, 0.4L and 0-35L R N A s  
were 2-28 x 106 (6500 bases), 1.23 x 106 (3500 bases), 0.97 x 106 (2800 bases) and 0.86 × 106 
(2450 bases), respectively. There was no significant difference in the size among the 1.0L R N A s  
from WT, Lab 1 and Lab 2 isolates. 

Molecular weight of  coat protein 

The average molecular weight of  the coat protein determined by electrophoresis in 10.0, 12.5 
and 15"0~o polyacrylamide gel, with or without 3-mercaptopropionic acid, was 19700. There 
was no difference in the molecular weight among the proteins from WT,  Lab 1 and Lab 2 isolates 
(data not shown). 
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Fig. 4. Polyacrylamide agarose composite gel pattern of progeny viral R N A s  after the inoculation 
with reassorted 0.5L and 1-0L RN As. (A) and (B): same as lanes (a) and (b) described in Fig. 3; (C to K) 
progeny viral R N A s  after the inoculation with a combination of WT 0.5L R N A  and Lab 1 1.0L R N A  ; 
(L to S) progeny viral R N A s  after the inoculation with 0-5L and 1-0L R N A s  both from WT;  (s) tool. wt. 
s tandards (see Fig. 3). 

DIS C US SION 

Earlier investigators of SBWMV genetics separated virions I and II by sucrose density 
gradient centrifugation, a procedure satisfactory for virion II, but not for virion I which is 
usually contaminated by aggregated virion II (Brakke, 1977). The aggregation problem should 
be less with purified RNA than with SBWMV virions. This expectation was borne out by our 
results. Preparations of virion II RNA (0-35L and 0-5L RNAs) were non-infectious and those of 
virion I RNA (1.0L RNA) had only a trace of infectivity• A mixture were infectious, showing 
that both components were functional. The progeny viral RNAs after the inoculation with 0.35L 
and 1.0L RNAs were 0.35L and 1.0L RNAs, regardless of the source of RNA I, showing that 
RNA 1I is genetic. Plants inoculated with 0-5L and 1-0L RNAs had progeny virus with 0-5L and 
1.0L RNAs, and also shorter RNAs. These shorter RNAs did not result from simple 
contamination because in that case only 0.35L RNA would have appeared in these plants• In 
fact, a variety of RNAs between 0.35L and 0.5L were found, and the pattern of RNA size 
distribution was different for each individual plant. At least one of the new RNAs, 0.4L RNA 
from plant P (Fig. 4), was shown to be functional. Neither 0-5L nor 0-35L RNA was detected in 
virus from this plant. Nevertheless, the virus was infectious and progeny virus had 0.4L and 1.0L 
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Fig. 5. Mol. wt. determination of SBWMV-RNAs after formaldehyde denaturation in 1-7~ agarose. 
(a) 0.5L and 1-0L RNAs from WT with tool. wt. standards; (b) 0.4L and 1-0L RNAs from Lab 2 with 
mol. wt. standards; (c) 0.35L and 1-0L RNAs from Lab 1 with tool. wt. standards; in (d and e) the 
amounts of viral RNAs loaded on the gels were ten times more than those in (a) and (c), respectively, so 
as to visualize 1.0L RNAs clearly with mol. wt. standards; (s) mol. wt. standards (see Fig. 3). 

RNAs,  with one exception. The exception was one plant in which 0.35L appeared in addition 
to 0-4L and 1.0L after a period of  several months. From these results, we tentatively conclude 
that the RNAs  shorter than 0.5L in plants inoculated with 0.5L and 1.0L R N A s  arose by 
deletion mutation of 0-5L RNA.  

The nature of deletion mutation explains the occurrence of variants of  short rods of SBWMV 
reported before (Tsuchizaki et al., 1973; Brakke, 1977; Hibino et al., 1981). We have also found 
spontaneously occurring deletion mutations of  0.5L R N A  both in plants mechanically 
inoculated with the WT isolate and in the naturally infected plants collected from the infested 
fields in late autumn and continuously grown in a growth chamber at 17 °C for several months 
(Y. Shirako & M. K. Brakke, unpublished results). Therefore, deletion mutation seems to be a 
common characteristic of SBWMV, regardless of the isolates and the modes of  infection. 

The mechanisms and the molecular basis of  deletion have not been determined. Deletion 
might occur by excision of bases from either end or by deletion of  internal portions of  R N A  
followed by splicing of pieces. In either case, the location of the deletion must be somewhere 
outside the coat protein gene, which is located in R N A  II (Tsuchizaki et al., 1975; Hsu & 
Brakke, 1983). To obtain 0-4L R N A  from WT 0.5L RNA,  approximately 700 bases would have 
to be deleted, and to obtain 0.35L RNA,  approximately 1050 bases. Genetic information coded 
on the 0.35L R N A  (2450 bases) may be the minimum requirement for infection and 
multiplication in combination with 1.0L R N A  (6500 bases). Further deletion from 0.35L R N A  
is probably lethal for the virus. Other examples of  deletion mutation in plant viruses have been 
reported with cauliflower mosaic virus (Hull & Howell, 1978; Howarth et al., 1981), pea enation 
mosaic virus (Adam et al., 1979), and wound tumour virus (Reddy & Black, 1974). All of them 
lose insect-transmissibility as the result of deletion of  a segment of  the viral genome. From this 
viewpoint, we are investigating the fungus-transmissibility of  deletion-mutated SBWMV. 

From a taxonomical point of  view, the bipartite nature of SBWMV, proved directly in this 
study, necessitates establishing a distinctive virus group. So far, SBWMV has been considered 
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Table 2. Comparisons of major properties among soil-borne wheat mosaic, tobacco mosaic, beet 
necrotic yellow vein, and potato mop-top viruses 

Virus SBWMV TMV BNYVV PMTV 

Particle length~ nm 110-160 300:~ 65 105, 270 125 and 290** 
and 300* and 39011 

Particle diameter, nm 20* 18:~ 20H 18 20 t t  
Coat protein 19.7I" 17-5~ 21-0¶ 19.8;~ 

mol. wt. × 10 -3 
RNA mol. wt. × 10 -6 0.86-1.23 2-19§ 0-6, 0-7, 1.8 ND§§ 

and 2-28I" and 2"3¶ 
Vector Polymyxa Unknown:~ Polymyxa Spongospora 

graminis* betae II subterranea~f'~ 
Host range Narrow* Wide:~ Narrowll Narrowt~" 
Genomic composition Bipartitet Monopartite:~ (Multipartite)¶ (Bipartite):~:~ 

* Brakke (1971); t this study; ~ Zaitlin & Israel (1975); § Casper (1963); II Tamada (1975); ¶ Putz (1977); 
** Roberts & Harrison (1979); t t  Harrison (1974); :~:~ Randles et al. (1976); §§ ND, not determined. 

to be a tentative member of the tobamovirus group (Gibbs, 1977), because of the morphological 
similarity and the slight serological relationship with TMV (Powell, 1976). However, SBWMV 
is fundamentally different from TMV, which is a classical monopartite virus. In addition, the 
molecular weight of the coat protein of SBWMV is significantly higher, by about 2000, than that 
of TMV, and RNA I of SBWMV is slightly larger than TMV RNA. We propose a new virus 
group, furovirus (fungus-borne rod-shaped virus) with SBWMV as the type virus. Major criteria 
of this new virus group should include a rigid, hollow rod-shaped virion, plasmodiophoraceous 
fungus-transmissibility, and divided genome composition. Together with SBWMV, other 
tentative members of the new virus group are beet necrotic yellow vein virus (Tamada, 1975), 
potato mop-top virus (Roberts & Harrison, 1979), Hypochoeris mosaic virus (Brunt & Stace- 
Smith, 1978; Greber & Finlay, 1981), Nicotiana velutina mosaic virus (Randles et al., 1976) and 
peanut clump virus (Thouvenel et al., 1976). Table 2 shows the comparisons of several major 
properties among SBWMV, TMV, BNYVV and PMTV. 

Cooperative investigations by Agricultural Research Service, U.S. Department  of  Agriculture and Plant 
Pathology Department, Nebraska Agricultural Experiment Station, Lincoln, Nebraska 68583. Published with the 
approval of the Director as Paper No. 7017, Journal Series, Nebraska Agricultural Experiment Station. 
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