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Gross primary production (GPP), the photosynthetic uptake of carbon, is an important variable in the global
carbon cycle. Although continuous measurements of GPP are being collected from a network of micro-
meteorological towers, each site represents a small area with records available for only a limited period. As a
result, GPP is commonly modeled over forested landscapes as a function of climatic and soil variables, often
supplemented with satellite-derived estimates of the vegetation's light-absorbing properties. Since the late
1990s, a number of models have been developed to provide seasonal and annual estimates of GPP across
much of the Earth. Each model, however, contains different underlying assumptions and requires different
amounts of data. As a result, predictions vary, sometimes significantly. In this paper we compare modeled
estimates of GPP for forested areas across the U.S.A. derived from: NASA's MODIS Product (MOD17); the C-Fix
model using SPOT-VGT satellite-derived vegetation data; and the Physiological Principles Predicting Growth
from Satellites (3-PGS) model, a process-based model that requires information on both climate and soil
properties. The models predicted average ecoregion values of forest GPP between 9.8 and 14.1 MgC ha−1 y−1

across the United States. 3-PGS predicted the lowest values while the C-Fix model, which included a CO2

fertilization factor, produced the highest estimates. In the western part of the country, estimates of GPP
within a given ecoregion varied by as much as 50%, whereas in the northeast, where topography and climate
are less extreme, variation in GPP was less than 10%. Within ecoregions, 3PGS predicted the most variation,
reflecting its sensitivity to variation in soil properties. We conclude that where model predictions disagree,
an opportunity is presented to evaluate underlying assumptions through sensitivity analyses, additional data
collection and where more detailed study is warranted.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Over the last decade, a network of sites where CO2 exchange is
continually measured from towers has expanded to more than 200
locations. To extrapolate predictions of carbon exchange from
information acquired at these tower sites, it is necessary to take into
account spatial variation in vegetation and climatic conditions. To do
this requires a major effort to quantify climatic variation spatially, and
to keep track of changes in the state of vegetation. Remote sensing has
played a key role in providing information on both current climatic
conditions and the changing state of vegetation.

Development of process-based ecosystem models has played a
complementary role by utilizing remotely sensed data sets to predict
seasonal and interannual variation in carbon uptake, allocation, and
release back into the atmosphere over broad areas (see reviews by
Landsberg, 2003; Nightingale et al., 2004). Thesemodels differ in their
assumptions of how the basic processes respond to the environment

and interact. As a result, the predictions of net primary production
(NPP) and net carbon exchange (NEP) differ. The least difference
among models is in their prediction of gross photosynthesis, termed
gross primary production (GPP), because this process is the first
calculated and the best understood. On average, about half of GPP is
incorporated into plant tissue (Waring et al., 1998), although not all
models incorporate this assumption.

The upper limit on GPP in all process models is set by the amount
of light (photosynthetically active radiation) absorbed by foliage
(APAR), leaf photosynthetic capacity (α), and the CO2 concentration of
the air (ca). The photosynthetic capacity can be assumed to be a fixed
value for a particular type of vegetation or allowed to vary with soil
type. Additional constraints on GPP are imposed with variation in
temperature and the atmospheric humidity deficit. If models include
the effects of drought on GPP, they require additional information on
soils to calculate a water balance. One might assume that the most
accurate model would be one that required the most information, but
if the information is in error, accuracy could be less than projections
made from simpler models. Even when provided the same variables,
the predicted response of GPP may differ among models due to
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different assumptions and the time frame over which a process is
integrated.

In previously published research, we compared estimates of forest
GPP for nine, broadly classified areas across the United States with
three, increasingly more data-demanding models (Nightingale et al.,
2008). In this paper, we extend the modeling analyses to compare the
mean and spatial variation of GPP over a 5 year period within and
among 84 defined ecoregions. We strive in this more detailed
comparison to identify ecoregions where model predictions of GPP
either closely match one another or widely differ. Agreement among
models should indicate homogeneous ecoregions with similar

environments, whereas disagreement would suggest heterogeneous
environments for which limitations in modeling assumptions or data
requirements are expressed. Where differences among model predic-
tions are great, more in-depth analyses are warranted.

2. Modeling GPP

The three models compared in this paper are identified in Table 1,
along with their data requirements. The simplest of the models is one
devised to generate the 8-day MODIS GPP product (Running et al.,
2004). In this model the maximum value of α is dependent on
vegetation type (as defined by the MODIS land cover classification)
and is reduced by twomultipliers, sub-optimal temperature and vapor
pressure deficits (D), both of which vary from 1 (no constraint on gas
exchange) and 0, (complete constraint on gas exchange). No attempt is
made to calculate a soil water balance (Heinsch et al., 2006).

The SPOT GPP dataset is produced at 10-day intervals, based on the
C-Fix model of Veroustraete et al. (2004). It differs from the other
models by imposing limits of GPP when the temperature or vapor
pressure is higher or lower, than an optimum value specified for a
given climate (Mc Cree, 1972; Sabbe & Veroustraete, 2000). The model
also presumes a 15% enhancement of photosynthesis since the start of
the industrial revolution (Veroustraete et al., 2002).

Themost data-demandingmodel is 3-PGS (Physiological Principles
Predicting Growth from Satellites), (Coops et al., 1998), although it
runs at monthly time-steps. It is similar to the previously described
models in using APAR and photosynthetic capacity but requires
additional climatic data (frost days and precipitation) as well as
estimates of soil water holding capacity and fertility to predict GPP.

Table 1
Data requirements for the three models used to derive estimates of GPP across the U.S.A

Fig. 1.Map of the 84 ecoregions recognized in the level III classification of North America, available from the U.S. Environmental Protection Agency (EPA) (http://www.epa.gov/wed/
pages/ecoregions.htm). Ecoregions are recognized as areas with commonality in physiography, vegetation, and climate (CEC, 1997).
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3. Data and methods

3.1. MODIS GPP

The MODIS GPP model requires data from three sources. Biome-
specific parameters such as α, are assigned based on an 8 class, 1 km-
pixel MODIS land cover classification and an associated Biome
Parameter Look Up Table (BPLUT) (Hansen et al., 2000; Running
et al., 2004). Incoming radiation is obtained, along with air
temperature and relative humidity, from global scale meteorology
(1.00°×1.25°) via the NASA-Goddard Space Flight Centre (GFSC)
Global Modeling and Assimilation Office (GMAO) GEOS-4 global
climate model (DAO, 2002). There is an implicit assumption that the
coarse resolution meteorological data provides a reasonably accurate
depiction of surface boundary layer conditions and that these
conditions are homogeneous within the spatial extent of each cell
(Gebremichael & Barroos, 2006). To estimate APAR, a third dataset is
required to provide a measure of the daily fraction of photosynthe-
tically active radiation absorbed by vegetation (fPAR). This variable
comes directly from a structurally-defined land cover map and
atmospherically corrected surface reflectances at a spatial resolution
of 1 km resolution taking into account information derived from the
MODIS satellite on viewing and illumination angles (Myneni et al.,
2002). GPP data were provided from the Numerical Terradynamics
Simulation Group (http://www.ntsg.umt.edu/) at the University of
Montana MODIS at 1-km resolution for the U.S. over a five-year
period (January 2000–December 2004) from the MOD-17, version 4.5,
8-day collection. Annual GPP values were derived by summing values
for 8-day periods each year and then averaging these over the five-
year period.

3.2. SPOT GPP

GPP as predicted by the SPOT (C-Fix) model is based on a fixed
conversion of absorbed PAR (1.1 gC MJ−1 APAR) and requires
information on: fPAR, derived from SPOT and the National Oceanic
and Atmospheric Administration (NOAA) Advanced Very High
Resolution Radiometer (AVHRR), daily incoming solar radiation and
temperature data (Sabbe & Veroustraete, 2000). The model also
predicts autotrophic (and heterotrophic) respiration to allow explicit
calculation of NPP. 10-day integrated global SPOT NPP surfaces were
acquired for the five-year period (January 2000–December 2004)
(http://geofront.vgt.vito.be/geosuccess/). To convert the available NPP
surfaces to GPP for this comparison a simple linear function of mean
daily temperature is used to calculate respiration (Ra) (Veroustraete
et al., 2002) and when added to estimates to NPP yields GPP, following
the approach of Nightingale et al. (2008). Annual averaged GPP was
calculated by summing values for each 10-day period through
sequential years.

3.3. 3-PGS GPP

Coops et al. (1998) developed a satellite-driven version of 3-PG
(Landsberg & Waring, 1997) so that estimates of fPAR could be
obtained without modeling seasonal allocation and turnover of
carbon in leaves. The model contains a number of simplifying
assumptions that have emerged from studies conducted over a wide
range of forests (Landsberg et al., 2003). These include:

• Climatic data can be summarized atmonthly intervals with little loss
in accuracy.

• Eachmonth, themost limiting climatic variable on photosynthesis is
selected, based on departure from conditions that are optimum
(expressed as unity) or completely limited (expressed as zero).

• Maximum canopy stomatal conductance approaches a plateau
above a leaf area index (LAI) of 3.0.

• Net primary production and autotrophic respiration are comparable
fractions of gross photosynthesis (Waring et al., 1998).

• The ratio of actual/potential photosynthesis decrease in proportion
to the reductions in the most limiting environmental factor.

• The lower the ratio of actual/potential photosynthesis, the higher
the proportion of photosynthate allocated below ground.

We ran 3-PGS with the same fPAR and climate data as provided for
MODIS model. Additional precipitation data required by 3-PGS were
obtained using the Parameter-elevation Regressions on Independent
Slopes Model (PRISM) available from Oregon State University (http://
www.prismclimate.org).

Photosynthetic capacity (α) was assumed to vary from 1.0 to 3.0 g C
MJ−1 APAR as a non-linear function of soil nitrogen content, which
ranged from 250 to 2000 gN m−3 across the U.S, based on cluster
analysis of STATSGO soil parameters (Hargrove & Hoffman, 2004). The

Table 2
List of level III EPA ecoregions displayed in Fig. 1

Ecoregion
number

Ecoregion
number

Name

1 Coast Range 43 Northwestern Great Plains
2 Puget Lowland 44 Nebraska Sand Hills
3 Willamette Valley 45 Piedmont
4 Cascades 46 Northern Glaciated Plains
5 Sierra Nevada 47 Western Corn Belt Plains
6 Southern and Central California

Chaparral and Oak Woodlands
48 Lake Agassiz Plain

7 Central California Valley 49 Northern Minnesota
Wetlands

8 Southern California Mountains 50 Northern Lakes and Forests
9 Eastern Cascades Slopes and

Foothills
51 North Central Hardwood

Forests
10 Columbia Plateau 52 Driftless Area
11 Blue Mountains 53 Southeastern Wisconsin Till

Plains
12 Snake River Plain 54 Central Corn Belt Plains
13 Central Basin and Range 55 Eastern Corn Belt Plains
14 Mojave Basin and Range 56 Southern Michigan/Northern

Indiana Drift Plains
15 Northern Rockies 57 Huron/Erie Lake Plains
16 Idaho Batholith 58 Northeastern Highlands
17 Middle Rockies 59 Northeastern Coastal Zone
18 Wyoming Basin 60 Northern Appalachian

Plateau and Uplands
19 Wasatch and Uinta Mountains 61 Erie Drift Plain
20 Colorado Plateaus 62 North Central Appalachians
21 Southern Rockies 63 Middle Atlantic Coastal Plain
22 Arizona/New Mexico Plateau 64 Northern Piedmont
23 Arizona/New Mexico

Mountains
65 Southeastern Plains

24 Chihuahuan Deserts 66 Blue Ridge
25 High Plains 67 Ridge and Valley
26 Southwestern Tablelands 68 Southwestern Appalachians
27 Central Great Plains 69 Central Appalachians
28 Flint Hills 70 Western Allegheny Plateau
29 Cross Timbers 71 Interior Plateau
30 Edwards Plateau 72 Interior River Valleys and

Hills
31 Southern Texas Plains 73 Mississippi Alluvial Plain
32 Texas Blackland Prairies 74 Mississippi Valley Loess

Plains
33 East Central Texas Plains 75 Southern Coastal Plain
34 Western Gulf Coastal Plain 76 Southern Florida Coastal

Plain
35 South Central Plains 77 North Cascades
36 Ouachita Mountains 78 Klamath Mountains
37 Arkansas Valley 79 Madrean Archipelago
38 Boston Mountains 80 Northern Basin and Range
39 Ozark Highlands 81 Sonoran Basin and Range
40 Central Irregular Plains 82 Laurentian Plains and Hills
41 Canadian Rockies 83 Eastern Great Lakes and

Hudson Lowlands
42 Northwestern Glaciated Plains 84 Atlantic Coastal Pine Barrens
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same type of cluster analysis provided an estimate of available water
storage capacity in the surface 1.5 m of soil (details of both of these
procedures are found in Nightingale et al., 2007, 2008). Constraints on
photosynthesis in 3-PGS are imposed in a way similar to the other
models, but with additional limitations from frost and soil drought.

3.4. Regional classification of vegetation

Forested areas across the U.S were first defined using the MODIS-
derived UMD (University of Maryland) land cover classification scheme.
We stratified the classification further into 84 ecoregions, recognized as
areas with some commonality in physiography, vegetation, and climate
using the level III classification of North America available from the U.S.
Environmental Protection Agency (EPA) (Fig. 1, and associated Table 2).
(http://www.epa.gov/wed/pages/ecoregions.htm).

3.5. Analysis

We first compare differences in model predictions of forest GPP in
reference to seasonal and interannual climatic variation, averaged for
each of the 84 ecoregions. We then compare the five-year averaged
annual estimate of GPP for forested cells within all ecoregions, and the
variation in annual GPP across all of these ecoregions with t-tests,
using SAS software (SAS, 2004). Finally, model estimates of GPPwithin
the forested portions of ecoregions are compared after being
normalized as a percentage of the mean value of GPP predicted for
each ecoregion. The analysis includes creation of a series of color
comparison to depict both absolute and relative variation in model
predictions across the U.S.

4. Results

A comparison of the seasonal predictions of ecoregion GPP for each
year of the five-year period indicates that in the winter (December
through February), differences among models in GPP were small,
≤0.8 MgC ha−1 month−1. The SPOT-derived estimates were slightly
higher than MODIS predictions, particularly within ecoregions 76
(Southern Florida Coastal Plain) and 34 (Western Gulf Coast Plain
forests). In the year 2000, SPOT and 3PGS predictions most differed
from MODIS; otherwise differences among years were modest.

During the spring (March through May), both the SPOT, and to a
lesser extent the 3PGS estimates of GPP, were larger than the MODIS
projections, with no clear differences among years. During the
summer (June through August), the greatest differences were
observed (~2.0 MgC ha−1 month−1) in particular in the western
ecoregions 1 (Coast Range) and 3 (Willamette Valley) where 3-PGS
values were higher than MODIS and SPOT predictions, and in
ecoregion 8 (Southern California Mountains) where 3PGS predicted
less GPP than the other models. In autumn (September through

December), MODIS continued to predict lower GPP than the other
models, with SPOT consistently higher than MODIS. Overall, across all
seasons, the most variable ecoregions include: 78 (Klamath Moun-
tains); 76 (Southern Florida Coastal Plain) and 7 (Central California
Valley).

A t-test of independent samples of GPP means for the 5 years, in
forested parts of all ecoregions, indicates that SPOT GPP predictions
were significantly higher (~42%) than the other two models (Table 3).
In regard to variation in GPP among ecoregions (lower portion of
Table 3), MODIS showed significantly less variation than the other
models (pb0.05 using an F-test).

Maps ofGPP for the threedifferentmodels are shown in Fig. 2(A)–(C).
As expected, the pattern of mean five-year GPP is generally consistent
for all models, with the Marine West Coast forests in the Pacific
Northwest (1: Coast Range, 4: Cascades), the forests of the South-Eastern
Plains (75: Southern Coastal Plain) and the Mixedwood Plains of the
Eastern Temperate forests (59: Northeastern Highlands) exhibiting the
highest GPP. In contrast, the evergreen forests of theWestern Cordillera
(7: Central California Valley), the Mediterranean California (6: Central
California Chaparral and Oak Woodlands and 8: Southern California
Mountains) forests and the forests of the Temperate Sierras (5: Sierra
Nevada) have much lower GPP. A distinction occurs in the Mediterra-
nean Californian forests (6: Southern and Central California Chaparral
and OakWoodlands and 8: Southern CaliforniaMountains) where 3PGS
model predicts lower GPP than the MODIS model, which in turn, is less
than the SPOT predictions. Similarly, in the NorthernMixedwood Shield
forests, 3PGS predictions are higher than those derived from SPOT and
MODIS models.

In addition to comparing mean GPP model predictions across
the country, we evaluated the extent that the models defined spa-
tial variation within ecoregions. To do this, we estimated the multi-
year mean GPP for each forested pixel within an ecoregion, and
compared that value in reference to the overall ecoregion mean
(Fig. 2(D)–(F)). Color codes in the figure distinguish pixels with
higher or lower values than the mean generated by each model for
each ecoregion. It follows that locations within an ecoregion that
are more productive than others due to climatic conditions should
be recognized by all three models. Variation associated with
mapped differences in soil properties would only be recognized
by the 3PGS model. On the other hand, general agreement among all
models, in the spatial distribution of below and above averaged
productivity across an ecoregions, would suggests uniformity in
soils and a similar climate.

The spatial variation in theMODIS GPP estimates is shown in Fig. 2D,
and indicates in general, there are only a few locationswhere theMODIS
predictions are larger than the overall ecoregion mean, as would be
expected because α is assigned from a biome-wide look-up table. The
main locations with higher than average values are found are along the
coast of the Mediterranean Californian forests (6: Southern and Central
California Chaparral and Oak Woodlands and 8: Southern California
Mountains) and in 12: the Snake River ecoregion. Areas significantly
lower than the ecoregionmeans include thewestern portions of the 60:
Northern Appalachian Plateau and Uplands, the Marine West Coast
forests, and the Western Cordillera forests in the interior.

For the SPOT predictions (Fig. 2E), greater spatial variation is
apparent with an increase in the number of cells that is lower or
higher than the ecoregion mean. These again include pockets of
higher than average GPP along the forests of the Mediterranean
Californian coast, and a small island of increased GPP in the Western
Cordillera forests of Central Idaho. Areas with below-average GPP
compared to the ecoregion mean, include the western slopes of the
Atlantic Highland forests, the Eastern Mixedwood Plains, the interior
Western Cordillera forests, and the forests of Marine West coast. The
15% CO2 fertilization effect in the SPOT model has no impact on the
spatial variation in GPP; it only increases the overall mean estimate of
GPP.

Table 3
t-test comparisons of global means of 84 ecoregion-wide values of forest GPP (upper
entries)

Country wide Mean 1 Mean 2 t-value p N

MgC ha−1 y−1 MgC ha−1 y−1

MODIS vs SPOT 9.9 14.1 −6.6 0.0001⁎ 84
MODIS vs 3PGS 9.9 9.8 0.2 0.810 84
SPOT vs 3PGS 14.1 9.8 5.8 0.0001⁎ 84

Among ecoregions Std. dev. 1 Std. dev. 2 F-ratio variances p variances N

MgC ha−1 y−1 MgC ha−1 y−1

MODIS vs SPOT 3.6 4.6 1.7 0.017⁎ 84
MODIS vs 3PGS 3.6 5.1 2.1 0.001⁎ 84
SPOT vs 3PGS 4.6 5.1 1.2 0.364 84

Significant differences (pb0.05) are denoted with an asterisk, based on a 2-sided t-test
and variation in GPP among all forested ecoregions (lower entries) are compared with
an F-test.
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3PGS estimates show a markedly different spatial pattern with
significantlymore variation in GPP, as indicated by Fig. 2(F). Areaswhich
have an increase in GPP relative to the ecoregion mean include forests
along the Marine West coast, and in particular, the Eastern side of the
Cascade and Coast Mountains, parts of the Mediterranean Californian
coast forests along thewestern edge, areas of coastalMississippi Alluvial
(73: Mississippi Alluvial Plain, 74: Mississippi Valley Loess Plains) and
Southeast Coastal Plain forest and the Ozark Quachita–Appalachian
forests (63: Middle Atlantic Coastal Plain). In contrast, areas which have
reduced GPP compared to their ecoregion means include the Atlantic
highland forests, areas of interiorWesternCordillera and the central (50:
Northern Lakes and Forests) northern forests.

The general level of agreement between the threemodels is shown
spatially in Fig. 3, with green areas indicating pixels where all model
predictions agreed towithin 20%, yellowareas indicatewhere two sets
of model comparisons agreed (any two of 3PGS, SPOT and MODIS),
orange where only one pair of models agreed and red where none of
the three models agreed to within 20%. As the figure shows, in the
Marine West coast of the Pacific Northwest, there is good agreement
between the three GPP predictions with, in most cases, two out of
three, or all three models, within 20%. In particular, forests around the
Willamette Valley in Oregon are in good agreement. Model differences
become apparent on the eastside of Cascade mountain range, the

Northern Rockies in northern Idaho and the drier forest of the
Western Cordillera in interior Oregon. In California, there is little
model agreement in GPP between any set of model comparisons.
Similarly, model predictions for forests in the Temperate Sierras,
particularly those in the Upper Gila Mountains, are in poor agreement.
In the southern part of the country, there is also large variation, with
some regions showing very good agreement, and others less so. GPP
estimates for forests along the Coastal Mississippi Alluvial and
Southeast Coastal Plain in general are in good agreement for two or
more model comparisons. In contrast, the forests in the southeastern
plains showwide variation inmodeledmean GPP. Along the east coast
of the U.S, there again is larger variation in GPP predictions with only 1
set of models agreeing. The agreement improves in the north with the
Atlantic Highland and the Mixedwood Plains forest having predicted
GPP within 20%.

Table 4 provides a detailed breakdown of these results, and show
the mean annual forested GPP within each ecoregion, for each model,
and the percent area within each ecoregion where the models agree.
The shaded columns match the color breakdown in Figs. 4 and 5. The
10 most forested ecoregions (shaded darker gray) indicate that
the MODIS GPP predictions were consistently the lowest, whereas
the SPOT predictionswere the highest, in 2 out of 3 cases (Table 3). The
overall mean annual GPP (MgC ha−1 y−1) for all ecoregions was similar

Fig. 3. Degree of difference in predicted forest annual GPP (averaged over the 5 year period) across the 3 models namely MODIS and SPOT, MODIS and 3PGS, and SPOT and 3-PGS.
Green areas indicate where all three sets of model comparisons convergewithin the specified limits (±20%), yellow areas are indicative of where two sets of the models agree, orange
represents a single set of model agreement, and brown where none of the sets of models agreed within 20%.

Fig. 2.Mean annual GPP as predicted by (A) MODIS, (B) SPOT and (C) 3PGS models, and the relative variation within ecoregions in reference to mean values predicted by (D) MODIS,
(E) SPOT and (F) 3PGS models.
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Table 4
Mean annual forested GPP within each numbered ecoregion, for each model, and the percent forested area, within each ecoregion where the models agree
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for 3-PGS (9.78), and MODIS (9.92) but significantly higher for SPOT
(14.17). As ecoregions become less forested, there is a general trend
toward lower productivity reflected in all model predictions.

In addition to the mean difference between the three models, we
also consider the spatial variation in GPP (also shown in Table 4). To do
this, the mean ecoregion GPP was estimated and used to normalize
the variation in GPP within each ecoregion. These values were then
compared across the three models, as shown in Fig. 4. The results
indicate that overall, the Pacific Northwest region has poor model
agreement in the degree of spatial variation predicted by the three
GPP models. Key areas of similarity include the small areas of Western
Cordillera in Puget Sound, small pockets in the Eastern Cascades and

the along the Coast Mountains. Further south, the forests in the
Californian Coastal Sage, Chaparral, and Oak Woodlands have highly
variable GPP estimated across models relative to their ecoregion
mean, with only some small areas of the forests in the Sierra Nevada in
agreement. In contrast, the forests in the South-eastern Plains, Ozark
Highlands and the South Central Plains are all in very good agreement
with all models predicting the same degree of spatial variation in GPP
across these ecoregions. Further north, again the Central Appala-
chians, Northern Appalachian Atlantic Maritime Highlands and
Maine/New Brunswick Plains and Hills are all in excellent agreement
across all models. The coastal forests, however, including the Middle
Atlantic Coastal Plain and Southern Coastal Plain, are in poor

Table 4 (continued)

The shaded columns match the color breakdown in Figs. 4 and 5. The 10 most forested ecoregions are shaded darker gray in the table.

Fig. 4. The degree of agreement betweenmodels of the relative difference in GPP of forested cells to their mean ecoregion GPP, generated by each of the three models. This provides a
basis for comparing variation predicted within individual ecoregions by the 3 models.
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agreement with all models, or with only 1 set of models predicting the
same degree of variation in GPP.

The implications of introducing increasing data requirements for
the models are summarized in Fig. 5 at the ecoregion level.

4.1. Impact of soil fertility

Errors in estimating soil fertility, which in turn affect α, have the
most effect where soil water is not limiting, as is generally the case
(but certainly not always) for areas east of the Mississippi River.
In contrast, the areas where lack of information on soil water holding
capacity causes overestimation of GPP is in the arid portions of the
western part of the country, including the fringes of forests along
interior valleys and on the eastern slopes of major mountain ranges.
The results presented in Fig. 5, confirm this and provide additional
insights. Predictions of GPP by the three models are relatively
consistent in the Northeast US, implying that model assumptions
on the value of α, are similar to that assumed by the SPOT model (i.e.
1.1 gC MJ−1 APAR).

In the southern US, however, model predictions of GPP differed by
at least 20% (shown in dark brown) within 75% of the individual
ecoregions, e.g., ecoregion 63: Middle Atlantic Coastal Plains). In such
areas attempts to account for variation in soil properties as they affect
photosynthetic capacity will cause large variation in estimates of GPP
compared with models that lack this specificity. Other areas with

similar levels of disagreement are located in the 49: Northern
Minnesota Wetlands and 50: Northern Lakes and Forests ecoregions.

4.2. Impact of soil water

Moving westward, soil water restrictions on forest growth become
more significant as described in previous work. A sensitivity analyses
varying soil water storage from 50 to 400 mm clearly delineated the
most drought-prone areas (ref. Fig. 2 in Nightingale et al., 2007) which
mimic to some extent the large areas of model disagreement in Fig. 4.
These results provide additional evidence of contrasting effects in
different western ecoregions. In the 77: North Cascades and 9: Eastern
Cascades Slopes and Foothills level III ecoregions there is major model
disagreement, with all model predictions of annual GPP disagreeing
by more than 20%. In addition, all three models over the majority of
the ecoregion (70–100%), predict different spatial variability These
results indicate that GPP predictions in these areas needs to be applied
with caution, and that accurate information on soil water holding
capacity, although difficult to obtain, may be critical. By comparison,
further south in ecoregion 78: Klamath Mountains and the 5: Sierra
Nevada, there is still relatively little model agreement (all three
models disagree in GPP predictions by more than 20%, as denoted by a
darker green color) however the spatial variability predicted by the
models is less variable betweenmodels, with 25–50% of the area of the
ecoregion varying model predictions of the spatial variability of GPP.

Fig. 5. At the ecoregions level, the area of the ecoregions impacted (greater than 20% difference in the spatial variation in MODIS and 3PGS predictions) by including soil attributes in
annual GPP estimates. Within each ecoregions, the darker shade indicates where the mean GPP difference between models were large (at least 2 of 3 of the models varied by more
than 20%) proving a visual indictor of where the most impacted cells, within the ecoregions are located. Areas in blue, representing slightly more than 25% of the ecoregions, indicate
where spatial variation attributed to the inclusion of soil fertility and soil water holding capacity with 3PGS did not result in more than a 20% difference amongmodels. Areas of green
indicate where the inclusion of soil data resulted in 25–50% departures in model predictions with an ecoregion. Orange represents greater than 50% and redmore than 75% variation
within an ecoregion. Underlying the color palette, darker areas represent where themean GPP estimates betweenmodels were large (at least 2 of 3 of themodels varied bymore than
20%), providing a visual indicator of where most cells were located.
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5. Discussion

Satellites orbiting the Earth since the 1960s have provided ameans
of estimating seasonal and interannual variation in vegetation cover
(Skole & Tucker, 1993; Mildrexler et al., 2007). For all three models
compared in this paper, vegetation dynamics are indispensible for
estimating the seasonal and interannual changes in fPAR at a range of
spatial and temporal scales. When combined with quantitative
estimates of photosythetically active radiation (PAR), and estimates
of the photosynthetic capacity, a common basis for estimating GPP is
provided. The inclusion of seasonal drought and sub-optimal
temperatures reduce GPP substantially, associated with a reduction
in photosynthetic activity. The subsequent inclusion of soil fertility
and soil water holding capacity, in theory, should lead to more
accurate assessment of GPP, and ultimately NPP (Running, 1994;
Running et al., 2004). The challenge is in obtaining the required
information across broad areas (Coops & Waring, 2001). Soils are
inherently variable and soil maps are often inaccurate. The scale of
most regional and continental soil maps range from 1:500 000 to
1:1 000000, resulting in significant variation within areas that are
denoted as relatively homogeneous (Landsberg et al., 2003).

5.1. MODIS model verification

Verification of all of these GPP modeling approaches is underway.
The MODIS MOD 17 GPP product has undergone the most testing, and
is continually being updated in response to improvements in climatic
data, fPAR smoothing, gap-filling, and land cover definition. Turner
et al. (2003) compared MODIS GPP with GPP estimates based on
model-scaled ground observations at temperate hardwood and boreal
conifer forested sites. At the hardwood forest site, the summertime
MODIS GPP was generally lower than themeasured GPP values, and at
boreal forest site, GPP was generally higher than those derived from
eddy-co-variance analyses. Turner et al. (2005) evaluated MODIS
production estimates across six sites with widely varying climates,
land use, and vegetation physiognomy. No consistent over- or under
prediction of MODIS GPP were reported. Closest agreement occurred
at the temperate deciduous forest, arctic tundra, and boreal forest
sites, whereas modeled GPP for desert grassland and at the dry
coniferous forest sites was overestimated.

More recently, Gebremichael and Barross (2006) evaluated MODIS
GPP estimates of tropical ecosystems and found a positive bias in
predictions for the mixed forest biome and a negative bias for the
open scrublands, attributed in part to deficiencies in the global
meteorology data. In a comprehensive evaluation of the MODIS GPP
product, Heinsch et al. (2006) found that GPPwas overestimated by an
average 20–30% at most sites relative to the tower-based ecosystems.
MODIS substantially underestimated (19–40%) GPP at the most
productive site evaluated (the Duke Forest site, North Carolina). The
cause for these errors were attributed to underestimation of vapor
pressure deficit from inadequate coverage provided in the global
meteorological data and from not accounting for deficits in soil
moisture at water-limited sites in the U.S. (e.g., Baldocchi et al., 2001;
Turner et al., 2003; Heinsch et al., 2006).

5.2. SPOT C-Fix model verification

Across a range of sites in Italy, Maselli et al. (2006) found the SPOT
(C-Fix VGT)-derived estimates of GPP were in general agreement with
measurements acquired at sites with broadleaf deciduous forests and
were less accurate at sites with needleleaf evergreens. The accuracy of
annual GPP estimates was better than monthly or seasonal compar-
isons, for which differences in photosynthesis were accentuated
beyond true values (Maselli et al., 2006). Recently Verstraeten et al.
(2006) developed a suite of algorithms to be coupled with C-Fix to
allow the model to utilize information on soil water availability. The

coupled model, applied at a number of flux tower sites across Europe,
predicted GPP more accurately than the standard C-FIX model (R2

increased slightly from 0.59 to 0.65) reducing ecosystem production
by 42% compared to the standard C-Fix measurements. Respiration
has also been changed to be a function of GPP (Lu et al., 2004).

5.3. 3-PGS model verification

Similarly, the 3PG suite of models have been used extensively to
model the productivity of a wide range of forest types across North
America including ponderosa pine (Pinus ponderosa) (Law et al.,
2000); lodgepole pine (Pinus contorta) (Hall et al., 2006); Loblolly pine
(Pinus taeda) (Landsberg et al., 2000); and jack pine (Pinus banksiana)
(Peng et al., 2002). Results indicate the model predictions are accurate
when compared to site index and forest inventory data and in
addition, although the water balance in imprecise, it is generally
effective in capturing regional trends at the monthly time scale
(Nightingale et al., 2008).

Not all of these differences can be attributed to the representation
of process within the models, or to the degree that soil properties are
assessed. In the case of the 3-PGS and MODIS models, where both use
the same climate and fPAR data, the presence or absence of soil data
probably contribute significantly to variation observed in some
ecoregions. In the case of the SPOT GPP predictions, we were limited
to accepting model predictions as given, recognizing that the climatic
drivers differed from those used in the other models. As a result, some
differences between the SPOT model and the other two models may
reflect the different climate (and fPAR) datasets, rather than the
models themselves. In the case of climate variations and their impact
of prediction of GPPwe believe these differences to be relativelyminor
(Zhao et al. (2006) for detailed discussion on impact of climate
difference on GPP prediction). Similarly the impact of differences is
also likely to be low as fPAR is most accurately determined at low
values, equivalent to LAI values b3.0. When LAI N5.0, fPAR is less
accurately assessed, however errors are reduced because beyond that
density of cover N95% of visible light is intercepted. Our approach of
comparing the normalized spatial variation of GPP within each
ecoregion attempts to minimize this effect by comparing the GPP
relative to the ecoregion mean and not simply to the absolute
differences in GPP. We believe that attempts to recognize differences
in soil fertility in the 3-PGS model contribute to most of the variation
in GPP predictions within ecoregions.

In summary our results show that where soils are uniform, and
considered of low fertility, little differences should be expected among
model predictions. Similarly differences in soil fertility on model
predictions will have the most effect where soil water is not limiting..
The results indicate that for areas east of the Mississippi River impacts
of soil fertility are minimal with GPP predictions by all three models
being relatively consistent in the Northeast US. Where soil fertility is
assumed to vary, up to a 2-fold difference in estimates of GPP. This is
most evident in the south eastern US such as the Atlantic Coastal
Plains.

In areas where soil water drought is prevalent some at least
1 month of the year, and there is a lack of soil water information,
overestimation of GPP will occur. As a result this impact is most
evident in the arid portions of the western part of the country. There is
major disagreement in both the magnitude, and spatial variation in
model predictions of GPP, in the North and Eastern Cascades. Further
southwest, differences are apparent in the magnitude, but not the
spatial variation in GPP predictions.

6. Conclusion

We believe that the types of comparisons presented in this paper
effectively identify areas where the most uncertainty exists, and
where additional research could improve regional and global
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estimates of GPP, as well as other ecosystem properties. In addition,
from these types of model comparisons, finding areas where models
agree, helps one understand the extent that variation in climatic
conditions are modest or extreme within an ecoregion. Across broad
areas, we also conclude that it is reasonable to use less data-
demanding models rather than assume that soil properties are
accurately mapped and interpreted.
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