View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by DigitalCommons@University of Nebraska

University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln

US Army Research U.S. Department of Defense

2008

Phase 2a Trial of 0, 1, and 3 Month and 0, 7, and 28 Day
Immunization Schedules of Malaria Vaccine RTS,S/AS02 in
Malaria-Naive Adults at the Walter Reed Army Institute of
Research

Kent E. Kester
Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA

James F. Cummings
Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA

Christian F. Ockenhouse
Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA

Robin Nielsen
Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA

B. Ted Hall

Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
Follow this and additional works at: https://digitalcommons.unl.edu/usarmyresearch

belﬂﬁ{to‘ﬁﬂg @ﬂﬁgﬁg’}@ﬁleggmgﬁ‘%ystems Engineering and Industrial Engineering Commons

Kester, Kent E.; Cummings, James F.; Ockenhouse, Christian F.; Nielsen, Robin; Hall, B. Ted; Gordon, Daniel
M.; Schwenk, Robert J.; Krzych, Urszula; Holland, Carolyn A.; Richmond, Gregory; Dowler, Megan G;
Williams, Jackie; Wirtz, Robert A.; Tornieporth, Nadia; Vigneron, Laurence; Delchambre, Martine; Demoitie,
Marie-Ange; Ballou, W. Ripley; Cohen, Joe; and Heppner Jr., D. Gray, "Phase 2a Trial of 0, 1, and 3 Month
and 0, 7, and 28 Day Immunization Schedules of Malaria Vaccine RTS,S/AS02 in Malaria-Naive Adults at
the Walter Reed Army Institute of Research" (2008). US Army Research. 30.
https://digitalcommons.unl.edu/usarmyresearch/30

This Article is brought to you for free and open access by the U.S. Department of Defense at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in US Army Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.


https://core.ac.uk/display/17243853?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/usarmyresearch
https://digitalcommons.unl.edu/usdeptdefense
https://digitalcommons.unl.edu/usarmyresearch?utm_source=digitalcommons.unl.edu%2Fusarmyresearch%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=digitalcommons.unl.edu%2Fusarmyresearch%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/usarmyresearch/30?utm_source=digitalcommons.unl.edu%2Fusarmyresearch%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages

Authors

Kent E. Kester, James F. Cummings, Christian F. Ockenhouse, Robin Nielsen, B. Ted Hall, Daniel M.
Gordon, Robert J. Schwenk, Urszula Krzych, Carolyn A. Holland, Gregory Richmond, Megan G. Dowler,
Jackie Williams, Robert A. Wirtz, Nadia Tornieporth, Laurence Vigneron, Martine Delchambre, Marie-Ange
Demoitie, W. Ripley Ballou, Joe Cohen, and D. Gray Heppner Jr.

This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/
usarmyresearch/30


https://digitalcommons.unl.edu/usarmyresearch/30
https://digitalcommons.unl.edu/usarmyresearch/30

Vaccine (2008) 26, 2191—2202

available at www.sciencedirect.com

-227 . .
*s’ ScienceDirect

journal homepage: www.elsevier.com/locate/vaccine

Phase 2a trial of 0, 1, and 3 month and O, 7, and 28
day immunization schedules of malaria vaccine
RTS,S/ASO2 in malaria-naive adults at the Walter
Reed Army Institute of Research™

Kent E. Kester®*, James F. Cummings?, Christian F. Ockenhouse?,

Robin Nielsen?, B. Ted Hall2, Daniel M. Gordon?®', Robert J. Schwenk?,
Urszula Krzych?, Carolyn A. Holland?, Gregory Richmond?,

Megan G. Dowler?, Jackie Williams?2, Robert A. WirtzP, Nadia Tornieporth <,
Laurence Vigneron€, Martine Delchambre €, Marie-Ange Demoitie€,

W. Ripley Ballou€, Joe Cohen¢, D. Gray Heppner Jr.2,

RTS,S Malaria Vaccine Evaluation Group?

a Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
b Centers for Disease Control & Prevention, Atlanta, GA, USA
¢ GlaxoSmithKline Biologicals, Rixensart, Belgium

Received 13 December 2007; received in revised form 14 February 2008; accepted 22 February 2008
Available online 13 March 2008

KEYWORDS Summary o _ ‘ .
RTS.S: Background: Immunization with RTS,S/AS02 consistently protects some vaccinees against

malaria infection in experimental challenges and in field trials. A brief immunization schedule

* The opinions expressed herein are the private views of the authors and are not to be construed as official or as reflecting the views of
the United States Army, the Department of Defense, the Centers for Disease Control and Prevention, or the Department of Health and
Human Services.

* Corresponding author. Tel.: +1 301 319 9234; fax: +1 301 319 9849.

E-mail address: kent.kester@us.army.mil (K.E. Kester).

T Present address: Sanofi Pasteur Inc., Swiftwater, PA, USA.

2 RTS,S Malaria Vaccine Evaluation Group members. The following were also members of the RTS,S Malaria Vaccine Evaluation Group
acknowledged for their contributions to the design, conduct and analysis of this trial: Robert A. Gasser Jr., Charles N. Oster, Patrick E.
Duffy, Walter Reed Army Institute of Research, Silver Spring, Maryland; Glenn Wortmann, Walter Reed Army Medical
Center, Washington, DC; Charles K English, United States Army Medical Materiel Development Agency, Fort Detrick, Maryland. Carter L.
Diggs, Lorraine Soisson, Malaria Vaccine Program, United States Agency for International Development, Washington, DC; Steve Fitzpatrick,
GlaxoSmithKline Biologicals, Rixensart, Belgium.

0264-410X/$ — see front matter. Published by Elsevier Ltd.
doi:10.1016/j.vaccine.2008.02.048

| This article is a U.S. government work, and is not subject to copyright in the United States.



mailto:kent.kester@us.army.mil
dx.doi.org/10.1016/j.vaccine.2008.02.048

2192

K.E. Kester et al.

Malaria;

Vaccine;
Falciparum;
Adjuvant System;
AS02;
Circumsporozoite
protein;
Hepatitis B;
Antibody;
Clinical trials;
Rapid immunization;

against falciparum malaria would be compatible with the Expanded Programme on Immuniza-
tion, or in combination with other prevention measures, interrupt epidemic malaria or protect
individuals upon sudden travel to an endemic area.

Methods: We conducted an open label, Phase 2a trial of two different full dose schedules of
RTS,S/AS02 in 40 healthy malaria-naive adults. Cohort 1 (n=20) was immunized on a 0, 1, and
3 month schedule and Cohort 2 (n=20) on a 0, 7, and 28 day schedule. Three weeks later, 38
vaccinees and 12 unimmunized infectivity controls underwent malaria challenge.

Results: Both regimens had a good safety and tolerability profile. Peak GMCs of antibody to the
circumsporozoite protein (CSP) were similar in Cohort 1 (78 wg/mL; 95% Cl: 45—134) and Cohort
2 (65 pg/mL; 95% Cl: 40—104). Vaccine efficacy for Cohort 1 was 45% (95% Cl: 18—62%) and for
Cohort 2, 39% (95% Cl: 11—56%). Protected volunteers had a higher GMC of anti-CSP antibody
(114 nwg/mL) than did volunteers with a 2-day delay (70 pg/mL) or no delay (30 wg/mL) in the
time to onset of parasitemia (Kruskal—Wallis, p=0.019). A trend was seen for higher CSP-specific
IFN-v responses in PBMC from protected volunteers only in Cohort 1, but not in Cohort 2, for ex

Conclusion: In malaria-naive adults, the efficacy of three-dose RTS,S/AS02 regimens on either
a 0, 1, and 3 month schedule or an abbreviated 0, 7, and 28 day schedule was not discernibly
different from two previously reported trials of two-dose regimens given at 0, 1 month that
conferred 47% (95% Cl: —19 to 76%) protection and in another trial 42% (95% Cl: 5—63%). A strong
association of CSP-specific antibody with protection against malaria challenge is observed and
confirms similar observations made in other studies. Subsequent trials of adjuvanted RTS,S in
African children and infants on a 0, 1, and 2 month schedule have demonstrated a favorable

IFN-v;
ELISPOT
vivo and for cultured ELISPOT assays.
safety and efficacy profile.
Published by Elsevier Ltd.
Introduction

Malaria, especially malaria caused by deadly Plasmodium
falciparum infection, is most threatening to individuals
without pre-existing anti-malaria immunity. The largest vul-
nerable populations are infants and women during their first
pregnancy living in endemic lands [1]. But malaria-naive
individuals exposed to epidemic malaria or upon travel to
malaria-endemic regions are also at risk of severe disease
and death [2,3].

Protection against this mosquito-borne disease is sim-
ple in concept, but difficult in practice. The present public
health crisis, demonstrated by the fact that more than three
children die from malaria every minute [4], is further exac-
erbated by the inadequate use of proven control measures,
such as selective use of house-hold DDT for indoor residual
spraying [5], judicious intermittent presumptive treatment
[6], and sleeping under insecticide-treated bed nets to avoid
nocturnal exposure [7]. The global spread of multiple drug-
resistant P. falciparum [8] has sharply limited the choice
of chemoprophylactic drugs and has worsened the chronic
shortages of affordable, effective treatment drugs [9].

A malaria vaccine would be a critically important addi-
tion to the present arsenal of malaria prevention measures.
Although many candidate vaccines are in development [10],
only the RTS,S antigen formulated with either the ASO1
or the ASO2 Adjuvant System consistently confers partial
protective immunity against infection by the P. falciparum
parasite in malaria-naive ([11—13], Kester, unpublished) and
malaria endemic populations ([14,15], Polhemus, unpub-
lished), and in one trial, reduced clinical and severe malaria
in young African children for 18 months [15,16]. Most
recently, RTS,S/AS02 given in an Expanded Programme on
Immunization compatible schedule at 10, 14, and 18 weeks
of age was shown for the first time to protect infants

against infection and clinical malaria for a 3-month period
[17].

At the time the presently reported trial was conducted,
we had evaluated three doses of adjuvanted RTS,S in Phase
2a trials in malaria naive adults using either a 0, 1, and
9 month [10] or a 0, 1, and 6 month schedule [11], but
not on the shorter schedules presented here. Importantly,
RTS,S/AS02 had also displayed a promising safety and tolera-
bility profile. We had also previously conducted two Phase 2a
trials in which we evaluated the preliminary efficacy of two
doses of RTS,S/AS02 given at 0 and 1 months in malaria-naive
adults [11,12]. We undertook the present trial to determine
if improved efficacy might be achieved by the administra-
tion of three doses of RTS,S/AS02 when given on one of
two briefer schedules of immunization; either at 0, 1, and 3
months or at 0, 7, and 28 days.

Material and methods
Ethics

The trial was conducted according to Good Clinical Practices
under a protocol approved by the Human Use Review Com-
mittee of the Walter Reed Army Institute of Research and
by the US Army Surgeon General’s Human Subjects Research
Review Board, Fort Detrick, Maryland under US Food and
Drug Administration Investigational New Drug application
BB-6043. Written informed consent was obtained prior to
screening and enrollment.

Participants

Healthy malaria-naive civilian and military adult men and
women, age 18—45 years, were recruited by non-coercive
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means through the Walter Reed Army Institute of Research
(WRAIR) Clinical Trials Department, Silver Spring, Mary-
land. Standard measures undertaken to avoid coercion or
the appearance thereof included the careful review and
approval of all financial incentives for study participation
by the Institutional Review Boards, the provision to each
study subject of an independent point of contact in the
Office of Human Subjects Protection, and the requirement
that each subject pass a written comprehension test indicat-
ing understanding of all study procedures and the proviso
that participation was voluntary and that the subject was
free to withdraw at any time without requirement to give
an explanation.

Vaccine

The RTS,S/AS02 vaccine has been described in detail [18].
Just prior to immunization, GMP lyophilized RTS,S anti-
gen was mixed with GMP AS02 Adjuvant System. The final
0.5mL dose of RTS,S/AS02 contained 50 pg of RTS,S, 50 pg
of MPL, 50 ng of QS21 and 25 ug of thimerosal in an oil-
in-water emulsion. With the exception of the presence of
thimerosal (25 ug/dose), this vaccine Adjuvant System is
identical to the thimerosal-free formulation of RTS,S known
as RTS,S/AS02A now in clinical trials.

Trial design

The primary objective of this open-label, Phase 2 clinical
trial of RTS,S/AS02 was to assess the safety, reactogenic-
ity, and efficacy of RTS,S/AS02 in two different three-dose
schedules in malaria-naive adults. The secondary objec-
tive was to assess the humoral and cell-mediated immune
responses induced by RTS,S/AS02 when administered in the
two different regimens. The trial consisted of two phases:
an immunization phase followed by a challenge phase. Dur-
ing the immunization phase, subjects were recruited and
then sequentially enrolled into one of two cohorts; Cohort
1 enrollment was completed before Cohort 2 enrollment
began. Cohort 1 (n=20) received RTS,S/AS020on a0, 1, and 3
month schedule, and Cohort 2 (n=20) received RTS,S/AS02
on a 0, 7, and 28 day schedule. The immunization phase
of both cohorts finished at the same time. Just prior to
the challenge phase, 12 additional subjects were recruited
to serve as non-immunized infectivity controls. Homologous
3D7 Plasmodium falciparum sporozoite challenge was then
offered 3 weeks after the receipt of final immunizations to
all subjects who had received three doses of vaccine, and
to the infectivity controls.

Trial conduct

After obtaining written informed consent, volunteers under-
went a medical interview, physical examination and
laboratory screening with complete blood count, serum
biochemistries (creatinine, alanine aminotransferase, and
aspartate aminotransferase), and serologic tests to char-
acterize their hepatitis B, hepatitis C, and HIV status.
Volunteers were excluded from enrollment if they had a
history of malaria, travel to a malaria-endemic area within
the previous 12 months, or previous receipt of a malaria
vaccine. Additional exclusion criteria were pregnancy, lac-

tation, known or suspected alcohol or drug abuse, history
of anaphylaxis following any vaccination, recent or planned
administration of blood, blood products, surgery, participa-
tion in any concurrent research trial or clinically significant
pulmonary, cardiovascular, hepatic or renal disease. Women
were tested for pregnancy by serum B-HCG determination
before enrollment, each immunization and malaria chal-
lenge, and were required to avoid pregnancy until two
months after malaria challenge.

Assessment of safety

The safety of the vaccine was measured by assessment
of reactogenicity and of hematological and biochemical
parameters. After each injection of the vaccine, volun-
teers were observed for 30 min and again at 1, 2, and 3
days post-vaccination. During these 4 days, a standardized
questionnaire was used to capture solicited local symp-
toms (redness, swelling or pain at the injection site) and
solicited systemic symptoms (fever, headache, fatigue, gas-
trointestinal symptoms, myalgias, malaise, and joint pains).
In addition, all unsolicited adverse events were recorded
that were reported during the 30 days after each immuniza-
tion.

Local adverse events were graded according to spe-
cific criteria. Pain at the injection site was graded as
follows; 0 (absent), 1 (painful on touch), 2 (painful when
limb is moved), or 3 (spontaneously painful). Redness
and swelling were independently measured at the great-
est surface diameter and assigned numbers as follows; O
(Omm), 1 (>0-20mm), 2 (>20—-50mm), or 3 (>50mm).
Fever was defined according to oral temperature as fol-
lows: 0 (<37.5°C), 1 (37.5-38°C), 2 (>38-39°C), or 3
(>39°C). Other systemic symptoms were graded as follows:
0 (normal), 1 (easily tolerated), 2 (interferes with normal
activity), and 3 (prevents normal activity).

Serious adverse events were captured throughout the
trial. Hematologic and biochemical tests were performed
on days 0, 14, 28, 42, and 98 for Cohort 1; on days 0, 7,
21, 28 and 42 for Cohort 2; and for all volunteers on day of
challenge and 134 days post day of challenge.

Immunogenicity

Blood for analysis of humoral and cellular immune responses
was obtained before the first immunization and at scheduled
time points during the trial.

Serology

Anti-HBsAg and anti-CSP repeat region (anti-R32LR) antibody
titers were measured on days 0, 14, 28, 42, and 98 for Cohort
1; on days 0, 7, 21, 28 and 42 for Cohort 2; and on day of
challenge and 134 days post challenge for each cohort. Anti-
bodies against the circumsporozoite protein central region’s
tandem tetrapeptide repeat epitopes were measured by
ELISA using recombinant R32LR as the capture antigen as
previously described [19—21]. Seropositivity was defined as
>1.0png/mL of anti-CSP antibody. Antibodies against the
HBsAg carrier matrix were measured using a commercial kit
and were expressed in milli-international units per milliliter
(mlU/mL) [22]. Seropositivity was defined as >3.3mIU/mL
of anti-HBsAg antibody, and seroprotection was defined as
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>10mIU/mL of anti-HBsAg antibody. Pre-challenge serum
samples obtained on the day of sporozoite challenge along
with pre-immune serum samples were analyzed by an indi-
rect fluorescence antibody (IFA) assay using 3D7 strain
air-dried sporozoites, as previously described [21].

Cell-mediated immunity

Heparinized peripheral blood was obtained before immu-
nization and at 2 weeks after the third dose of vaccine.
PBMCs were isolated by gradient centrifugation on Ficoll-
Hypaque (ICN Biomedicals Inc., Aurora, OH) and were stored
in liquid nitrogen until used.

Culture medium (CM) consisted of RPMI 1640 sup-
plemented with 8 mm GlutaMAX™ (Invitrogen, Carlsbad,
CA, USA), 50 pg/mL penicillin, 50 ng /mL streptomycin,
0.1mm non-essential amino acids, 1mm sodium pyru-
vate (all from Life Technologies; Grand Island NY),
0.042 mm 2-mercaptoethanol (Sigma Chemicals, St. Louis,
MO) and 2.5—5% FBS (Hyclone, Logan UT) (enzyme-linked
immunospot ‘ELISPOT’ assays) or 5% human AB serum (lym-
phoproliferative assays).

CSP  peptides. Synthetic 15-mer  peptides, p34
(a.a.316—330, NEEPSDKHIKE YLNK), p35 (a.a.321-335,
DKHIKEYLNKIQNSL), p36 (a.a.326—340, EYLNKIQNSLSTEWS),
p37 (a.a.331-345, IQNSLSTEWSPCSVT), p47 (a.a.351—365
QVRIKPGSANK PKDE) and p50 (a.a.371—385 DIEKKICK
MEKCSSV) were used at the indicated concentrations.
In addition, three longer peptides, P2 (EEPSD-
KHIKEYLNKIQNSLSTEWSPCSVTCGNGI  QVRIKPGSAN), P4
(KPKDELDYANDIEKKICKMEKCSSVFNVV ~ SSIGL) and  P5
(@ 12 amino acid extension of P4) (GIQVRIKPGSANKP-
KDELDYANDIEKKICK MEKCSSVFNVVNSSIGL) that together
represent the entire C-terminal non-repeat region of
CSP incorporated into RTS,S were used at the indicated
concentrations.

Lymphoproliferation assay. PBMC at 2x10°mL were
added in 100 L CM to the wells of 96 well U-bottom plates.
The cells were then stimulated with RTS,S at 10 ug/mL or
peptides P2 or P5 at 20 pg/mL, added in 100 pl CM/well.
Control cultures were stimulated with PHA (positive control;
4 g/mL) or medium alone (negative controls). The plates
were then incubated at 37 °C for 48 h with PHA or 120 h with
Ag; 1Ci 3H-Thymidine was then added to all of the wells
and the plates were incubated at 37 °C for an additional 16 h.
Subsequently, the cells were harvested onto glass fiber filters
and the amount of incorporated *H-thymidine was measured
using a beta-counter. Stimulation indices were reported rel-
ative to the negative controls.

Ex vivo ELISPOT assays. PBMC at 3 x 10®/mL were added
in 100 wl CM to triplicate wells of a 96 well U bottom plate.
The cells were stimulated with RTS,S at 10 wg/mL, peptides
P2, P4 or P5 at 20wg/mL or PHA at 2ug/mL (positive
control), added in 100 nL of CM or CM alone as negative
control. The plates were then incubated at 37°C for 24h.
Subsequently, the cells were transferred to the corre-
sponding wells of ELISPOT plates that had been pre-coated
with an IFN-vy-specific capture antibody (Mabtec, Sweden)
and the latter were incubated at 37°C for an additional
18—20h. The cells were then decanted and the plates were
washed with PBS and a biotinylated IFN-y-specific detection
antibody was added for a 2 h reaction at room temperature.

AP-streptavidin (Mabtec, Sweden) was added for a further
1%2h reaction at room temperature. Following this step,
the plates were then washed and the spots were developed
by the addition of substrate (Bio-Rad; Hercules, CA). The
spots were counted on an IPLab analyzer (Scan-analytics;
Fairfax, VA).

Cultured (long-term) ELISPOT assays. PBMC at 2 x 10%/mL
were added in 100 ul CM to the wells of 96 well U bot-
tom plates. Peptide pools containing 15-mer CSP peptides
at 20 ng/mL were added in 100 pl to each well and the
cell cultures were incubated at 37°C for 12 days. Control
cultures were incubated with CM alone. The two-peptide
pools consisted of the following CSP peptides; pool #1
(p34 +p36 +p47) and pool # 2 (p35 +p37 +p50). After 12-day
incubation, the cells were harvested, washed and 100 pL of
10 cells/mL of CM was added to the wells of pre-coated 96
well ELISPOT plates (see above). The cells that had been
cultured with peptide pool were re-stimulated with individ-
ual peptides at 20 wg/mL at 37 °C for an additional 18 h. The
ELISPOTs were developed as described above for the ex vivo
ELISPOT assay.

Efficacy

Protective efficacy was assessed by conducting a stan-
dardized challenge of vaccinated subjects and infectivity
controls with the bites of five malaria-infected mosquitoes
as previously described [11,23]. Cloned, chloroquine-
sensitive P. falciparum (3D7 strain) parasites were expanded
from a master seed lot and were used to infect laboratory-
reared, specific pathogen-free Anopheles stephensi. A
randomization of all subjects eligible and willing to undergo
challenge, including controls, occurred one day prior to
challenge to ensure that subjects were distributed evenly
within and between the two days of challenge. For each
volunteer, five mosquitoes were allowed to feed for 5min,
after which they were dissected to determine if they had
taken a blood meal and had a minimum 2+ salivary gland
score for sporozoites. If required, additional mosquitoes
were allowed to feed until five infected mosquitoes with
2+ salivary scores had fed on each volunteer. Starting on
day 5 after challenge, volunteers were followed daily for
symptoms and had a daily Giemsa-stained thick blood film
obtained and examined for the presence of asexual malaria
parasites. All blood smears were examined for at least 200
oil immersion fields. Any symptomatic volunteer whose ini-
tial 200 fields were negative had an additional 1000 fields
examined. For symptomatic, undiagnosed volunteers, addi-
tional blood smears were prepared and read every 6—8h.
Volunteers who developed malaria were treated with a stan-
dard oral dose of chloroquine (total 1500 mg base given in
divided doses; 600 mg initially, followed by 300 mg given 6,
24, and 48 h later) under direct observation.

Data handling and statistics

Trial data for safety, reactogenicity, humoral immunogenic-
ity, and efficacy was entered into a database, verified and
locked prior to conduct of analyses and completion of the
final trial report. Cell-mediated immune responses and
supplemental serology testing was performed in blinded-
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Table 1  Total cohort demographics
Characteristic Parameter Cohort 1, n=20 Cohort 2, n=20 Infectivity cohort, Total cohort,
n=12 n=52
Age (years) Mean (S.D.) 30 (7) 35 (7) 37 (6) 34 (8)
Gender Male 60% 55% 58% 58%
Race White 40% 45% 50% 42%
Black 55% 50% 50% 52%
Oriental 5% 0% 0% 2%
Other 0% 5% 0% 2%
Seropositive anti-HBsAg > 3.3miU/mL 55% 45% 75% 54%
Seroprotected anti-HBsAg >10mIU/mL 50% 45% 75% 52%

fashion and reported later. Fisher’s exact test was used
to compare the incidence of malaria between the two
treatment cohorts. A Kaplan—Meier analysis was performed
on time to onset of parasitemia, and testing done between
the two treatment cohorts using the log-rank statistic. The
non-parametric Kruskal—Wallis test and Dunn’s post-test
comparison were applied for post-hoc analyses of associa-
tion between immune responses and efficacy using Sigma
Stat 3.5 (Systat Software, Inc., San Jose, CA, USA). All
statistical tests were two-sided with an alpha=0.05. No
corrections of p values were made for multiple comparisons.

Results

Trial conduct

The trial was conducted between May 2000 and February
2001. The vaccine cohorts and infectivity controls were
similar with regards to age, sex, ethnic group and anti-
HBsAg titer seroprotected status, i.e., anti-HBsAg antibody
>10mIU/mL (Table 1). Of the 52 subjects enrolled, four
(one from Cohort 1 and three from Cohort 2) dropped out
before their final trial visit. Of the 50 subjects who under-
went malaria challenge, all either remained malaria free for
greater than 1 month after challenge or completed a course
of directly observed antimalarial treatment. No dropouts
were due to an adverse event (Fig. 1).

Safety

Both vaccine regimens had a good safety and tolerability
profile. Pain at the injection site was the most commonly
reported local adverse event over the 4-day follow-up period
in both cohorts and over all doses (Table 2). There was
no instance of grade 3 pain, and 90% of the instances of
pain completely resolved within the 4-day follow-up period.
Redness and swelling at the injection site was less fre-
quent, and instances of grade 3 redness or swelling were less
than 10% and less than 5%, respectively. Headache was the
most common systemic adverse event. Overall, there were
more systemic adverse events in Cohort 1 than in Cohort
2. There were only two instances of grade 3 solicited sys-
temic adverse events; both occurred in Cohort 2, and only
one, an instance of fatigue, was deemed to be related to
immunization. In Cohort 1, eight subjects reported causally

related unsolicited adverse events versus four subjects in
Cohort 2. No clinically significant laboratory abnormalities
were detected after administration of any dose. There were
no instances of allergic reaction. One serious adverse event
occurred 7 days after the first immunization, a hospital
admission after a motor vehicle accident, and was deemed
unrelated to immunization.

Immunogenicity

Anti-CSP antibody titers

At baseline, Cohorts 1 and 2 were equivalent with regards
to 1gG-specific anti-CSP antibody GMCs (0.5 and 0.7 ng/mL,
respectively). One volunteer in Cohort 2 was seropositive
(26.2 ng/mL anti-CSP antibody) despite a history of no
malaria or previous receipt of a malaria vaccine; all others
were seronegative. After second dose, all subjects in both
cohorts were seropositive (i.e., >1.0 ng/mL) and remained
so at 134 days after the sporozoite challenge (Fig. 2a).
In both cohorts, GMC anti-CSP antibody increased after
each vaccine dose. On DOC, Cohorts 1 and 2 were sim-
ilar with regards to IgG-specific, anti-CSP antibody GMCs
(72.7 ng/mL; 95% Cl: 41.1—128.5 versus 64.4 png/mL; 95% Cl:
39.9—-104.3). At 134 days after DOC, anti-CS antibody GMCs
had similarly declined to 19.7 and 13.5 pg/mL, with broadly
overlapping confidence intervals, and resulting in estimates
of an antibody half-life of approximately 8 weeks for each
cohort. Analysis of anti-CSP antibody concentrations catego-
rized by trial cohort and by seropositivity status for hepatitis
B virus (i.e., >3.3mlU/mL anti-HBsAg) for all four groups
at baseline, day of challenge and 134 days post challenge
showed broadly overlapping confidence intervals, suggesting
no significant effect of baseline anti-HBsAg antibody on the
anti-CSP antibody response to RTS,S/AS02 (Fig. 2b). There
were nine subjects in Cohort 1 and seven subjects in Cohort
2 who were naive to both HBsAg and CS at baseline. In Cohort
1, antibody responses to CS were seen in 89% (eight of nine)
of subjects 2 weeks after the first dose (GMC 5.8 pg/mL). In
Cohort 2, antibody responses to CS were seen in 100% (seven
of seven) of subjects 2 weeks after the second dose (GMC
44.6 pg/mL).

Anti-HBsAg antibody titers
At baseline, volunteers were evenly distributed according to
seroprotection status for hepatitis B antibody (>10 mIU/mL
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Figure 1  Trial flow.

anti-HBsAg) between Cohort 1 (50%) and 2 (45%) (Table 1).
By day 42 (post dose 2 in Cohort 1, and post dose 3 in Cohort
2), 100% of volunteers were seroprotected and remained
seroprotected at 134 days after the sporozoite challenge.
Antibody levels were higher in Cohort 1 than in Cohort 2
at day of challenge and 134 days later, but 95% confidence
intervals overlapped at both time points. On day of chal-
lenge, the GMC for Cohort 1 was 41,797 mlU/mL (95% Cl:
21,352—81,821) versus a GMC for Cohort 2 of 5072 mIU/mL
(95% Cl: 958—26,844). Similarly, 134 days later, GMC for
Cohort 1 was 17,448 mlU/mL (95% Cl: 8414—36,164) versus
a GMC for Cohort 2 of 8908 mIU/mL (95% Cl: 3132—25,332)
(Fig. 3). There were nine subjects in Cohort 1 and seven sub-
jects in Cohort 2 who were naive to both HBsAg and CS at
baseline. In Cohort 1, seroprotective antibody responses to
HBsAg were seen in 56% (five of nine) of subjects 2 weeks
after the first dose (GMC 64mlU/mL). In Cohort 2, sero-
protective antibody responses to HBsAg were seen in 100%
(seven of seven) of subjects 2 weeks after the second dose
(GMC 150 mIU/mL).

Sporozoite IFA

At baseline, the Cohort 2 volunteer seropositive for anti-CS
antibody by ELISA also had a positive IFA against air-dried

homologous parasites of 1:6400, all other volunteers were
negative (<1:50). On day of challenge, median IFA titer was
1:3200 for both groups, and the distribution closely over-
lapped for both cohorts (Fig. 4). The Cohort 2 volunteer with
the initial titer of 1:6400 had the identical IFA result after
immunization which did not change after immunization.

Lymphoproliferation

PBMCs obtained 2 weeks after the 3rd dose from the Cohort
1 and Cohort 2 subjects demonstrated marked increases in
proliferative activity over baseline. There were no differ-
ences in mean stimulation indices of responses to RTS,S or
peptides P2 or P5 between Cohorts 1 and 2 at baseline or
post 3rd dose (Table 3).

1.1.1. INF-y responses measured by ELISPOT

IFN-vy responses elicited from antigen-specific T cells have
been considered as one of the key mechanisms involved
in mediating protective immunity to pre-erythrocytic stage
Plasmodia parasites. In this trial we measured RTS,S- and
CSP peptide-specific IFN-y responses in an ex vivo ELISPOT
assay that likely indicates responses of effector T cells as
well as CSP peptide-specific IFN-y responses following a
long-term culture of PBMC that might indicate responses of
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Table 2 Solicited adverse event summary
Event Intensity Cohort 1, (n=60 doses) Cohort 2, (n=59 doses)
n (%) n (%)
Local
Pain All 47 78.3 49 83.1
Grade 3 0 0 0 0
Redness All 8 13.3 12 20.3
> 50 mm 3 5.0 5 8.5
Swelling All 3 5.0 5 8.5
> 50 mm 1 1.7 2 3.4
Systemic
Arthralgia All 12 20.0 4 6.8
Grade 3 and PB/SU 0 0 0 0
Fatigue All 10 16.7 8 13.6
Grade 3 and PB/SU 0 0 1 1.7
Gastrointestinal All 5 8.3 5 8.5
Grade 3 and PB/SU 0 0 0 0
Headache All 18 30.0 16 27.1
Grade 3 and PB/SU 0 0 0 0
Myalgia All 13 21.7 5 8.5
Grade 3 & PB/SU 0 0 0 0
Fever All 11 18.3 4 6.8
Grade 3 and PB/SU 0 0 0 0

Local and systemic Instances of solicited adverse events associated with each immunization by cohort. ‘‘All’’ denotes all grades.
‘*PB/SU’’ indicates instances deemed probably or suspected to be related to immunization.
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Figure 2  (a) Antibody to CSP by cohort. (Cohort 1 and 2 are
aligned for day of challenge. large arrows mark immunization
dates.) (b) Antibody to CSP by cohort and by hepatitis B sta-
tus at baseline. (Bars depict group geometric means. Error bars
denote upper limit of the 95% confidence interval.) DOC: day of
sporozoite challenge.

any induced memory T cell populations [24].

INF-y responses measured by ex vivo ELISPOT. PBMCs
obtained at baseline or 2 weeks after the 3rd dose were
assayed for IFN-y production following in vitro stimulation
with either RTS,S or one of three long peptides (P2, P4, or
P5) that together represent the entire C-terminus of the
CSP (Table 3). RTS,S-recalled responses in PBMC-immune
cultures were higher than those recalled by individual pep-
tides. The mean spots per million (MSPM +£S.D.) for RTS,S for
Cohort 1 of 200 £ 107 and Cohort 2 of 220 & 133 were higher
than those elicited by individual peptides. For P2 and P5,
elicited responses were equivalent in both cohorts, but for
P4, values were lower in Cohort 1 (33 &+ 37) than in Cohort 2
(88 £104) (p=0.03).

Antibody to HBsAg by Cohort
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Figure 3  Antibody to HBsAg by cohort. Cohort 1 and 2 are

aligned for day of challenge. Data points represent group mean
anti-HBsAg antibody concentrations. DOC: day of sporozoite
challenge. Large arrows mark immunization dates.
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Figure 5 Kaplan—Meier plot of time to malaria by

cohort. Challenge performed on day 0. Survival proba-
bility = Parasitemia free probability. Parasitemia end point
determined by expert light microscopy.

Table 3 CMI responses on day of challenge by cohort

time to infection; DL="‘‘delay,”’ i.e. prepatent period>14
days; PR=*"Protected,’’ sterile immunity, i.e. did not develop
parasitemia. Bars depict geometric mean anti-R32 antibody
concentration. Error bars are standard error of the mean.

INF-y reponses by cultured ELISPOT. INF-y responses
elicited by CSP peptides during the long-term culture
showed rather high background activity at baseline for all
six CSP peptides in both cohorts. In all cases there were no
significant differences in MSPM responses for each peptide
between the cohorts (Table 3). The individual SPM responses
to specific CSP peptides varied greatly among the immunized
subjects (data not shown).

Efficacy

A total of 50 subjects participated in the malaria challenge:
20 in Cohort 1, 18 in Cohort 2, and 12 infectivity controls.
Both of the immunization schedules conferred a statistically
significant degree of protection from malaria challenge. In
Cohort 1, 9 of 20 were protected (vaccine efficacy (v.e.) 45%;
95% Cl: 18—62, p=0.012 by Fisher’s exact) and in Cohort 2,
7 of 18 were protected (v.e. 39%; 95 Cl: 11—-56%, p=0.024

Cohort 1 Cohort 2

Antigen Pre Post Pre Post p-Values
Index RTS,S 7 (7) 35 (39) 6 (10) 43 (44) 0.57

P2 3(3) 6 (10) 1(1) 9 (13) 0.38

P5 1(1) 5(8) 1(0) 10 (13) 0.18
Ex RTS,S 56 (123) 200 (107) 41 (107) 220 (133) 0.60
vivo P2 709 45 (73) 7 (22) 50 (66) 0.81
ELISPOT/10°P4 8 (14) 33 (37) 9 (20) 88 (104) 0.03*
PBMC P5 15 (33) 54 (59) 27 (90) 106 (108) 0.07
Cultured p34 80 (115) 81 (106) 133 (177) 68 (86) 0.69
ELISPOT p35 127 (162) 341 (471) 175 (191) 251 (316) 0.50
SFC/10° p36 149 (235) 259 (307) 227 (362) 336 (504) 0.57
PBMC p37 93 (135) 145 (236) 140 (171) 111 (165) 0.62

p47 68 (102) 71 (123) 120 (152) 76 (83) 0.90

p50 101 (145) 136 (232) 113 (172) 138 (194) 0.97

Pre: preimmunization. Post: DOC. Values are means (standard deviation). p-Values compare DOC data for Cohorts 1 and 2 by Student’s
t-test for @ =0.05.Stimulation indices are in comparison to media controls, thus are not always ‘*1’’ at baseline.
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Figure 7

Lymphoproliferative responses and protection status. Panels depict lymphoproliferative responses to RTS,S (a) and to

CSP peptides P2 (b) and P5 (c) by vaccine cohort and by protection status. Bars represent group means. Error bars are standard
error of the mean. NP =not protected. D =significant delay in onset of parasitemia. P = protected.

by Fisher’s exact). For subjects who developed parasitemia
(unprotected), the median time to infection was 14.0 days
for Cohort 1, 13.0 days for Cohort 2, compared to only
11.0 days for the control cohort. Log-rank tests of time to
infection also showed benefit in both vaccine cohorts, with
p<0.001 for each vaccine cohort compared to control, but
no difference between cohorts in time to infection (p=0.51)
(Fig. 5).

Protection and immunity
We assumed that any vaccine effect would be directed
against either the sporozoite or hepatic stages, and thus
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would not affect blood stage parasite growth. Therefore,
we attributed any delay in the prepatent period as indica-
tive of a vaccine effect in reducing the number of hepatic
merozoites and hence prolonging the time to reaching
the threshold of detectability by light microscopy of par-
asitemia. This approach has been well described using
quantitative PCR-based asexual parasite detection [25].
Therefore, as a post hoc analysis, we further categorized
the malaria challenge outcomes in the vaccinated volunteers
compared to infectivity controls; non-protected volunteers
developed parasitemia before Day 14, delayed volunteers
developed parasitemia on or after Day 14 (mean + 2 standard
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Ex vivo interferon-y ELISPOT responses and protection status. Ex vivo interferon-y ELISPOT responses to RTS,S and CSP

peptides P2, P4 and P5 by cohort and by protection status. Panels depict responses to RTS,S (a), P2 (b), P4 (c) and P5 (d) by
vaccine cohort and by protection status. Bars represent group means. Error bars are standard error of the mean. NP = not protected.

D =significant delay in onset of parasitemia. P = protected.
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deviations of prepatent period for the infectivity controls),
and protected volunteers did not develop parasitemia.
Antibody and protection. Geometric mean antibody con-
centrations in the non-protected group (n=8) were
29.6 pg/mL, in the delayed group (n=14) 67.5 ng/mL, and in
the protected group (n=16) 113.7 ng/mL. These differences
were significant for all vaccinees in Cohort 1 and Cohort 2
(Kruskal—Wallis, p=0.019) (Fig. 6).

Cellular immunity and protection. For lymphoprolifera-
tion assays in Cohort 1, greater responses were generally
seen in the delayed and protected versus non-protected vol-
unteers. This pattern was not apparent in Cohort 2 (Fig. 7).
Similarly, greater mean ex vivo IFN-y ELISPOT responses
were generally seen for individual assays and for the mean
of the maximum responses in the delayed and protected
versus the non protected volunteers in Cohort 1, but not
for Cohort 2 (Fig. 8). The high background IFN-y responses
elicited during the long-term ELISPOT assay made the analy-
sis of the response patterns less clear. However, the mean of
individual maximum IFN-v responses showed a trend toward
greater responses in the delayed and protected volunteers
in Cohort 1, but not in Cohort 2.

Discussion

Safety

We conducted a Phase 2a trial of RTS.S/AS02 in malaria naive
adults to define the safety and efficacy of two three-dose
immunization schedules. The 0, 1, and 3 month and the
shorter 0, 7, and 28 day regimens appeared to have a good
safety and tolerability profile. Local adverse event rates
were identical, but surprisingly, systemic adverse events
were more common in the longer regimen.

Humoral immunity

The accelerated 0, 7, and 28 day regimen elicited identi-
cal anti-CSP antibody concentrations but less HBsAg-specific
antibody than did the 0, 1, and 3 month regimen. In sub-
jects that were initially seronegative to both antigens,
brisk antibody responses were seen in the majority of sub-
jects 14 days after either one or two doses of RTS,S/AS02,
demonstrating that immunologic priming and recruitment
of IgG-producing B cells occurs efficiently after even a
single dose of this adjuvanted protein vaccine. This trial
demonstrated a statistically significant association of anti-
CSP antibody with prevention of parasitemia after malaria
challenge. This confirms similar associations of anti-CSP
antibody with protection in Phase 2a trials of adjuvanted
RTS,S in malaria-naive adults [12,13] and in a Phase 2b trial
in malaria-experienced adults [14]. However, such associa-
tion of anti-CS antibody with protection in Phase 2b trials
of RTS,S/AS02A was not found in children [15,16] but was
found in infants in malaria endemic Mozambique [17].

Cellular immunity

The two vaccination regimens elicited CSP-specific lympho-
proliferative and IFN-y responses as measured by both the
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Figure 9 Cultured interferon-y ELISPOT responses to pep-
tides and protection status. Panel depicts the mean of each
individual’s highest responses to a panel of 15-mer pep-
tides representing the CSP C-terminal region. Bars represent
group means. Error bars are standard error of the mean.
NP = not protected. D = significant delay in onset of parasitemia.
P = protected.

ex vivo and the cultured ELISPOT assays, and with the sin-
gle exception of lymphoproliferative responses to P4, did
not differ in magnitude between the two cohorts (Table 3).
Exploratory analyses showed that cell mediated immu-
nity did not associate significantly with efficacy outcome
in either of the two cohorts when categorized as non-
protected, delayed or protected. These findings do not rule
out a significant association, but demonstrate that it was
not detected with the single cytokine methods employed
here and the relatively small sample sizes. It is worth not-
ing, however, that the means of the ex vivo IFN-y ELISPOT
responses to RTS,S and to peptides P4 and P5 (Fig. 8), and
the maximum cultured IFN-y ELISPOT responses to the CSP
15-mer peptides (Fig. 9) for the protected, delayed, and
non-protected groups of Cohort 1 exhibited a trend such
that responses in protected subjects were higher than those
in delayed subjects, which in turn, exceeded those in non-
protected subjects. These results suggest that the longer
time between the boost immunizations in Cohort 1 may have
favored the development of some degree of protective T
cell immunity mediated by IFN-vy responses. In contrast, the
responses of the Cohort 2 subjects did not exhibit the same
trend and it is conceivable that the repeated administration
of antigen/adjuvant within a short time period may have
caused the responding T cells to undergo antigen-induced
cell death, thus reducing overall responsiveness.

The IFN-y responses elicited by the 15-mer peptides in
the cultured ELISPOT (Table 3) were maximal for peptides
p35 and p36. These peptides overlap the universal T cell
epitope [26] and thus it is possible that these responses
were not restricted by the HLA-DR alleles. Antigen-specific
IFN-vy responses are considered a sine qua non of protective
immunity against infectious diseases. We demonstrated pre-
viously that indeed CSP-specific IFN-vy reactivity as measured
by both the ELISPOT and by intracellular cytokine staining
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assay showed a strong association with protection conferred
by RTS,S immunization [27]. According to recently emerging
evidence, the control of both chronic viral [28] and parasitic
[29] infections is likely mediated by multifunctional CD4+
and CD8+ T cells. Determination of a single cytokine, IFN-v,
might have limited our detection of the scope of a protec-
tive network of cellular immune responses. Determination
of additional cytokines, such as TNF-a or IL-2, might have
provided a clearer resolution of T cell reactivities induced
by the two regimens of RTS,S vaccination. In future vaccine
trials, be it with RTS,S or other pre-erythrocytic vaccine can-
didates, the approach of measuring Ag-specific T cells that
produce multiple cytokines is a viable option to achieve a
better understanding of vaccine outcomes and the underly-
ing mechanisms of protective immunity so that eventually
specific mechanisms could be adapted as correlates of pro-
tection.

Efficacy

In this pilot trial, immunization with three doses of
RTS,S/AS02 on either a 0, 1, and 3 month schedule or a
rapid 0, 7, and 28 day schedule conferred equivalent protec-
tion against homologous P. falciparum challenge conducted
3 weeks after the last immunization. Observed efficacy was
not different from that previously reported for two doses of
RTS,S/AS02 administered at a 1-month interval [12,13] fail-
ing to suggest any benefit for a third dose of RTS,S/AS02 in
terms of immediate protective efficacy against an exper-
imental challenge. However, the present and previously
reported Phase 2a trials, conducted in malaria-naive volun-
teers, did not address the potential benefit of a third dose
of RTS,S/AS02 on the duration of efficacy.

Future development

This trial was one in series of Phase 2a trials to explore the
immunogenicity and efficacy of varying dose and schedule of
intramuscular RTS,S/AS02 in malaria-naive adults at WRAIR
[11—13]. Although confidence intervals were broad, three
doses of RTS,S/AS02 on the accelerated 0, 7, and 28 day
schedule yielded no increase in immunogenicity or efficacy
over the 0, 1, and 3 month schedule. Importantly, the safety,
reactogenicity and immunogenicity data directly supported
the selection and subsequent establishment of a 0, 1, and
2 month schedule of administration, compatible with the
Expanded Program on Immunization, for further studies in
children and infants in malaria endemic regions [15—17].

Conflict of interest: Joe Cohen, Martine Delcham-
bre, Laurence Vigneron, W. Ripley Ballou and Marie-Ange
Demoite are employees of GlaxoSmithKline, the manufac-
turer of the RTS,S/AS02 vaccine. Nadia Tornieporth was an
employee of GlaxoSmithKline at the time the trial was con-
ducted.

Previous disclosure: Presented in part at the 50th Annual
Meeting of the American Society of Tropical Medicine and
Hygiene, Atlanta, Georgia 11—15 November 2001 as Abstract
#335.

Financial disclosure: This trial was funded by the Medi-
cal Research and Materiel Command, Ft. Detrick, Maryland,
the Malaria Vaccine Program of the United States Agency for

International Development, Washington, DC and by Glaxo-
SmithKline Biologicals, Rixensart, Belgium.

References

[1] Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI. The global
distribution of clinical episodes of Plasmodium falciparum
malaria. Nature 2005;434:214—7.

[2] Cox J, Hay SI, Abeku TA, Checchi F, Snow RW. The uncertain
burden of Plasmodium falciparum epidemics in Africa. Trends
Parasitol 2007;23:142—8.

[3] Chen LH, Wilson ME, Schlagenhauf P. Controversies and mis-
conceptions in malaria chemoprophylaxis for travelers. JAMA
2007;297:2251—63.

[4] Breman JG, Alilio MS, Mills A. Conquering the intolerable bur-
den of malaria: what’s new, what’s needed: a summary. Am J
Trop Med Hyg 2004;71(2 Suppl.):1—15.

[5] Keiser J, Singer BH, Utzinger J. Reducing the burden of
malaria in different eco-epidemiological settings with environ-
mental management: a systematic review. Lancet Infect Dis
2005;5:695—708.

[6] O’Meara WP, Smith DL, McKenzie FE. Potential impact of inter-
mittent preventive treatment (IPT) on spread of drug-resistant
malaria. PLoS Med 2006;3:e141.

[7] Lengeler C. Insecticide-treated bed nets and curtains for
preventing malaria. Cochrane Database Syst Rev 2004;2.
CD000363.

[8] Wongsrichanalai C, Pickard AL, Wernsdorfer WH, Meshnick
SR. Epidemiology of drug-resistant malaria. Lancet Infect Dis
2002;2:209—-18.

[9] Schellenberg D, Abdulla S, Roper C. Current issues for anti-
malarial drugs to control P. falciparum malaria. Curr Mol Med
2006;6:253—60.

[10] Matuschewski K, Mueller K. Vaccines against malaria — an
update. FEBS J 2007;274(18):4680—7.

[11] Stoute JA, Slaoui M, Heppner DG, Momin P, Kester KE, Desmons
P, et al. A preliminary evaluation of a recombinant circum-
sporozoite protein vaccine against Plasmodium falciparum
malaria. N Engl J Med 1997;336:86—91.

[12] Kester KE, McKinney DA, Tornieporth N, Ockenhouse CF, Hepp-
ner DG, Hall T, et al. Efficacy of recombinant circumsporozoite
protein vaccine regimens against experimental Plasmodium
falciparum malaria. J Infect Dis 2001;183:640—7.

[13] Kester KE, McKinney DA, Tornieporth N, Ockenhouse CF,
Heppner DG, Hall T, et al. A phase I/lla safety, immuno-
genicity, and efficacy bridging study of a two-dose regimen
of liquid and lyophilized formulations of the candidate
malaria vaccine RTS,S/AS02A in malaria-naive adults. Vaccine
2007;25:5359—66.

[14] Bojang KA, Milligan PJ, Pinder M, Vigneron L, Alloueche A,
Kester KE, et al. Efficacy of RTS,S/AS02 malaria vaccine against
Plasmodium falciparum infection in semi-immune adult men in
The Gambia: a randomised trial. Lancet 2001;358:1927—34.

[15] Alonso PL, Sacarlal J, Aponte JJ, Leach A, Macete E, Milman
J, et al. Efficacy of the RTS,S/AS02A vaccine against Plasmod-
ium falciparum infection and disease in young African children:
randomised controlled trial. Lancet 2004;364:1411—20.

[16] Alonso PL, Sacarlal J, Aponte JJ, Leach A, Macete E, Aide
P. Duration of protection with RTS,S/AS02A malaria vaccine
in prevention of Plasmodium falciparum disease in Mozambi-
can children: single-blind extended follow-up of a randomised
controlled trial. Lancet 2005;366:2012—8.

[17] Aponte JJ, Aide P, Renom M, Mandomando |, Bassat Q, Sacarlal
J, et al. Safety of the RTS,S/AS02D candidate malaria vaccine
in infants living in a highly endemic area of Mozambique: a
double blind randomised controlled phase I/Ilb trial. Lancet
2007;370(9598):1543—51. Epub 2007 Oct 18, PMID: 17949807.



2202

K.E. Kester et al.

[18] Garcon N, Heppner DG, Cohen J. Development of RTS,S/AS02:
a purified subunit-based malaria vaccine candidate formulated
with a novel adjuvant. Exp Rev Vaccines 2003;2:231-8.

[19] Folena-Wasserman G, Inacker R, Rosenbloom J. Assay,
purification and characterization of a recombinant malaria
circumsporozoite fusion protein by high performance liquid
chromatography. J Chromatogr 1987;411:345—54.

[20] Ballou WR, Hoffman SL, Sherwood JA, Hollingdale MR, Neva
FA, Hockmeyer WT, et al. Safety and efficacy of a recombi-
nant DNA Plasmodium falciparum sporozoite vaccine. Lancet
1987;1:1277—-81.

[21] Wirtz RA, Ballou WR, Schneider |, Chedid L, Gross MJ, Young
JF, et al. Plasmodium falciparum: Immunogenicity of circum-
sporozoite protein constructs produced in Escherichia coli. Exp
Parasitol 1987;63:166—72.

[22] Hollinger FB, Troisi CL, Pepe PE. Anti-HBs responses to vacci-
nation with a human hepatitis B vaccine made by recombinant
DNA technology in yeast. J Infect Dis 1986;153:156—9.

[23] Chulay JD, Schneider |, Cosgriff TM, Hoffman SL, Ballou WR,
Quakyi IA, et al. Malaria transmitted to humans by mosquitoes
infected from cultured Plasmodium falciparum. Am J Trop Med
Hyg 1986;35:66—8.

[24] Keating SM, Bejon P, Berthoud T, Vuola JM, Todryk S, et
al. Durable human memory T cells quantifiable by cultured
enzyme linked immunospot assays are induced by heterolo-
gous prime boost immunization and correlate with protection
against malaria. J Immunol 2005;175:5675—80.

[25] Bejon P, Andrews L, Andersen RF, Dunachie S, Webster D,
Walther M, et al. Calculation of liver-to-blood inocula, para-
site growth rates, and preerythrocytic vaccine efficacy, from
serial quantitative polymerase chain reaction studies of vol-
unteers challenged with malaria sporozoites. J Infect Dis
2005;191:619-26.

[26] Calvo-Calle JM, Hammer J, Sinigaglia F, Clavijo P, Moya-Castro
ZR, Nardin EH. Binding of malaria T cell epitopes to DR
and DQ molecules in vitro correlates with immunogenicity
in vivo: identification of a universal T cell epitope in the
Plasmodium falciparum circumsporozoite protein. J Immunol
1997;159:1362—73.

[27] Sun P, Schwenk R, White K, Stoute JA, Cohen J, Ballou WR,
et al. Protective immunity induced with malaria vaccine,
RTS,S, is linked to Plasmodium falciparum circumsporozoite
protein-specific CD4+ and CD8+ T cells producing IFN-gamma.
J Immunol 2003;171:6961—7.

[28] Harari A, Dutoit V, Cellerai C, Bart P, Du Pasquier R, Pan-
taleo G. Functional signatures of protective anti-viral T cell
immunity in human virus infections. Immunol Rev 2006;211:
236—54.

[29] Darrah PA, Patel DT, De Luca PM, Lindsay RW, Davey DF,
Flynn BJ, et al. Multifunctional TH1 cells define a correlate
of vaccine-mediated protection against Leishmania major. Nat
Med 2007;13:843—-50.



	Phase 2a Trial of 0, 1, and 3 Month and 0, 7, and 28 Day Immunization Schedules of Malaria Vaccine RTS,S/AS02 in Malaria-Naive Adults at the Walter Reed Army Institute of Research
	
	Authors

	Phase 2a trial of 0, 1, and 3 month and 0, 7, and 28 day immunization schedules of malaria vaccine RTS,S/AS02 in malaria-nave adults at the Walter Reed Army Institute of Research
	Introduction
	Material and methods
	Ethics
	Participants
	Vaccine
	Trial design
	Trial conduct
	Assessment of safety

	Immunogenicity
	Serology
	Cell-mediated immunity
	CSP peptides
	Lymphoproliferation assay
	Ex vivo ELISPOT assays
	Cultured (long-term) ELISPOT assays


	Efficacy
	Data handling and statistics

	Results
	Trial conduct
	Safety
	Immunogenicity
	Anti-CSP antibody titers
	Anti-HBsAg antibody titers

	Sporozoite IFA
	Lymphoproliferation
	INF-gamma responses measured by ELISPOT
	INF-gamma responses measured by ex vivo ELISPOT
	INF-gamma reponses by cultured ELISPOT


	Efficacy
	Protection and immunity
	Antibody and protection
	Cellular immunity and protection



	Discussion
	Safety
	Humoral immunity
	Cellular immunity
	Efficacy
	Future development

	References


	Text6:     This article is a U.S. government work, and is not subject to copyright in the United States.


