
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Technical reports Computer Science and Engineering, Department
of

2003

A Dynamic Real-time Scheduling Algorithm for Reduced Energy A Dynamic Real-time Scheduling Algorithm for Reduced Energy

Consumption in I/O Devices Consumption in I/O Devices

Rohini Krishnapura
University of Nebraska-Lincoln, rohini@cse.unl.edu

Steve Goddard
University of Nebraska – Lincoln, goddard@cse.unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/csetechreports

 Part of the Computer Sciences Commons

Krishnapura, Rohini and Goddard, Steve, "A Dynamic Real-time Scheduling Algorithm for Reduced Energy
Consumption in I/O Devices" (2003). CSE Technical reports. 61.
https://digitalcommons.unl.edu/csetechreports/61

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Technical reports by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17243844?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/csetechreports
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/csetechreports/61?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages

A Dynamic Real-time Scheduling Algorithm for Reduced Energy Consumption in
I/O Devices

Rohini KrishnapuraandSteve Goddard
Computer Science & Engineering
University of Nebraska—Lincoln

Lincoln, NE 68588-0115
{rohini, goddard}@cse.unl.edu

Technical Report TR-UNL-CSE-2003-10
Sep 2003

Abstract

In real-time systems, Dynamic Power Management (DPM) techniques have traditionally centered on the CPU with less focus
given to I/O. However, I/O-based DPM techniques have been popularly researched in non-real-time systems. These techniques
focus on switching I/O devices to low power states based on some policy. These methods, however, are not applicable to real-
time environments because of the non-deterministic nature of the policies. Recently, scheduling techniques to reduce power
consumption of I/O devices in real-time systems have emerged. In this paper, we propose an online task scheduling algorithm,
Slack Utilization for Reduced Energy (SURE), which utilizes slack in periodic task systems to reduce power consumption in I/O
devices.

1 Introduction

Power conservation in embedded systems is traditionally implemented via efficient power management. Dynamic power
management (DPM) techniques are those that are applied at run-time based on workload variation [6]. DPM techniques can
be classified as CPU-based or I/O based. An example of CPU-based DPM is Dynamic Voltage Scaling (DVS) wherein the
operating voltage of the CPU is varied to save energy. I/O based DPM techniques focus on switching I/O devices into low
power states based on predictive, stochastic or timeout policies [7].

In real-time systems, dynamic power management has centered mainly on the CPU with little focus given to I/O. I/O-
based DPM techniques used for non-real-time systems cannot be used for real-time systems because of their non-deterministic
nature. For example, probabilistic power-saving policies for shutting down I/O devices cannot be implemented in hard real-time
systems, as jobs are not guaranteed to meet deadlines.

Recently, a few I/O based DPM techniques for real-time systems, have emerged. A DPM algorithm, Low Energy Device
Scheduler (LEDES), for hard real-time systems is presented in [9]. LEDES generates a sequence of sleep/working states for
each device. This sequence is interpreted as adevice schedule. This device schedule is generated online using a per-task device-
usage list and by looking ahead a limited number of entries in a task schedule such that the energy consumed by the devices is
minimized and no task misses its deadline. LEDES is similar to SURE in that devices with two power states are considered.
The LEDES algorithm was extended to work with I/O devices with multiple power states in [10]. Multi-state Constrained
Low Energy Scheduler (MUSCLES) generates a similar sequence of power states for devices while guaranteeing that real-time
constraints are not violated. However both LEDES and MUSCLES use a pre-determined task schedule to dynamically generate
the sequence of states for each device such that the total energy consumed by the devices is minimized. This is different from
SURE in that both LEDES and MUSCLES do not reorder jobs either online or offline to generate a task schedule that reduces
energy consumption in devices.

The pruning-based scheduling algorithm, Energy-optimal Device Scheduler (EDS), is different from LEDES in that jobs
are rearranged to find the minimum energy task schedule [11]. In this respect, EDS is more similar to the work done here.
EDS generates a schedule tree by selectively pruning the branches of the tree. If a resulting schedule along a branch results
in a missed deadline, this infeasible schedule is removed from the tree. In addition, if a feasible schedule along a branch is
determined to consume higher energy than an alternative feasible schedule, the branch leading to this schedule is pruned. The
algorithm we present is different from EDS in that EDS is an offline algorithm, with schedules computed statically, whereas
SURE is an online algorithm that arranges jobs at runtime to reduce energy.

University of Nebraska-Lincoln, Computer Science and Engineering
Technical Report # TR-UNL-CSE-2003-0010

The rest of this paper is organized as follows. Section 2 describes the problem and the motivation for the algorithm. We
present the energy conserving algorithm in Section 3. and conclude in Section 5.

2 Problem Description

The task model that we adopt is the periodic task model as proposed by Liu and Layland [5], with deadlines equal to the
periods. A periodic task set is defined with a release time, period, worst-case execution time and a deadline. Suppose that the
set of devices required by each task during its execution is specified along with the above parameters. The generalized problem
can now be stated as follows.
Given a periodic task set,{T1, T2, ...Tn}, Ti = (φi, pi, ei, di,Λi) where,

φi is the release time or phase,
pi is the period,
ei is the worst case execution time,
di is the deadline and
Λi = {λ1, λ2, ...λm} is the device requirement
specification for the taskTi,

is there a schedule which meets all deadlines and also reduces the energy consumed by each deviceλj?
Modern I/O devices have at least two power states:idle andactive. The rate at which energy is consumed is different in

each state with less power being used at theidle state. Thus to save energy, devices can be switched to theidle state, when it is
not in use. In a real-time system, in order to guarantee that jobs will meet their deadlines, a device cannot be madeidle without
knowing when it will be requested by a job. But, the precise time at which an application requests the operating system for a
device is usually not known. Predictive algorithms try to forecast the rate at which requests come in or make an estimate based
on past requests. However, even without knowing the exact time at which requests are made, we can safely assume that devices
are requested within the time of execution of the process or job making the request. We can also assume that in the absence of
DMA or other such mechanisms, a device will be used within the execution time of a job. Thus, given these assumptions, we
can determine the upper bound on the utilization of a deviceλi. We define this upper bound as theDevice Utilization Factor
Uλi . For the periodic task model as specified earlier in this section,

Uλi =
∑

∀Tj ,{λi}⊆Λj

(ej/pj)

Thus, the Device Utilization Factor of a device is the sum of the CPU utilization of the tasks using the device. In a hyperperiod,
the total time that a deviceλi will be used isUλi ·H. This means that the device is not in use for at least(1 − Uλi) ·H time
units.

For the periodic task model, consider the energy consumed over one hyperperiod. If the device remainedactiveover the
entire hyperperiod, the total energy consumed would be

Eorig = Pactive ·H
wherePactive is the rate at which energy is consumed when the device isactive. Since the device is not in use for at least
(1−Uλi)H, the device does not need to beactivefor the entire hyperperiod. However, significant cost is incurred when an I/O
device switches or transitions from one power state to another. This cost is high in terms of both time and energy. The total
energy consumed by a deviceλi in the hyperperiodH, is given by,

Eλi = Eactive + Eidle + Esw (1)

where,Eactive is the energy consumed whenλi is in theactivestate andEidle is the energy consumed byλi when it is inidle
state andEsw is the energy consumed whenλi is in transition states.

Eactive = Pactive · Uλi ·H
For simplification, let the time taken to switch fromactiveto idle and vice-versa be the same. Let us call this switch timetsw.
In addition, let the power consumed during both transitions be the same. Let this power bePsw. Then,

Esw = σi · Psw · tsw

whereσi is the total number of device state switches in a hyperperiod. So, the actual time the device is in theidle state is
[(1− Uλi)H − σitsw]. Thus,

Eidle = Pidle[(1− Uλi)H − σi · tsw]

2

wherePidle is the rate at which energy is consumed when the device isidle. Substituting forEactive, Eidle andEsw in Equation
(1), the total energy consumed byλi in a hyperperiod is,

Eλi = [PactiveUλi ·H] + [Pidle(1− Uλi)H − Pidleσitsw]
+ [σi · Pswtsw]

The energy savings incurred if the device is madeidle whenever it is not in use, is given by,

Es(λi) = Eorig − Eλi

= Pactive ·H − [Pactive · Uλi ·H
+ Pidle(1− Uλi

)H − σiPidletsw + σi · Psw · tsw]
= Pactive(1− Uλi

)H − Pidle(1− Uλi
)H

− σitsw(Psw − Pidle)
= (Pactive − Pidle)(1− Uλi

)H − σitsw(Psw − Pidle)

Thus, to increase energy savings, the time for which the deviceλi is idle must be increased whereas the total number of power
state transitions (σi) must be decreased. The online energy conserving algorithm proposed in the next section does this by
allowing jobs that require the same device to run in succession. Thus, if a device is in theactivestate, ready jobs requiring the
device are executed in succession such that only few device state changes occur. If a device is in theidle state, the execution
of jobs is delayed as much as possible so that the jobs do not miss their deadlines but also allows the device to be in theidle
state for a longer duration. This results in combining small and scattered device idle times to generate device idle times of
longer duration. In addition, CPU idle times are combined to produce longer intervals of CPU idle time. During these CPU idle
intervals, the entire system can be switched to a low power mode to save additional power.

3 Algorithm Description

In a real-time system, there is seldom any gain in finishing jobs early. For example, in hard real-time systems, as long as
deadlines are met, there is no incentive for an early response time. At any instantt, the amount of time job execution can be
delayed without resulting in any job in the task set to miss its deadline is called the system slack at timet denoted asΩ(t). If
an I/O device isidle and a job requiring that device is released, then if there is system slack at that time, the device is allowed
to stay idle till system slack becomes zero. At this point, the job has to be executed to meet its deadline. Similarly, suppose a
device wasactive, and the job with the nearest deadline, i.e., the highest EDF priority job, did not require the device (henceforth,
we use the term priority to mean the priority assigned by the EDF scheduling algorithm). At this time, there could be another
lower priority job requiring the same device. If there is slack in the system, the higher priority job could be deferred and the
lower priority job is executed till there is no more slack in the system. At this point, the higher priority job has to execute to
meet its deadline.

The heuristic here is that a device state change fromactiveto idle or vice-versa is delayed as much as possible. The overall
result of the algorithm is that smaller chunks of device idle times and usage times are grouped together. This results in reducing
the total number of state transitions in the hyperperiod. The algorithm is presented in Figure 1 and Figure 2.

The algorithm combines slack utilization with EDF to produce an energy conserving schedule. Att = 0, all devices are in
the idle state.Jcurr corresponds to the currently executing job and is initialized toφ. Each scheduled job is given an execution
budget before execution. The execution budget ofJcurr is tracked with the variableBcurr, which is initialized to zero. The
scheduler is invoked when a job is released or when a job completes or finishes its execution budget. The boolean variable
noSlackis used to indicate that there is no slack in the system and is initially madefalse. The boolean variablecomputeSlack
determines when to compute the system slack and is madefalseat t = 0.

At t = 0, when a job is released, since all devices are in theidle state, if there is slack in the system, the execution of jobs
is deferred to keep the devices in theidle state as long as possible. Hence,computeSlackis madetrue and slack is computed.
If system slack is greater than zero, thendo SURE()is invoked. Here,Jcurr remains equal toφ andBcurr is made equal to
Ω(t). When this execution budget expires, the scheduler is invoked again. Now, since all the system slack has been consumed,
do EDF() is invoked and the job with the nearest deadline or the highest priority job,Jhigh is executed. The devices required
by this job, as specified byΛT (high) will all be changed to theactivestate.T (high) refers to the task of the highest priority job
Jhigh.

Jhigh will execute till it completes, at which point the scheduler is invoked again. Whenever a job completes or finishes its
budget, slack is computed anddo SURE ()is invoked. Now, if there is another job,Jsh, which shares the maximum number
of devices with the previously executed job, thenJsh is executed immediately.devSharedenotes the set of devices shared by

3

scheduler():
Initialize at t = 0: {

noSlack ← false;
Jcurr ← φ;
Bcurr ← 0;
computeSlack ← false;
devShare ← φ;
return;

}
If (t: instance when job is released){

If (Jcurr == φ) // the CPU is idle
computeSlack ← true

else
computeSlack ← false

If (noSlack) { // the system has no slack
do EDF();
return;

}
}
If (t: instance when job finishes its execution budget){

If (job queue is empty){
Jcurr ← φ; // make CPU idle
Bcurr ← 0;
return;

}
computeSlack ← true; // need to recompute slack

}
If (computeSlack) {

ComputeΩ(t);
If (Ω(t) > 0)

do SURE ();
else

do EDF();
}

Figure 1. The SURE Scheduler.

Jcurr andJsh. Someactivedevices which are not needed byJsh will be madeidle and otheridle devices required byJsh will
be madeactive. Jd is executed with a budget equal to the system slack at that time. However, if none of the ready jobs require
any of theactivedevices, then the CPU is idled for a time equal to the system slack.

After Jd finishes its execution budget, the SURE scheduler is invoked again. Now, if there are no more jobs to execute,
the CPU is idled andBcurr is made zero. Allactivedevices will be madeidle. Again when a job is released, its execution is
delayed as much as possible till there is no more slack.

Example

Consider the task set{T1, T2}, T1 = (0, 2, 1, 2, {λ}), T2 = (0, 5, 1, 5, {λ}) where the deadline is equal to the period and release
time is0. Both tasks require deviceλ. The hyperperiod is10. Fig. 3 shows both the EDF schedule and the SURE schedule for
the task set where the deviceλ is idle whenever the CPU is idle (since all tasks use deviceλ). At t = 0, the deviceλ is idle.
With EDF the idle times in a hyperperiod are{1, 1, 1} time units and the total number of switches is6. Since the task sets have
zero phase, the EDF schedule will be the same in all subsequent hyperperiods. With the SURE schedule, att = 0, the device
λ is idled for1 time unit. At t = 1, the highest EDF priority job is executed. Subsequent eligible jobs which requireλ are all
executed in succession. Att = 7, the ready job queue becomes empty and the CPU is idled. The device is changed to theidle
state. Att = 8, J1,5 is released. But, sinceλ is already in theidle state, execution of this job is delayed as much as possible.
The device remains in theidle state tillt = 9. The remaining jobs all execute in time and complete within their deadline. With
slack utilization, the device idle time is1 time unit in the beginning of the first hyperperiod. Subsequently, longer idle time of2
time units are obtained. The total number of switches in a hyperperiod is reduced to3 and the total idle time, of course, remains
constant.

4

do EDF(){
If (Jcurr 6= Jhigh) {

devShare ← {ΛT (curr) ∩ΛT (high)}; // devShare is the set of devices shared byJcurr

andJsh

Make devices in{ΛT (curr)− devShare} idle; // the set ofactivedevices not required by
Jsh is madeidle

Make devices in{ΛT (high)−devShare} active; // the set ofidle devices required byJsh

are madeactive
Jcurr ← Jhigh; // execute the highest priority job
Bcurr ← ehigh;
noSlack ← true;

}
return;

}
do SURE (){

If (Jcurr 6= φ) {
// Determine the jobJsh which shares the maximum number of devices withJcurr

devShare ← {ΛT (curr) ∩ ΛT (sh)};
If (|devShare| == 0) { // no job share any device withJcurr

Make devices in{ΛT (curr)} idle; // Make all devices used byJcurr idle
Jcurr ← φ; // Make CPU idle

}
else{
Make devices in{ΛT (curr) − devShare} idle;
Make devices in{ΛT (sh) − devShare} active;
Jcurr ← Jsh;
}

}
Bcurr ← Ω(t);
noSlack ← false;
return;

}
Figure 2. do EDF() and do SURE () procedures.

λ Device Idle Times

0 2 4 6 8 10 12 14 16 2018

J1,1 J1,2 J1,3 J1,4 J1,5J2,1 J2,2 J1,6 J1,7 J1,8 J1,9 J1,
10

J2,3 J2,4

λ Device Idle Times Device is made idle Device is made active

EDF Schedule

SURE Schedule

0 2 4 6 8 10 12 14 16 2018

J1,1 J1,2 J1,3 J1,4 J1,5J2,1 J2,2 J1,6 J1,7 J1,8 J1,9 J1,
10

J2,3 J2,4

Figure 3. Schedule for {T1, T2}, T1 = (0, 2, 1, 2, {λ}), T2 = (0, 5, 1, 5, {λ})

4 Temporal Correctness

In this section, we prove the temporal correctness of the SURE scheduling algorithm. We use the symbolJi to denote a
job, for i = 1 to N , whereN is the total number of jobs released in the hyperperiod. Before we prove necessity, consider the

5

following lemma.

Lemma 1.1

If U ≥ 1, there is no slack, that is,∀t ≥ 0, Ω(t) ≤ 0.

Proof: Let the slack of a jobJi at t beω(t). At t = 0, ω(0) = Di −
∑

Dj≤Di
ej , whereDi is the absolute deadline ofJi. At

t = 0,

ω1(0) = D1 −
∑

Dj≤D1

ej

ω2(0) = D2 −
∑

Dj≤D2

ej

. . .

ωi(0) = Di −
∑

Dj≤Di

ej

Since the tasks are synchronous, every task has one job with the deadline asH. Thus, there will ben jobs with deadlines asH.
These set of jobs have the slack as,

ωk(0) = H −
∑

Dj≤H

ej

= H − {e1 + e2 + . . . + eN}
= H − {sum of execution times of all jobs in H}

But, {sum of execution times of all jobs in H} =
n∑

i=1

ei · H

pi

= U ·H
Thus,ωk(0) = H − U ·H

= H · (1− U)

Since,U ≥ 1,

ωk(0) ≤ 0

Since slack gets consumed as time progresses, the slack of a job at any time cannot be greater than its slack at time zero. Thus
we have,

∀t ≥ 0, ωk(t) ≤ ωk(0) ≤ 0
⇒ ωk(t) ≤ 0

At any timet ≥ 0, the system slack is,

Ω(t) = min{ωi(t)}∀i=1,2,...,N

⇒ Ω(t) ≤ ωk(t) ≤ 0
⇒ Ω(t) ≤ 0

Hence, ifU ≥ 1, there is no slack at any timet ≥ 0.

Lemma 1.2

When there is no slack, SURE reduces to EDF.

Proof: In the algorithm presented in Section 3, wheneverΩ(t) = 0, control goes todo EDF() procedure. If the scheduler
was invoked because a new job was released, then control goes directly todo EDF(). If the scheduler was invoked because a

6

job finished execution,computeSlack is madetrue. When there is no slack and there are jobs to execute, the control goes to
do EDF ().

In do EDF (), if the CPU had been idle till now, then a newly released job would immediately execute. If a lower priority
job had been executing, it would be pre-empted by the newly released job. If there are no jobs to execute, then CPU is idled.
Thus if there is no slack at all times, the highest EDF priority job is executed each time the scheduler is invoked. In addition, the
job is executed immediately since there is no slack at any time to defer the execution of the job. Hence, the algorithm reduces
to EDF.

Lemma 1.3

Under SURE , there is no slack in the system at the end of an idle instant, that is if t is the end of an idle instantΩ(t) = 0.

Proof: Since SURE may not execute jobs as soon as they become eligible, it is a non-work conserving schedule. Hence, at an
instant when the CPU is idle, the job queue may or may not be empty. There can be no other state of the job queue when the
CPU is idle. Hence, there are only two cases to consider: (a) CPU is idle because there are no jobs to execute and (b) CPU is
idle but the job queue is not empty.
Case (a): CPU is idle because there are no jobs to execute.
Suppose the CPU is idled because there are no jobs to execute. When a job is released, the SURE scheduler is invoked. As
shown in Figure 1, sinceJcurr = φ whenever the CPU is idle,computeSlack is madetrue and system slack is computed.
If there is some system slack at this time, the budget ofJcurr is increased and CPU will continue to idle forΩ(t) time units.
When the execution budget ofJcurr is over, the scheduler is again invoked. If there is some more system slack at this time,
once againJcurr is scheduled with a new budget. Finally, when there is no more system slackdo EDF () is invoked. Here, the
highest priority job is selected for execution. This marks the the end of the idle instant.
Case (b): CPU is idle but the job queue is not empty.
In this case, the CPU is idled because it results in the minimum number of device state switches. Here, no job shares any device
with Jcurr. Hence indo SURE(), Jcurr is made equal toφ and the CPU is idled. The execution budgetBcurr is made equal
to the system slack at that time. As in Case (a), when the execution budget ofJcurr is over, the scheduler is again invoked. If
there is some more system slack, CPU is continued to idle with a new budget. Finally, as in Case (a), when the system slack is
zero,do EDF () is invoked and the highest priority job at that time is executed. This marks the end of the idle instant.

Thus, in both cases, at the end of idle instant, the system slack is zero.

Theorem1

A set of synchronous periodic tasksT = {T1, T2, T3, ...Tn}, with deadlines equal to their periods, can be feasibly scheduled

on a single processor with pre-emptive SURE if and only if
n∑

i=1

ei

pi
≤ 1.

Proof: For the necessity of Theorem1, suppose thatU > 1. From Lemma1.1, we know that ifU ≥ 1, there is no slack.
From Lemma1.2, we know that if there is no slack at any time, then SURE reduces to EDF. Hence, we can conclude that since
U > 1, SURE reduces to EDF. We know that ifU > 1, EDF will fail to find a schedule. Since SURE reduces to EDF, SURE
will also fail whenU > 1. Thus, necessity is proved.

t1 tdt2

Jk

Figure 4. Theorem 1

For sufficiency, assume thatU ≤ 1, but tasks cannot be feasibly scheduled. In Fig. 4, letJk be the first job to miss its
deadline attd andt1 be the end of the last idle instant beforetd. t1 can be traced back to0 if there are no idle instants thereafter.
From Lemma1.3, we can conclude that,

Ω(t1) = 0 (2)

Let t2 be the latest instant beforetd such thatΩ(t2) = 0 and before which the system slack is greater than zero. This also
means that the system slack is never positive in the interval[t2, td]. We can quickly establish this by proving the contrapositive.

7

If the system slack is positive at some instant in[t2, td], thent2 cannot be thelatestinstant beforetd, before which the system
slack is greater than zero. Thus, the relationt2 < td holds true.

SinceΩ(t1) = 0, by its definition,t2 cannot be less thant1. However, if the system slack is never more than zero aftert1,
t2 could be equal tot1. Thus we have the relation,

0 ≤ t1 ≤ t2 < td (3)

Note that since slack could be positive in[t1, t2), any job with a deadline greater thant2 may execute in the slack time in
[t1, t2) if it reduces the number of device state switches at that time. Thus, the CPU demand in[t1, t2) is the demand of jobs
with deadlines in the interval(t1, t2] as well as the demand of some jobs with deadlines greater thant2 which may execute in
this interval. This CPU demand cannot be tightly bound since it depends on the device request specification of jobs executing
in this interval.

However, since slack is never positive in[t2, td], no job with deadline greater thantd will be scheduled by the SURE
scheduler in this interval, i.e., no job with a lower priority thanJk will be scheduled in[t2, td]. Hence the CPU demand in this
interval will be the demand by jobs with deadlines in(t2, td]. We can bound this demand by considering the earliest instant of
time in this interval when a job of a taskTj will be released.

Earliest time when a job of taskTj is released in(t2, td] = t2 − (pj − 1)
⇒ Effective length in(t2, td] for each taskTj = td − [t2 − (pj − 1)]

= td − t2 + (pj − 1)

⇒ Total number of jobs of taskTj with deadlines in(t2, td] =
⌊

td − t2 + pj − 1
pj

⌋

SinceJk missed its deadline attd, the demand by all jobs with deadlines in(t2, td] is greater than the available time in the
interval(t2, td]. Thus,

(td − t2) < Demand of jobs with deadlines in(t2, td] (4)

But, Demand of jobs with deadlines in(t2, td] =
n∑

j=1

⌊
td − t2 + pj − 1

pj

⌋
· ej (5)

Hence, from Equation (4) and (5) we have,

(td − t2) <

n∑

j=1

⌊
td − t2 + pj − 1

pj

⌋
· ej

≤
n∑

j=1

td − t2 + pj − 1
pj

· ej

=
n∑

j=1

td − t2
pj

· ej +
n∑

j=1

pj − 1
pj

· ej

= (td − t2) ·
n∑

j=1

ej

pj
+

n∑

j=1

1− ej

pj

= (td − t2) · U +
n∑

j=1

1− ej

pj

But,
n∑

j=1

1− ej

pj
≥ 0

⇒ (td − t2) < (td − t2) · U
⇒ 1 < U , a contradiction

This implies that, if the schedule is invalid,U > 1. Hence, sufficiency is proved.

8

5 Conclusions and work-in-progress

The SURE, online real-time scheduling algorithm was presented in this paper. We note that there are remain many imple-
mentation details to be addressed. For instance, when we use the network card as the I/O device, the non-deterministic nature
of ethernet must be taken into account. In addition, the overhead involved in switching the device states must also be addressed
in the implementation. At present,we are implementing the algorithm in the microC OS-II real-time OS in the Rabbit3000
microprocessor and are currently carrying out a preliminary evaluation of the algorithm.

References

[1] Benini L., Bogliolo A. and Micheli G., A survey of design techniques for system-level dynamic power management,IEEE Transactions
on VLSI Systems, vol. 8, no.3, 2000.

[2] Dick R., Lakshminarayana G., Raghunathan A. and Jha N., Power analysis of embedded OS,37th Design Automation Conference, June
5− 9, 2000.

[3] Flinn J. and Satyanarayanan M.,Energy aware adaptation for mobile applications,Symposium on Operating Systems Principles, 1999.
[4] Golding R. A., Bosch P., Staelin C., Sullivan T. and Wilkes J, Idleness if not sloth,Proc. of the Winter USENIX Conference, 1996.
[5] Liu J. W. S., Real-time Systems. Prentice-Hall.2000.
[6] Lu Y. H., Benini L. and Micheli G., Operating-System Directed Power Reduction,International Symposium on Low Power Electronics

and Design, 2000.
[7] Lu Y. H., Benini L. and Micheli G., Power-Aware Operating Systems for Interactive Systems,IEEE Transactions on Very Large Scale

Integration Systems, 2000
[8] Lu Y. H., Benini L. and Micheli G., Requester-Aware Power Reduction,International Symposium on System Synthesis, 2000.
[9] Swaminathan V. and Chakrabarty K., Dynamic I/O power management in real-time systems,Proc. International Conference on Infor-

mation Fusion (FUSION), 2002.
[10] Swaminathan V. and Chakrabarty K., Energy-conscious, deterministic I/O device scheduling in hard real-time systems,IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits & Systems, July, 2003.
[11] Swaminathan V. and Chakrabarty K., Pruning-based energy-optimal device scheduling in hard real-time systems,Proc. International

Symposium on Hardware/Software Co-Design, 2002.

9

	A Dynamic Real-time Scheduling Algorithm for Reduced Energy Consumption in I/O Devices
	

	tmp.1250263626.pdf.lDwGI

