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Abstract

We present a new task model for the real-time execution of event-driven tasks in which no
a priori characterization of the actual arrival rates of events is known; only the ezpected arrival
rates of events is known. We call this new task model rate-based execution (RBE), and it is a
generalization of the common sporadic task model. The RBE model is motivated naturally by
distributed multimedia and digital signal processing applications.

We identify necessary and sufficient conditions for determining the feasibility of an RBE
task set, and an optimal scheduling algorithm (based on preemptive earliest-deadline-first (EDF)
scheduling) for scheduling the execution of an RBE task set. With respect to the class of work-
conserving scheduling algorithms (i.e., the class of scheduling algorithms that schedule without
inserting idle time in the schedule), we present necessary and sufficient feasibility conditions
and optimal algorithms for non-preemptive scheduling and preemptive scheduling with shared
resources.

1 Introduction

Real-time applications frequently interact with external devices in an event-driven manner. The de-
livery of a message, or a hardware interrupt, signals the event arrival. A task is then dispatched to
process the event. In real-time environments, the system provides some form of guarantee that the
task will finish processing the event within d time units of the event occurrence, where d; is called
the relative deadline of event e;. Hard-real-time systems guarantee that every event e; will be pro-
cessed within d; time units of its occurrence. Soft-real-time and firm-real-time systems provide weaker
guarantees of timeliness.

Most real-time models of execution are based on the Liu and Layland periodic task model [12] or
Mok’s sporadic task model [14]. Periodic tasks are real-time programs that service events at precise,
periodic intervals. Events serviced by sporadic tasks have a lower bound on their inter-arrival time,
but no upper bound on inter-arrival time.

We have found in practice, especially in distributed systems, that the inter-arrival of events is

neither periodic nor sporadic. There is, however, usually an ezpected or average event arrival rate
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that can be specified. Thus, we have created the rate-based execution (RBE) task model. RBE
is a generalization of Mok’s sporadic task model in which tasks are expected to execute with an
average execution rate of z times every y time units. Our experience with distributed multimedia and
distributed signal processing applications demonstrates that this task model more naturally models
the actual implementation of distributed, event-driven, real-time systems [5, 6, 10]. Moreover, it has
been argued that the actual execution of applications based on general processing graphs, such as
Processing Graph Method (PGM) [16], is neither periodic nor sporadic unless nodes of the processing
graph are forced to execute as such, which increases latency [5, 6]. RBE provides a more natural
model of the real-time execution of nodes in a PGM graph.

While RBE has been used to model the execution of applications ranging from multimedia com-
puting to digital signal processing [5, 6, 10], this is the first formal presentation of the RBE task model.
We present necessary and sufficient conditions for determining the feasibility of scheduling an RBE
task set such that no task misses its deadline. We also present an optimal scheduling algorithm (based
on preemptive earliest-deadline-first (EDF) scheduling) for scheduling the execution of an RBE task
set. By optimal, we mean that if a feasible schedule exists, our scheduling algorithm will find one. We
then consider non-preemptive scheduling and preemptive scheduling with shared resources. In both
cases, we present necessary and sufficient feasibility conditions and optimal scheduling algorithms with
respect to the class of work-conserving scheduling algorithms (i.e., the class of scheduling algorithms
that schedule without inserting idle time in the schedule). A corollary of our results is that RBE tasks
cannot be scheduled with static priority schedulers.

The rest of this paper is organized as follows. Section 2 provides the motivation for considering
the RBE task model and describes related work. Section 3 presents the RBE task model. Section
4 presents necessary and sufficient conditions for preemptive scheduling, non-preemptive scheduling,
and preemptive scheduling with shared resources. Optimal scheduling algorithms, based on EDF
scheduling, for each case are also presented in Section 4. Section 5 discusses the separation of the
execution semantics of an RBE task from a specific scheduling algorithm, and compares RBE to
proportional share resource allocation [2, 13, 15, 19, 21, 22] and the Total Bandwidth server [17, 18].

We conclude our our presentation of the RBE model with a summary in Section 6.

2 Motivation and Related Work

The starting point for this work is the model of sporadic tasks developed by Mok [14], and later
extended by Baruah et al. [4], and Jeffay et al. [7]. In [4], Baruah et al. developed the seminal
complexity analysis for determining the feasibility of a sporadic task set. A sporadic task is a simple
variant of a periodic task. Whereas periodic tasks recur at constant intervals, sporadic tasks (as

defined by Mok) have a lower bound on their inter-invocation time, which creates an upper bound on



their rate of occurrence. The fact that sporadic tasks may execute at a variable (but bounded) rate
makes them well-suited for supporting event-driven applications. At present, the theory of sporadic
tasks is general enough to accommodate a model of computation wherein tasks may communicate via
shared memory (i.e., tasks may have critical sections) [8], and tasks may be preempted by interrupt
handlers (i.e., realistic device interactions can be modeled) [9]. A set of relations on model parameters
that are necessary and sufficient for tasks to execute in real-time are known, and an optimal algorithm
for scheduling tasks, based on EDF scheduling, has been developed.

One practical complexity that arises in applying the existing models of sporadic tasks to actual
systems is the fact that the real world does not always meet the assumptions of the model. Consider
a task’s minimum inter-invocation time parameter. The formal model assumes that consecutive in-
vocations of a sporadic task with minimum inter-invocation time (or “period”) p are separated by at
lest p time units. Tasks that are invoked in response to events generated by devices may not satisfy
this property. For example, consider a simple video conferencing application. When video frames are
transmitted across a network, they may be delayed for arbitrary intervals at nodes in the network.
Therefore, even though video frames are, in theory, generated periodically, their arrival pattern at
a conference receiver may be highly irregular. In this case, the transmission rate is precise and the
average receive rate is precise, but the instantaneous receive rate is potentially unbounded (depending
on buffering in the network). One solution to this problem is to simply buffer video frames at the
receiver and release them at regular intervals to the application (although this begs the question of how
one implements and models the real-time tasks that perform this buffering process). This approach is
undesirable because it is difficult and tedious to implement correctly and because it will increase the
acquisition-to-display latency of each video frame (and latency is the primary measure of conference
quality).

Our approach is to alter the formal model to account for the fact that there may be significant
“jitter” (deviation) in the inter-invocation time of real-time tasks. We extend the sporadic task to be a
task that executes at an average rate. We have the same characterization of a sporadic task as before,
however, we make no assumptions about the spacing in time of invocations of a sporadic task. If a task
with “period” p is invoked at time ¢ the task is scheduled (placed into the run queue) with a deadline
for processing that is sufficient to ensure that the task actually makes progress at its specified rate.
This model, called the Rate-Based Execution (RBE) model, is described in greater detail in Sections
3 and 4.

Digital signal processing is another domain in which the RBE task model naturally describes the
execution of applications. Processing graphs are a standard design aid in the development of complex
digital signal processing systems. We have found that, even on a single-CPU system with periodic

input devices, processing graph nodes naturally execute in “bursts” [5, 6]. Moreover, source data often



arrives in bursts in distributed systems, which precludes the eflicient modeling of node execution with
either periodic or sporadic task models. We explain this further in Section 3 after the RBE task model
has been formally presented.

With respect to previous attempts to explicitly specify a task’s progress in terms of an execution
rate, the RBE task model is most similar to the linear-bounded arrival process (LBAP) model as
defined and used in the DASH system [1]. In the LBAP model, processes specify a desired execution
rate as the number of messages to be processed per second and the size of a buffer pool used to
store bursts of messages that arrive for the process. Our task model generalizes the LBAP model to
include a more generic specification of rate and adds an independent response time (relative deadline)
parameter to enable more precise real-time control of task executions. Moreover, we analyze the model
in more complex environments such as those wherein tasks communicate via shared memory and thus
have preemption constraints.

Comparison of the RBE model to proportional share resource allocation [2, 13, 15, 19, 21, 22] and
the Total Bandwidth Server [17, 18] are provided in Section 5.

3 RBE Task Model

Here we introduce the concept of rate-based execution and formally present the RBE task model.

A task is a sequential program that is executed repeatedly in response to the occurrence of events.
Each instance of the execution of the task is called a job or a task instance. Jobs are made ready
for execution, or released, by the occurrence of an event. An event may be externally generated, e.g.,
a device interrupt, or internally generated, e.g., a message arrival. In all cases, once released, a job
must execute to completion before a well-defined deadline. We assume instances of an event type are
indistinguishable and occur infinitely often. Thus over the life of a real-time system an infinite number
of jobs of each task will be released.

In the real-time systems literature, two commonly studied paradigms of event occurrences are
periodic, in which events are generated every p time units for some constant p, and sporadic, in which
events are generated no sooner than every p time units for some constant p.

We consider two fundamental extensions to these models. First, we make no assumptions about
the points in time at which events occur. We assume that events are generated at a precise average
rate (e.g., 30 events per second) but that the actual distribution of events in time is arbitrary. Second,
we allow tasks to specify a desired rate of progress in terms of the number of events to be processed in
an interval of specified length. As shown below, this allows a task to process a “burst” of simultaneous
events as a single event.

Formally, RBE is a general task model consisting of a collection of independent processes specified

a four-tuple (z,y, d, ¢) of constants where:
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e The pair (z,y) is referred to as the rate specification of an RBE task; z is the maximum number

of executions expected to be requested in any interval of length y.

e Parameter d is a response time parameter that specifies the maximum desired time between the

release of a task instance and the completion of its execution (i.e., d is the relative deadline).

e Parameter ¢, called the cost, is the maximum amount of processor time required for any job of

task T to execute to completion on a dedicated processor.

We assume throughout that time is discrete and clock ticks are indexed by the natural numbers.
Task parameters, z, y, d, and ¢ are expressed as integer multiples of the interval between successive
clock ticks.

Jobs of a task are constrained to execute as follows. Let ¢;; be the release of J;;, the 7t job
of the /" task. We assume throughout that the order of jobs of a task corresponds to the order of
event occurrences for the task (i.e., for all ¢ and j, ¢;; < t;;41). Once released, job J;; must complete

execution before a deadline D;(j) given by the following recurrence relation

D;(j) = (1)

{tij+di if1<j<um
max(t;; +di, Di(j — xi) + i) if >
Thus the deadline of a job is the larger of the release time of the job plus its desired deadline or the
deadline of the 2" previous job plus the y parameter of the task. Therefore, up to z jobs of a task
may contend for the processor with the same deadline. Note that for all j, deadlines of jobs J;; and
Ji j+o; of task T; are separated by at least y time units. Without this restriction, if a set of jobs of a
task were released simultaneously it would be possible to saturate the processor. With the restriction,
the time at which a task must complete its execution is not wholly dependent on its release time. This
is done to bound processor demand.

For example, Figure 1 shows the job release times and deadlines for a task 77 = (@ = 1,y =

2,d = 6,c). The downward arrows in the figure indicate release times for jobs of T}. For each job,
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the interval represented by the open box indicates the interval of time in which the job must execute
to completion. (The actual times at which jobs execute are not shown.) Figure 1 shows that if jobs
of T are released periodically, once very 2 time units in this case, then T will execute as a periodic
task (albeit with a desired deadline that is different from its period). In particular, if jobs are released
periodically then the rate specification of T} does not come into play in the computation of deadlines.

Figures 2 and 3 show the effect of job releases that occur at the same average rate as before, but
where jobs are not released periodically. In these figures, three jobs are released simultaneously at
time 0, two jobs are released simultaneously at time 3, one job is released at time 6, etc. Figure 2
shows the job release times and deadlines for task 73 = (¢ = 1,y = 2,d = 6,¢). For comparison,
Figure 3 shows the effect of the same pattern of job releases on a task 73 = (z = 3,y = 6,d = 6, ¢)
with the same desired deadline but a different rate specification. Since job releases are not periodic,
the actual deadlines of jobs are a function of the rate specification of the task. Note that tasks 7T} and
Ty will consume the same fraction of the processor and both will complete, on average, one job every
two time units.

The effect of the different rate specification is two-fold. First, when bursts of events occur, up
to three jobs of task T; may execute with the same deadline. Thus, for example, task T3 might be
used to implement the media play-out process in a distributed multimedia system wherein (1) media

samples are generated at the precise rate of one sample every six time units at a sender, and (2) each
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sample is too large to fit into a single network packet and thus is fragmented at the sender into three
network packets, which are transmitted one immediately following the other to the receiver. At the
receiver, media samples arrive, on average, one sample every two time units. However, since the sender
fragments media samples and transmits the fragments one after the other, it is likely that bursts of
three simultaneous (or nearly simultaneous) packet arrivals at the receiver will be common. Moreover,
at the receiver, while there is a deadline to complete the processing of each complete media sample,
there is no obvious deadline for processing individual fragments of the media sample (other than the
deadline for the processing of the complete media sample).

The fundamental problem here is that the arrival rate of inputs at the receiver (3 network packets
received every 6 time units), is not the same as the output rate at the receiver (1 media sample
displayed every 6 time units). By giving a rate specification of (z = 3,y = 6), the receiver can
effectively process groups of up to three network packets with the same deadline — the deadline for
completion of the processing of a media sample. Thus by specifying an execution rate, we avoid the
artificial problem of having to assign deadlines to intermediate processing steps.

Note that this example is overly simplistic as in practice packet arrivals are discrete events, and
hence fundamentally cannot occur “at the same time.” Thus in practice, packets arriving as described
above will have deadlines that are separated by at least the minimum inter-arrival time of a pair of

packets on the given network transmission medium (e.g., 5 microseconds on a 100BaseT Ethernet).



However, the fact that the deadlines for packets arriving in a burst would have slightly offset deadlines
ensures that the operating system will process the packets in arrival order (assuming a deadline-driven
scheduler).

A task with a rate specification such as T in Figure 2, might be used to implement the play-
out process in a different multimedia system wherein media samples are small enough to fit into a
single network packet and thus the packet arrival rate is the same as the sample play-out rate. Here
all network packets should have the same relative deadline for completion of processing (e.g., the
expected inter-arrival time of packets). The pattern of deadlines in Figure 2 ensures that the play-out
application is guaranteed (assuming the workload is feasible) that in the worst case a media sample
will be ready for play-out every y time units starting at time 6.

The second effect of having different rate specifications for task T and T is that if jobs are not
released periodically, jobs of Ty will have a lower response time than jobs of T7.

Note that there are times at which it is possible for both tasks to have more than z; jobs active
simultaneously (e.g., in the interval [0,16] for task T} and in the interval [3,16] for T%). This is because
the rate specification for a task only specifies the rate at which jobs are expected to be released. The
actual release rate is completely determined by the environment in which the tasks execute. (In fact,
over the entire interval shown in Figures 2 and 3, jobs are released at a slower rate than expected.)
Also note that the times when individual jobs complete (and hence whether or not there ever are
actually multiple jobs of a task eligible for execution simultaneously) will depend on the scheduling
policy employed. Figures 1-3 should be interpreted as describing a realm of possible execution patterns
of tasks.

For a final comparison, Figure 4 shows the effect of the job release times illustrated in Figures 2
and 3 on the task 15 = (z = 1,y = 2,d = 2, ¢). Task T5 is identical to T} except with a smaller desired
deadline. Figures 2 and 4 can be used to illustrate one benefit of decoupling a task’s deadline from its
arrival rate and, in particular, the benefit of having a deadline that is greater than the expected inter-
job release time. Consider the case where task T} is used to implement the media play-out process in
a second distributed multimedia system wherein media samples are generated at the precise rate of
one sample every two time units at the sender. Assume each media sample fits into a network packet
and media samples are buffered for up to six time units at the receiver prior to play-out.

Since samples are expected to be buffered at the receiver, there is little utility to the system in
processing samples with a deadline that is less than the expected buffer residence time. That is, if a
job of T5 completes the processing of a media sample within two units of the sample’s arrival (which
is guaranteed to happen if the arrival of media samples is not bursty), then the media sample will
reside in a buffer for at least four time units after this processing completes. In contrast, since T}

has a larger desired deadline, one would expect that samples processed by T} would spend more time
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Figure 4: Bursty release times and deadlines for jobs of 15 = (z = 1,y = 2,d = 2, ¢).

waiting to be processed and less time being buffered prior to play-out. Thus the distinction between
jobs of Ty and T35 is the media samples processed by jobs of the former task will likely spend more
time waiting to be processed (i.e., “buffered” in the run-queue) and less time in play-out buffers than
when processed by jobs of T5. The time between media arrival and play-out will be the same in both
cases, however. Thus the desired deadline for task 77 is more appealing in practice as its use will
improve the response time for the processing of aperiodic and non-real-time events.

It is natural to consider modeling RBE task T as a sporadic task with a minimum period of gyg—ll time
units. However, this doesn’t work because there is no minimum inter-arrival time that can be defined
for the media samples processed by task T} (z—ll is the average inter-arrival time, not the minimum).
One might also consider modeling RBE task T} as @1 sporadic tasks with a minimum period of y; time
units. This method also fails because there is no minimum inter-arrival time that can be defined for
the media samples processed by task T7. The “simultaneous” arrival of 1 + 1 media samples would
result in more processor demand than the sporadic task model anticipates unless the z; + 1** media

sample is assigned a deadline that is y; time units later than the other z; media samples. This, of

course, is exactly what the RBE task model does.



4 Feasibility of RBE Tasks

Returning to the formal definition of the task model, our goal is to determine relations on task para-
meters that are necessary and sufficient for a set of tasks to be feasible. A set of RBE tasks is feasible

if and only if for all job release times ¢;;, and for all .J;;, it is possible to execute J;; such that
1. J;; commences execution at or after time ¢;;, and
2. J;; completes execution at or before time D;(j).

That is, for all ¢;;, J;; must execute within the closed interval [t;;,D;(j)].

Deadline-assignment Function D;(j) prevents release jitter from creating more processor demand
in an interval by a task than that which is specified by the rate parameters. Release jitter is the
phenomenon that occurs when release times vary such that in one interval fewer releases occur than
expected and in another interval more releases occur than expected. The processor demand in an
interval [a, b] is the amount of processor time required to be available in [a, b] to ensure that all tasks
released prior to time b with deadlines in [a, b] complete in [a, b]. The maximum processor demand in

an interval [a, b] occurs when

1. @ marks the end of an interval in which the processor was idle (or 0 if the processor is never

idle),
2. the processor is never idle in the interval [a, b], and
3. as many deadlines as possible occur in the interval [a, b].

If deadlines for jobs of RBE task T; were assigned by simply adding d; to the job’s release time, then
more than z; releases in an interval of length y; may create more processor demand than the processor
can support and deadlines may be missed. To ensure that no task instance misses a deadline, we must
bound the maximum processor demand for all tasks in all intervals and verify that the processor has
enough capacity to support the processor demand created by the RBE task set. We begin by bounding

the maximum processor demand for a task in the interval [0, L].

Lemma 4.1. For an RBE task T'= (x,y,d,c),

(2)

L—d
VL >0, f(i—i_y)xc

Y
is a least upper bound on the number of units of processor time required to be available in the interval

[0, L] to ensure that no task instance of T misses a deadline in [0, L], where

_Jlel ifaz>0
f(a)_{o ifa <0
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Proof: To derive a least upper bound on the amount of processor time required to be available in the
interval [0, L], it suffices to consider a set of release times of T' that results in the maximum processor
demand in [0, L]. If ¢; is the time of the jth release of task T, then clearly the set of release times t; =0,
Vj > 0, is one such set. Under these release times, z instances of T have deadlines in [0,d]. After
d time units have elapsed, x instances of T" have deadlines every y time units. Thus the number of
instances with deadlines in the interval [d, L] is {%J -x. Therefore, VL > d, the number of instances

of T' with deadlines in the interval [0, L] is

5 ()

]
=|Z—+1|-2
y

= V;MJ . (3)

Y
For all L < d, no instances of T" have deadlines in [0, L], hence the right-hand side of Equation (3)
gives the maximum number of instances of T with deadlines in the interval [0, L], for all L > 0.
Finally, as each instance of T requires ¢ units of processor time to execute to completion, Expression
(2) is a least upper bound on the number of units of processor time required to be available in the

interval [0, L] to ensure that no instance of 7' misses a deadline in [0, L]. O

Note that there are many sets of task release times that maximize the processor demand of a task
in the interval [0, L]. For example, given the recurrence relation for deadlines defined by D;(j), it is
straightforward to show that the less pathological set of task release times ¢; = {%J -y, V5 > 0, also

maximizes the processor demand of task 7" in the interval [0, L].

4.1 Feasibility under Preemptive Scheduling

A task set is feasible if and only if there exists a schedule such that no task instance misses its deadline.
Thus, if Demand(L) represents the total processor demand in an interval of length L, a task set is
feasible if and only if L > Demand(L) for all L > 0. The following gives a necessary condition for
scheduling a set of RBE tasks.

Lemma 4.2, Let T = {(z1,y1,d1,¢1),. .. (Tny Yn,dn, )} be a set of RBE tasks. If T is feasible,
then

- L—di+uy
VL > 0, Lsz(Tﬂ)-xi-ci (4)
=1 ¢

where f(a) is as defined in Lemma 4.1.

Proof: The necessity of Equation (4) is shown by establishing the contrapositive, i.e., a negative

result from Equation (4) implies that 7 is not feasible. To show that 7 is not feasible it suffices to

11



demonstrate the existence of a set of task release times for which at least one release of a task in T
misses a deadline.
Assume a negative result from Equation (4), that is,

di +yi
4l >0: Z<Zf(i) c Xy G

im1 Y

Let ¢;; be the release time of the 7t instance of task 7 in 7. Consider the set of release times t;; =0,
where 1 < ¢ < mn and j > 0. By Lemma 4.1, the least upper bound for the processor demand created
by task 75 is f (W) - x; - ¢; units of processor time in the interval of [0,{]. Moreover, from the
proof of Lemma 4.1, the set of release times ¢;; = 0, 1 <7 < n and j > 0, creates the maximum
processor demand possible in the interval [0,[]. Therefore, for 7 to be feasible, it is required that

iz (l_déﬂ) - x; - ¢; units of work be available in [0, {]. However, since

Z<Zf( —d +y2) CT Gy

an instance of a task in 7 must miss a deadline in [0,[]. Thus there exists a set of release times such
that a deadline is missed when Equation (4) does not hold. This proves the contrapositive. Thus, if

the task set 7 is feasible, Equation (4) must hold. O

Lemma 4.3. Let T = {(21,01,d1,¢1), ... (@0, Yn,dn,cn)} be a set of RBE tasks. Preemptive EDF
will succeed in scheduling T if Equation (4) holds.

Proof: To show the sufficiency of Equation (4), it is shown that the preemptive EDF scheduling
algorithm can schedule all releases of tasks in 7 without any job missing a deadline if the tasks satisfy
Equation (4). This is shown by contradiction.

Assume that 7 satisfies Equation (4) and yet there exists a release of a task in 7 that misses a
deadline at some point in time when 7 is scheduled by the EDF algorithm. Let t4 be the earliest point
in time at which a deadline is missed and let {5 be the later of:

e the end of the last interval prior to ¢4 in which the processor has been idle (or 0 if the processor

has never been idle), or

o the latest time prior to ¢ty at which a task instance with deadline after t; stops executing prior

to tg (or time 0 if such an instance does not execute prior to ¢g).

By the choice of g, (i) only releases with deadlines less than time ¢; execute in the interval [to, 4],
and (ii) the processor is fully used in [tg,t4]. Only releases with deadlines less than time ¢; execute in
the interval [to,t4] and, by the choice of ¢y, any task instances released before ty will have completed
executing by tg. Thus, by a result due to Baruah ef al. (Lemma 3.5 in reference [3]), at most

zn:{td—tOfdi+yiJ 2

im1 Y.

12



instances of tasks in 7 can have deadlines in the interval [to, t4], and

zn:vd—to—dri-yiJ e

im1 Y.

is the least upper bound on the units of processor time required to be available in the interval [ty, 4]
to ensure that no task release misses a deadline in [tg,t4]. The problem of scheduling the RBE task
set in the interval [t,,t4] is equivalent to scheduling a periodic task set where each of the z; instances
of task T; are represented by a separate periodic task since we have assumed worst-case task releases
in which all z; instances of task T; are released at the same time. It is a well known fact that EDF is
an optimal scheduling algorithm for independent periodic task sets [12]. By optimal, we mean that if a
valid schedule exists, the EDF scheduling algorithm will create one. Let £ be the amount of processor
time consumed by tasks in 7 in the interval [to,?;] when scheduled by the EDF algorithm. Since
Yo f (td_my#) - x; - ¢; is a least upper bound on the processor time required in the interval

[to,t4] and & is processor time consumed using the EDF algorithm, it must be the case that

Zf(td—to—dri-yi) e
=1

Y
Thus, since the processor is fully used in the interval [to,?;] and since a deadline is missed at time
tq, it follows that & is greater than the processor time available in the interval [tg, t4], namely t4 — to.

Hence,

e
tg —to—d; ;
Zf(d 0 Z+y2)-$i-ci25>td—to.
=1 Yi

However this contradicts our assumption that 7 satisfies Equation (4). Hence if 7 satisfies Equa-
tion (4), then no release of a task in 7 misses a deadline when 7 is scheduled by the EDF algorithm.
It follows that satisfying Equation (4) is a sufficient condition for feasibility. O

Thus, Equation (4) is a necessary and sufficient condition for the feasibility of an RBE task set.

Theorem 4.4. Let T = {(z1,y1,d1,¢1), ... (Tn,Yn, dn, )} be a set of RBE tasks. T will be feasible
if and only if Fquation (4) holds.

Proof: The proof follows from Lemmas 4.2 and 4.3, which establish Equation (4) to be both necessary
(Lemma 4.2) and sufficient (Lemma 4.3). O

If the cumulative processor utilization for an RBE task set is strictly less than one (i.e., > 7" | %

1) then Condition (4) can be evaluated efficiently (in pseudo-polynomial time) using techniques de-
veloped by Baruah et al. [3]. Moreover, when d; = y; for all T; in T, the evaluation of Condition (4)
reduces to the polynomial-time feasibility condition

Sy (5)

-
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since

iwi'c"gl — VL >0, Lzzn:L-xi'C"

=1 Yi =1 Yi
"L
= _wz C;
im1 Yi
n
=1 Yi
"L —di+y .
:Z%-xi-ci since d; = y;
im1 Yi
- L—d;+
>y (FE )
im1 Yi

Equation (5) computes processor utilization for the task set 7 and is a generalization of the EDF
feasibility condition )", ;—Z < 1 for independent tasks with deadlines equal to their period given by
Liu & Layland [12].

Let the rate-based-execution earliest-deadline-first (RBE-EDF) scheduling algorithm be the EDF
scheduling algorithm with deadlines assigned using Equation (1). A scheduling algorithm is said to

be optimal if it can schedule a set of tasks such that no task instance misses its deadline.

Corollary 4.5. Preemptive RBE-FEDF is an optimal scheduling algorithm for an RBE task set.
Proof: The proof follows from Lemmas 4.2 and 4.3. U
Corollary 4.6. Static Priority scheduling cannot be used to schedule RBE task sets preemptively.

Proof: Consider the simple RBE task set 7 = {(z1 = L,y1 = 4,dy = 4,¢; = 1),(z2 = 1,y3 =
4,dy = 4,c2 = 1)}. The task set is feasible since Zle x;—lc’ <1andd; =y for i =1,2. Assume
that, at time 0, eight jobs of each task are released simultaneously. If task T} has priority over task
Ty, then the first two jobs of task Ty will miss their deadlines. Likewise, if task 715 has priority over
task 719, then the first two jobs of task T} will miss their deadlines. Thus, no static priority scheduler

can be guaranteed to schedule a feasible RBE task set such that no job misses its deadline. O

4.2 Feasibility under Non-Preemptive Scheduling

We now present a necessary and suflicient condition for evaluating the feasibility of RBE task sets
under non-preemptive, work-conserving scheduling algorithms (i.e., the class of scheduling algorithms
that schedule non-preemptively without inserting idle time in the schedule). We leave open the problem
of deriving necessary and sufficient conditions for determining the feasibility of non-work-conserving,

non-preemptive scheduling.
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Theorem 4.7. Let T = {(z1,y1,d1,¢1)y-.. (@0, Yn,dn,cn)} be a set of RBE tasks sorted in non-
decreasing order by d parameter (i.e., for any pair of tasks T; and T;, if t > j, then d; > d;). T will

be feasible under non-preemptive scheduling if and only if

VL >0, L>Zf(w) @

Y

and

&G (8)

—d,
Vil <i<mVLdy < L<d: L>cz+Zf( +y])

Y5

where f(a) is as defined in Lemma 4.1.

The proofs of this theorem and the following corollary are contained in the full version of this paper
[11]. However, it should be noted that they are straightforward extensions of the proofs of Theorems
3.2, 3.4 and Corollary 3.4 in [8] for non-preemptive scheduling of sporadic tasks.

Let the non-preemptive rate-based-execution earliest-deadline-first (NP-RBE-EDF) scheduling al-
gorithm be the non-preemptive EDF scheduling algorithm with deadlines assigned using Equation (1).

Corollary 4.8. With respect to the class of non-preemptive work-conserving schedulers, NP-RBFE-
EDF is an optimal scheduling algorithm for an RBFE task set.

Corollary 4.9. Static Priority scheduling cannot be used to schedule RBE task sets non-preemptively.

Proof: The task set created for the proof of Corollary 4.6 is also feasible under non-preemptive
scheduling. However, the same release pattern used in the proof of Corollary 4.6 results in deadlines

being missed under any static priority assignment. O

4.3 Feasibility under Preemptive Scheduling with Shared Resources

We now consider the case when tasks perform operations on shared resources. Resources are serially
reusable and must be accessed in a mutually exclusive manner. To model the access of a set of m
shared resources {Ry, Ra,...R,,}, we specify the computation requirement ¢; of T; as a set of n;

phases {(c,;;,C;,r;)|1 < j < n;} where:

c;; is the minimum computational cost: the minimum amount of processor time required to execute

the 7 phase of T; to completion on a dedicated processor.

C';; is the maximum computational cost: the maximum amount of processor time required to execute

the j** phase of T; to completion on a dedicated processor.

ri; is the resource requirement: the resource (if any) that is required during the jt" phase of T;.
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Thus, the execution of each job of task T; is partitioned into a sequence of n; disjoint phases. A
phase is a contiguous sequence of statements that together require exclusive access to a resource. A
job may have multiple phases that require the same resource. The resource required by T; during
the j** phase of its computation is represented by an integer ri;, 0 < ry; <m. Ufr; =k k#0,
then the j* phase of T}’s computation requires no resources. In this case the j** phase of T; imposes
no mutual exclusion constraints on the execution of other tasks. Note that since different tasks may
perform different operations on a resource, it is reasonable to assume that phases of tasks that access
the same resource have varying computational costs. If a phase of a task requires a resource then the
computational cost of the phase represents only the cost of using the required resource and not the
cost (if any) of acquiring or releasing the resource. A minimum cost of zero indicates that a phase of
a task is optional. A fundamental restriction is that each phase of each task will require access to at
most one resource at a time.

We assume that in principle tasks are preemptable at arbitrary points. However, the requirement
of exclusive access to resources places two restrictions on the preemption and execution of tasks. For
all task 7 and k, if r;; = rp; and r;, rgy # 0 then (i) the 7t phase of a job of T; may neither preempt
the I*" phase of a job of Ty, nor (ii) execute while the {"* phase of T} is preempted.

Consider a set of RBE tasks T = {T,T5,...,T,}, where

Ti = ($i7yi7di7 {(Cijvcijvrij)u < ] < nz})v

that share a set of serially reusable, single unit resources {Ry, Ro,..., R }. Let §; represent the
deadline parameter of the “shortest” task that uses resource R;. That is, §; = 1I<n1é1 (dj|lr; = t). The
<jsn

following theorem establishes necessary and sufficient conditions for feasibility.

Theorem 4.10. Let T = {1; = (2, yi» di, {(¢;5,C5,ri5)|L < 7 < mi})|L <@ < n} be a set of RBE
tasks sorted in non-decreasing order by d parameter that share a set of serially reusable, single unit
resources { Ry, Rz, ..., Ry, }. T will be feasible under work-conserving scheduling (i.e., without inserted

idle time) if and only if

- L—di+uy
\ﬂ>0,L22y(——?ii)wfﬂ (9)
=1 ¢

and
Vi,1<i§n,Vk,lgkgni/\rik#O,VL,csm<L<d¢—SZ’k:

1—1
L—1—d;+y
LZCzk—i-Zf( y4]+y])-xj'Ej (10)
J

i=1

where:
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f(a) is as defined in Lemma 4.1,

e

ik

= i (dj|3, 1< LSy crj = ra),

Ej=Y2,Cy, and

0 ifk=1
Sik = k-1 :
Zj:l Cij 2f1<k§ni

The feasibility conditions are similar to those for non-preemptive scheduling. The parameter F;
represents the maximum cost of an invocation of task 7; and replaces the ¢; term in Condition (7) of
Theorem 4.7. Condition (10) now applies to only a resource requesting phase of a job of task 7; rather
than to the job as a whole. Because of this, the range of L in Condition (10) is more restricted than in
the single phase case of non-preemptive scheduling. The range is more restricted since the k** phase
of a job of task T; cannot start until all previous phases have terminated, and thus the earliest time
phase k can be scheduled is Sy time units after the start of an invocation of T}. For the &t phase of
a job, the range of intervals of length I in which one must compute the achievable processor demand
will be shorter than in the single phase case by the sum of the minimum costs of phases 1 through
k — 1. Also note that no demand due to phases of T; other than k appear in Condition (10). In the
event that each task in 7 consists of only a single phase (i.e. non-preemptive scheduling), Conditions
(9) and (10) reduce to the feasibility conditions of Theorem 4.7.

The proofs of Theorem 4.10 and the following corollary are contained in the full version of this
paper [11]. However, it should be noted that they are straightforward extensions of the proofs of
Theorems 4.1, 4.3, and 4.4 in [8] for scheduling sporadic tasks that share a set of serially reusable,
single unit resources.

A generalized EDF scheduling algorithm was introduced in [8] to schedule sporadic tasks that
share a set of serially reusable, single unit resources { Ry, Rs, ..., R, }. Let the generalized RBE-EDF
scheduling algorithm be the generalized EDF scheduling algorithm of [8] with deadlines assigned using
Equation (1).

Corollary 4.11. With respect to the class of work-conserving schedulers, generalized RBE-EDF is
an optimal scheduling algorithm for an RBE task sel.

5 Discussion

The RBE task model specifies the real-time execution of tasks such that no more than  deadlines expire
in any y time units. It does not specify how the jobs must be scheduled to guarantee that deadlines
are met, just as the periodic and sporadic task models do not specify a scheduling algorithm. In this

paper, we have presented optimal scheduling algorithms, based on EDF scheduling, for scheduling
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preemptively, non-preemptively, and preemptively with shared resources. While we have shown that
no static priority scheduling algorithm can successfully schedule an RBE task set such that no job
misses its deadline, there may be other dynamic priority scheduling algorithms (besides EDF) that
can schedule an RBE task set in accordance with the model. We leave open the problem of identifying
other scheduling algorithms that support the semantics of RBE.

The RBE task model has (in the past) been compared to other task models and scheduling al-
gorithms that incorporate some notion of a rate. We now make our own comparison of the RBE task
model to some of these models to (hopefully) clear up confusion and misunderstandings. Specifically
we compare the RBE task model to proportional share resource allocation [2, 13, 15, 19, 21, 22] and
the Total Bandwidth Server [17, 18].

Proportional share resource allocation is usually used to ensure fairness in resource sharing. It can,
however, be used in the scheduling of real-time tasks [19]. In proportional share resource allocation, a
weight is associated with each task that specifies the relative share of a resource that the task should
receive with respect to other tasks. A share represents a fraction of the resource’s capacity that is
allocated to a task. The actual fraction of the resource allocated to the task is dependent on the
number of tasks competing for the resource and their relative weights. For example, if w is the weight
associated with task T and W is the sum of all weights associated with tasks in the task set 7, the
fraction of the resource allocated to task T is f = 7. Thus, as competition for a resource increases,
the fraction of the resource allocated to any one task decreases. This is in contrast to the RBE task
model in which each task is guaranteed a fixed share of the CPU (a resource) defined by <~ when
d = y, no matter how much competition there is for the CPU (assuming the task set is feasible). One
can, of course, fix the share of a resource allocated to a task in proportional share resource allocation
by varying the task’s weight relative to the other task weights [20]. Note that to schedule an RBE task
T with d < y using a proportional share resource allocation, the a share of == must be allocated to
the task, which reserves more resource capacity than is actually needed by the task.

Thus, while RBE and proportional share resource allocation both support task execution rates,
the systems differ markedly in the flexibility allowed in task scheduling. Proportional share resource
allocation allows variable execution rates while RBE defines a maximum execution rate (tasks are
allowed to execute at a slower rate but not a rate greater than that specified). The relative deadline
of a task executed under proportional share resource allocation is dependent on the resource share
allocated to the task, which is dependent on the task’s relative weight. The relative deadline of an
RBE task is independent of the task’s execution rate; it may be larger or smaller than its y parameter.

The Total Bandwidth server (TB) was first proposed by Spuri and Buttazzo in [17], and later
extended by Spuri, Buttazzo and Sensini in [18]. The original TB server is allocated a portion of the

processor utilization, denoted Ug, to process aperiodic requests. The rest of the processor utilization,
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Up, is allocated to periodic tasks with hard deadlines. Aperiodic requests are scheduled with periodic
tasks using the EDF scheduling algorithm. When the k" aperiodic request arrives at time ry, it is
assigned a deadline dy = max(ry, dx—1) + l% where C}, is the worst case execution time of the k"
aperiodic request and Ug is the processor utilization allocated to the TB server. Thus, deadlines are
assigned to aperiodic requests based on the rate at which the TB server can serve them, not at the
rate which they are expected to arrive. Moreover, the aperiodic deadlines are assigned such that the

1" request will begin executing when they are scheduled with

k" requests completes before the k +
the EDF algorithm. That is, aperiodic requests are processed in a FCFS manner (relative to other
aperiodic requests) at the rate at which the TB server is able to process them.

The TB server only serves aperiodic requests whereas the RBE task model assumes tasks execute
with an expected rate. The RBE task model does not directly support aperiodic requests. However,
the TB server can be combined with an RBE task set in the same way it was combined with a periodic
task set and scheduled non-preemptively using a variation of EDF. It is not immediately clear that the
semantics of a TB server can be preserved if it is combined with an RBE task set that is scheduled
non-preemptively or with shared resources.

We have shown that static priority schedulers, such as rate monotonic (RM), cannot directly
schedule RBE tasks because more than z jobs of task T may be released simultaneously. A static
priority scheduler is unable to differentiate between “normal” jobs and “early” jobs. Thus, low priority
jobs may miss deadlines while the static priority scheduler executes “early” jobs of high priority tasks.
One possible remedy for this problem is to use a periodic (or sporadic) server for each task. The server
for task T is scheduled with a static priority scheduler, and executes at most 2 jobs of T' during each
invocation. Thus, “early” jobs cannot execute until the next period of the server. This raises many
scheduling issues that we do not address here since we are primarily interested in dynamic priority

scheduling algorithms that support the natural execution of RBE tasks.

6 Summary and Conclusions

We have presented a new task model for the real-time execution of event-driven tasks in which no a
priori characterization of the actual arrival rates of events is known; only the expected arrival rates of
events is known. We call this new task model rate-based execution (RBE), and it is a generalization
of the common sporadic task model developed by Mok [14].

In the RBE model, tasks are expected to execute with an average execution rate of z times every
y time units. We believe this task model more naturally models the actual implementation of event-
driven, real-time systems. While RBE has been used to model the execution of applications ranging
from multimedia computing to digital signal processing [5, 6, 10], this is the first formal presentation

of the RBE task model.
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We have identified necessary and sufficient conditions for determining the feasibility of schedul-
ing an RBE task set such that no task misses its deadline. We also presented an optimal schedul-
ing algorithm, called rate-based-execution earliest-deadline-first (RBE-EDF). RBE-EDF is the EDF
scheduling algorithm with deadlines assigned using Function D;(j), Equation (1) on 5. By optimal,
we mean that if a feasible schedule exists, RBE-EDF will find one.

We then considered non-preemptive scheduling and preemptive scheduling with shared resources.
In both cases, we presented necessary and sufficient feasibility conditions and optimal scheduling al-
gorithms with respect to the class of work-conserving scheduling algorithms (i.e., the class of scheduling
algorithms that schedule without inserted idle time). The non-preemptive rate-based-execution earliest-
deadline-first (NP-RBE-EDF') scheduling algorithm is a non-preemptive EDF scheduling algorithm
with deadlines assigned using Function D;(j). NP-RBE-EDF is an optimal work-conserving schedul-
ing algorithm for the non-preemptive execution of RBE tasks. The generalized RBI-EDF scheduling
algorithm is the generalized EDF scheduling algorithm of [8] with deadlines assigned using Function
D;(j), and it is an optimal work-conserving scheduling algorithm for the preemptive execution of RBE
tasks with shared resources. A corollary of our results is that RBE tasks cannot be scheduled with

static priority schedulers.
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