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Abstract 

We present a new task model for the real-time execution of event-driven tasks in which no 
a priori characterization of the actual arrival rates of events is known; only the expected arrival 
rates of events is known. We call this new task model rate-based execution (RBE), and it is a 
generalization of the common sporadic task model. The RBE model is motivated naturally by 
distributed multimedia and digital signal processing applications. 

We identify necessary and sufficient conditions for determining the feasibility of an RBE 
task set, and an optimal scheduling algorithm (based on preemptive earliest-deadline-first (EDF) 
scheduling) for scheduling the execution of an RBE task set. With respect to the class of work- 
conserving scheduling algorithms (i.e., the class of scheduling algorithms that schedule without 
inserting idle time in the schedule), we present necessary and sufficient feasibility conditions 
and optimal algorithms for non-preemptive scheduling and preemptive scheduling with shared 
resources. 

1 Introduction 

Real-time applications frequently interact with external devices in an event-driven manner. The de- 

livery of a message, or a hardware interrupt, signals the event arrival. A task is then dispatched to  

process the event. In real-time environments, the system provides some form of guarantee that the 

task will finish processing the event within d time units of the event occurrence, where d; is called 

the relative deadline of event e;. Hard-real-time systems guarantee that every event e; will be pro- 

cessed within d; time units of its occurrence. Soft-real-time and firm-real-time systems provide weaker 

guarantees of timeliness. 

Most real-time models of execution are based on the Liu and Layland periodic task model [12] or 

Mok's sporadic task model [14]. Periodic tasks are real-time programs that service events a t  precise, 

periodic intervals. Events serviced by sporadic tasks have a lower bound on their inter-arrival time, 

but no upper bound on inter-arrival time. 

We have found in practice, especially in distributed systems, that the inter-arrival of events is 

neither periodic nor sporadic. There is, however, usually an expected or average event arrival rate 
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that can be speci�ed. Thus, we have created the rate-based execution (RBE) task model. RBEis a generalization of Mok's sporadic task model in which tasks are expected to execute with anaverage execution rate of x times every y time units. Our experience with distributed multimedia anddistributed signal processing applications demonstrates that this task model more naturally modelsthe actual implementation of distributed, event-driven, real-time systems [5, 6, 10]. Moreover, it hasbeen argued that the actual execution of applications based on general processing graphs, such asProcessing Graph Method (PGM) [16], is neither periodic nor sporadic unless nodes of the processinggraph are forced to execute as such, which increases latency [5, 6]. RBE provides a more naturalmodel of the real-time execution of nodes in a PGM graph.While RBE has been used to model the execution of applications ranging from multimedia com-puting to digital signal processing [5, 6, 10], this is the �rst formal presentation of the RBE task model.We present necessary and su�cient conditions for determining the feasibility of scheduling an RBEtask set such that no task misses its deadline. We also present an optimal scheduling algorithm (basedon preemptive earliest-deadline-�rst (EDF) scheduling) for scheduling the execution of an RBE taskset. By optimal, we mean that if a feasible schedule exists, our scheduling algorithm will �nd one. Wethen consider non-preemptive scheduling and preemptive scheduling with shared resources. In bothcases, we present necessary and su�cient feasibility conditions and optimal scheduling algorithms withrespect to the class of work-conserving scheduling algorithms (i.e., the class of scheduling algorithmsthat schedule without inserting idle time in the schedule). A corollary of our results is that RBE taskscannot be scheduled with static priority schedulers.The rest of this paper is organized as follows. Section 2 provides the motivation for consideringthe RBE task model and describes related work. Section 3 presents the RBE task model. Section4 presents necessary and su�cient conditions for preemptive scheduling, non-preemptive scheduling,and preemptive scheduling with shared resources. Optimal scheduling algorithms, based on EDFscheduling, for each case are also presented in Section 4. Section 5 discusses the separation of theexecution semantics of an RBE task from a speci�c scheduling algorithm, and compares RBE toproportional share resource allocation [2, 13, 15, 19, 21, 22] and the Total Bandwidth server [17, 18].We conclude our our presentation of the RBE model with a summary in Section 6.2 Motivation and Related WorkThe starting point for this work is the model of sporadic tasks developed by Mok [14], and laterextended by Baruah et al. [4], and Je�ay et al. [7]. In [4], Baruah et al. developed the seminalcomplexity analysis for determining the feasibility of a sporadic task set. A sporadic task is a simplevariant of a periodic task. Whereas periodic tasks recur at constant intervals, sporadic tasks (asde�ned by Mok) have a lower bound on their inter-invocation time, which creates an upper bound on2



their rate of occurrence. The fact that sporadic tasks may execute at a variable (but bounded) ratemakes them well-suited for supporting event-driven applications. At present, the theory of sporadictasks is general enough to accommodate a model of computation wherein tasks may communicate viashared memory (i.e., tasks may have critical sections) [8], and tasks may be preempted by interrupthandlers (i.e., realistic device interactions can be modeled) [9]. A set of relations on model parametersthat are necessary and su�cient for tasks to execute in real-time are known, and an optimal algorithmfor scheduling tasks, based on EDF scheduling, has been developed.One practical complexity that arises in applying the existing models of sporadic tasks to actualsystems is the fact that the real world does not always meet the assumptions of the model. Considera task's minimum inter-invocation time parameter. The formal model assumes that consecutive in-vocations of a sporadic task with minimum inter-invocation time (or \period") p are separated by atlest p time units. Tasks that are invoked in response to events generated by devices may not satisfythis property. For example, consider a simple video conferencing application. When video frames aretransmitted across a network, they may be delayed for arbitrary intervals at nodes in the network.Therefore, even though video frames are, in theory, generated periodically, their arrival pattern ata conference receiver may be highly irregular. In this case, the transmission rate is precise and theaverage receive rate is precise, but the instantaneous receive rate is potentially unbounded (dependingon bu�ering in the network). One solution to this problem is to simply bu�er video frames at thereceiver and release them at regular intervals to the application (although this begs the question of howone implements and models the real-time tasks that perform this bu�ering process). This approach isundesirable because it is di�cult and tedious to implement correctly and because it will increase theacquisition-to-display latency of each video frame (and latency is the primary measure of conferencequality).Our approach is to alter the formal model to account for the fact that there may be signi�cant\jitter" (deviation) in the inter-invocation time of real-time tasks. We extend the sporadic task to be atask that executes at an average rate. We have the same characterization of a sporadic task as before,however, we make no assumptions about the spacing in time of invocations of a sporadic task. If a taskwith \period" p is invoked at time t the task is scheduled (placed into the run queue) with a deadlinefor processing that is su�cient to ensure that the task actually makes progress at its speci�ed rate.This model, called the Rate-Based Execution (RBE) model, is described in greater detail in Sections3 and 4.Digital signal processing is another domain in which the RBE task model naturally describes theexecution of applications. Processing graphs are a standard design aid in the development of complexdigital signal processing systems. We have found that, even on a single-CPU system with periodicinput devices, processing graph nodes naturally execute in \bursts" [5, 6]. Moreover, source data often3



arrives in bursts in distributed systems, which precludes the e�cient modeling of node execution witheither periodic or sporadic task models. We explain this further in Section 3 after the RBE task modelhas been formally presented.With respect to previous attempts to explicitly specify a task's progress in terms of an executionrate, the RBE task model is most similar to the linear-bounded arrival process (LBAP) model asde�ned and used in the DASH system [1]. In the LBAP model, processes specify a desired executionrate as the number of messages to be processed per second and the size of a bu�er pool used tostore bursts of messages that arrive for the process. Our task model generalizes the LBAP model toinclude a more generic speci�cation of rate and adds an independent response time (relative deadline)parameter to enable more precise real-time control of task executions. Moreover, we analyze the modelin more complex environments such as those wherein tasks communicate via shared memory and thushave preemption constraints.Comparison of the RBE model to proportional share resource allocation [2, 13, 15, 19, 21, 22] andthe Total Bandwidth Server [17, 18] are provided in Section 5.3 RBE Task ModelHere we introduce the concept of rate-based execution and formally present the RBE task model.A task is a sequential program that is executed repeatedly in response to the occurrence of events.Each instance of the execution of the task is called a job or a task instance. Jobs are made readyfor execution, or released, by the occurrence of an event. An event may be externally generated, e.g.,a device interrupt, or internally generated, e.g., a message arrival. In all cases, once released, a jobmust execute to completion before a well-de�ned deadline. We assume instances of an event type areindistinguishable and occur in�nitely often. Thus over the life of a real-time system an in�nite numberof jobs of each task will be released.In the real-time systems literature, two commonly studied paradigms of event occurrences areperiodic, in which events are generated every p time units for some constant p, and sporadic, in whichevents are generated no sooner than every p time units for some constant p.We consider two fundamental extensions to these models. First, we make no assumptions aboutthe points in time at which events occur. We assume that events are generated at a precise averagerate (e.g., 30 events per second) but that the actual distribution of events in time is arbitrary. Second,we allow tasks to specify a desired rate of progress in terms of the number of events to be processed inan interval of speci�ed length. As shown below, this allows a task to process a \burst" of simultaneousevents as a single event.Formally, RBE is a general task model consisting of a collection of independent processes speci�eda four-tuple (x; y; d; c) of constants where: 4
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1,12Figure 1: Release times and deadlines for jobs of T1 = (x = 1; y = 2; d = 6; c).� The pair (x; y) is referred to as the rate speci�cation of an RBE task; x is the maximum numberof executions expected to be requested in any interval of length y.� Parameter d is a response time parameter that speci�es the maximum desired time between therelease of a task instance and the completion of its execution (i.e., d is the relative deadline).� Parameter c, called the cost, is the maximum amount of processor time required for any job oftask T to execute to completion on a dedicated processor.We assume throughout that time is discrete and clock ticks are indexed by the natural numbers.Task parameters, x, y, d, and c are expressed as integer multiples of the interval between successiveclock ticks.Jobs of a task are constrained to execute as follows. Let tij be the release of Jij , the jth jobof the ith task. We assume throughout that the order of jobs of a task corresponds to the order ofevent occurrences for the task (i.e., for all i and j, tij � tij+1). Once released, job Jij must completeexecution before a deadline Di(j) given by the following recurrence relationDi(j) = (tij + di if 1 � j � ximax(tij + di; Di(j � xi) + yi) if j > xi (1)Thus the deadline of a job is the larger of the release time of the job plus its desired deadline or thedeadline of the xth previous job plus the y parameter of the task. Therefore, up to x jobs of a taskmay contend for the processor with the same deadline. Note that for all j, deadlines of jobs Jij andJi;j+xi of task Ti are separated by at least y time units. Without this restriction, if a set of jobs of atask were released simultaneously it would be possible to saturate the processor. With the restriction,the time at which a task must complete its execution is not wholly dependent on its release time. Thisis done to bound processor demand.For example, Figure 1 shows the job release times and deadlines for a task T1 = (x = 1; y =2; d = 6; c). The downward arrows in the �gure indicate release times for jobs of T1. For each job,5
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However, the fact that the deadlines for packets arriving in a burst would have slightly o�set deadlinesensures that the operating system will process the packets in arrival order (assuming a deadline-drivenscheduler).A task with a rate speci�cation such as T1 in Figure 2, might be used to implement the play-out process in a di�erent multimedia system wherein media samples are small enough to �t into asingle network packet and thus the packet arrival rate is the same as the sample play-out rate. Hereall network packets should have the same relative deadline for completion of processing (e.g., theexpected inter-arrival time of packets). The pattern of deadlines in Figure 2 ensures that the play-outapplication is guaranteed (assuming the workload is feasible) that in the worst case a media samplewill be ready for play-out every y time units starting at time 6.The second e�ect of having di�erent rate speci�cations for task T1 and T2 is that if jobs are notreleased periodically, jobs of T2 will have a lower response time than jobs of T1.Note that there are times at which it is possible for both tasks to have more than xi jobs activesimultaneously (e.g., in the interval [0,16] for task T1 and in the interval [3,16] for T2). This is becausethe rate speci�cation for a task only speci�es the rate at which jobs are expected to be released. Theactual release rate is completely determined by the environment in which the tasks execute. (In fact,over the entire interval shown in Figures 2 and 3, jobs are released at a slower rate than expected.)Also note that the times when individual jobs complete (and hence whether or not there ever areactually multiple jobs of a task eligible for execution simultaneously) will depend on the schedulingpolicy employed. Figures 1-3 should be interpreted as describing a realm of possible execution patternsof tasks.For a �nal comparison, Figure 4 shows the e�ect of the job release times illustrated in Figures 2and 3 on the task T3 = (x = 1; y = 2; d = 2; c). Task T3 is identical to T1 except with a smaller desireddeadline. Figures 2 and 4 can be used to illustrate one bene�t of decoupling a task's deadline from itsarrival rate and, in particular, the bene�t of having a deadline that is greater than the expected inter-job release time. Consider the case where task T1 is used to implement the media play-out process ina second distributed multimedia system wherein media samples are generated at the precise rate ofone sample every two time units at the sender. Assume each media sample �ts into a network packetand media samples are bu�ered for up to six time units at the receiver prior to play-out.Since samples are expected to be bu�ered at the receiver, there is little utility to the system inprocessing samples with a deadline that is less than the expected bu�er residence time. That is, if ajob of T3 completes the processing of a media sample within two units of the sample's arrival (whichis guaranteed to happen if the arrival of media samples is not bursty), then the media sample willreside in a bu�er for at least four time units after this processing completes. In contrast, since T1has a larger desired deadline, one would expect that samples processed by T1 would spend more time8
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Figure 4: Bursty release times and deadlines for jobs of T3 = (x = 1; y = 2; d = 2; c).waiting to be processed and less time being bu�ered prior to play-out. Thus the distinction betweenjobs of T1 and T3 is the media samples processed by jobs of the former task will likely spend moretime waiting to be processed (i.e., \bu�ered" in the run-queue) and less time in play-out bu�ers thanwhen processed by jobs of T3. The time between media arrival and play-out will be the same in bothcases, however. Thus the desired deadline for task T1 is more appealing in practice as its use willimprove the response time for the processing of aperiodic and non-real-time events.It is natural to consider modeling RBE task T1 as a sporadic task with a minimum period of y1x1 timeunits. However, this doesn't work because there is no minimum inter-arrival time that can be de�nedfor the media samples processed by task T1 ( y1x1 is the average inter-arrival time, not the minimum).One might also consider modeling RBE task T1 as x1 sporadic tasks with a minimum period of y1 timeunits. This method also fails because there is no minimum inter-arrival time that can be de�ned forthe media samples processed by task T1. The \simultaneous" arrival of x1 + 1 media samples wouldresult in more processor demand than the sporadic task model anticipates unless the x1 + 1th mediasample is assigned a deadline that is y1 time units later than the other x1 media samples. This, ofcourse, is exactly what the RBE task model does.9



4 Feasibility of RBE TasksReturning to the formal de�nition of the task model, our goal is to determine relations on task para-meters that are necessary and su�cient for a set of tasks to be feasible. A set of RBE tasks is feasibleif and only if for all job release times tij , and for all Jij , it is possible to execute Jij such that1. Jij commences execution at or after time tij , and2. Jij completes execution at or before time Di(j).That is, for all tij , Jij must execute within the closed interval [tij ,Di(j)].Deadline-assignment Function Di(j) prevents release jitter from creating more processor demandin an interval by a task than that which is speci�ed by the rate parameters. Release jitter is thephenomenon that occurs when release times vary such that in one interval fewer releases occur thanexpected and in another interval more releases occur than expected. The processor demand in aninterval [a; b] is the amount of processor time required to be available in [a; b] to ensure that all tasksreleased prior to time b with deadlines in [a; b] complete in [a; b]. The maximum processor demand inan interval [a; b] occurs when1. a marks the end of an interval in which the processor was idle (or 0 if the processor is neveridle),2. the processor is never idle in the interval [a; b], and3. as many deadlines as possible occur in the interval [a; b].If deadlines for jobs of RBE task Ti were assigned by simply adding di to the job's release time, thenmore than xi releases in an interval of length yi may create more processor demand than the processorcan support and deadlines may be missed. To ensure that no task instance misses a deadline, we mustbound the maximum processor demand for all tasks in all intervals and verify that the processor hasenough capacity to support the processor demand created by the RBE task set. We begin by boundingthe maximum processor demand for a task in the interval [0; L].Lemma 4.1. For an RBE task T = (x; y; d; c),8L > 0; f �L� d + yy � � x � c (2)is a least upper bound on the number of units of processor time required to be available in the interval[0; L] to ensure that no task instance of T misses a deadline in [0; L], wheref(a) = (bac if a � 00 if a < 010



Proof: To derive a least upper bound on the amount of processor time required to be available in theinterval [0; L], it su�ces to consider a set of release times of T that results in the maximum processordemand in [0; L]. If tj is the time of the jth release of task T , then clearly the set of release times tj = 0,8j > 0, is one such set. Under these release times, x instances of T have deadlines in [0; d]. Afterd time units have elapsed, x instances of T have deadlines every y time units. Thus the number ofinstances with deadlines in the interval [d; L] is jL�dy k �x. Therefore, 8L � d, the number of instancesof T with deadlines in the interval [0; L] isx+ �L� dy � � x = �1 + �L� dy �� � x= �L� dy + 1� � x= �L� d+ yy � � x: (3)For all L < d, no instances of T have deadlines in [0; L], hence the right-hand side of Equation (3)gives the maximum number of instances of T with deadlines in the interval [0; L], for all L > 0.Finally, as each instance of T requires c units of processor time to execute to completion, Expression(2) is a least upper bound on the number of units of processor time required to be available in theinterval [0; L] to ensure that no instance of T misses a deadline in [0; L].Note that there are many sets of task release times that maximize the processor demand of a taskin the interval [0; L]. For example, given the recurrence relation for deadlines de�ned by Di(j), it isstraightforward to show that the less pathological set of task release times tj = j j�1x k � y, 8j > 0, alsomaximizes the processor demand of task T in the interval [0; L].4.1 Feasibility under Preemptive SchedulingA task set is feasible if and only if there exists a schedule such that no task instance misses its deadline.Thus, if Demand(L) represents the total processor demand in an interval of length L, a task set isfeasible if and only if L � Demand(L) for all L > 0. The following gives a necessary condition forscheduling a set of RBE tasks.Lemma 4.2. Let T = f(x1; y1; d1; c1); : : : (xn; yn; dn; cn)g be a set of RBE tasks. If T is feasible,then 8L > 0; L � nXi=1 f �L� di + yiyi � � xi � ci (4)where f(a) is as de�ned in Lemma 4.1.Proof: The necessity of Equation (4) is shown by establishing the contrapositive, i.e., a negativeresult from Equation (4) implies that T is not feasible. To show that T is not feasible it su�ces to11



demonstrate the existence of a set of task release times for which at least one release of a task in Tmisses a deadline.Assume a negative result from Equation (4), that is,9l > 0 : l < nXi=1 f � l � di + yiyi � � xi � ci:Let tij be the release time of the jth instance of task i in T . Consider the set of release times tij = 0,where 1 � i � n and j > 0. By Lemma 4.1, the least upper bound for the processor demand createdby task Ti is f �L�di+yiyi � � xi � ci units of processor time in the interval of [0; l]. Moreover, from theproof of Lemma 4.1, the set of release times tij = 0, 1 � i � n and j > 0, creates the maximumprocessor demand possible in the interval [0; l]. Therefore, for T to be feasible, it is required thatPni=1 f � l�di+yiyi � � xi � ci units of work be available in [0; l]. However, sincel < nXi=1 f � l� di + yiyi � � xi � ci;an instance of a task in T must miss a deadline in [0; l]. Thus there exists a set of release times suchthat a deadline is missed when Equation (4) does not hold. This proves the contrapositive. Thus, ifthe task set T is feasible, Equation (4) must hold.Lemma 4.3. Let T = f(x1; y1; d1; c1); : : : (xn; yn; dn; cn)g be a set of RBE tasks. Preemptive EDFwill succeed in scheduling T if Equation (4) holds.Proof: To show the su�ciency of Equation (4), it is shown that the preemptive EDF schedulingalgorithm can schedule all releases of tasks in T without any job missing a deadline if the tasks satisfyEquation (4). This is shown by contradiction.Assume that T satis�es Equation (4) and yet there exists a release of a task in T that misses adeadline at some point in time when T is scheduled by the EDF algorithm. Let td be the earliest pointin time at which a deadline is missed and let t0 be the later of:� the end of the last interval prior to td in which the processor has been idle (or 0 if the processorhas never been idle), or� the latest time prior to td at which a task instance with deadline after td stops executing priorto td (or time 0 if such an instance does not execute prior to td).By the choice of t0, (i) only releases with deadlines less than time td execute in the interval [t0; td],and (ii) the processor is fully used in [t0; td]. Only releases with deadlines less than time td execute inthe interval [t0; td] and, by the choice of t0, any task instances released before t0 will have completedexecuting by t0. Thus, by a result due to Baruah et al. (Lemma 3.5 in reference [3]), at mostnXi=1 � td � t0 � di + yiyi � � xi12



instances of tasks in T can have deadlines in the interval [t0; td], andnXi=1 �td � t0 � di + yiyi � � xi � ciis the least upper bound on the units of processor time required to be available in the interval [t0; td]to ensure that no task release misses a deadline in [t0; td]. The problem of scheduling the RBE taskset in the interval [to; td] is equivalent to scheduling a periodic task set where each of the xi instancesof task Ti are represented by a separate periodic task since we have assumed worst-case task releasesin which all xi instances of task Ti are released at the same time. It is a well known fact that EDF isan optimal scheduling algorithm for independent periodic task sets [12]. By optimal, we mean that if avalid schedule exists, the EDF scheduling algorithm will create one. Let E be the amount of processortime consumed by tasks in T in the interval [t0; td] when scheduled by the EDF algorithm. SincePni=1 f � td�t0�di+yiyi � � xi � ci is a least upper bound on the processor time required in the interval[t0; td] and E is processor time consumed using the EDF algorithm, it must be the case thatnXi=1 f � td � t0 � di + yiyi � � xi � ci � E :Thus, since the processor is fully used in the interval [t0; td] and since a deadline is missed at timetd, it follows that E is greater than the processor time available in the interval [t0; td], namely td � t0.Hence, nXi=1 f � td � t0 � di + yiyi � � xi � ci � E > td � t0:However this contradicts our assumption that T satis�es Equation (4). Hence if T satis�es Equa-tion (4), then no release of a task in T misses a deadline when T is scheduled by the EDF algorithm.It follows that satisfying Equation (4) is a su�cient condition for feasibility.Thus, Equation (4) is a necessary and su�cient condition for the feasibility of an RBE task set.Theorem 4.4. Let T = f(x1; y1; d1; c1); : : : (xn; yn; dn; cn)g be a set of RBE tasks. T will be feasibleif and only if Equation (4) holds.Proof: The proof follows from Lemmas 4.2 and 4.3, which establish Equation (4) to be both necessary(Lemma 4.2) and su�cient (Lemma 4.3).If the cumulative processor utilization for an RBE task set is strictly less than one (i.e.,Pni=1 xi�ciyi <1) then Condition (4) can be evaluated e�ciently (in pseudo-polynomial time) using techniques de-veloped by Baruah et al. [3]. Moreover, when di = yi for all Ti in T , the evaluation of Condition (4)reduces to the polynomial-time feasibility conditionnXi=1 xi � ciyi � 1 (5)13



since nXi=1 xi � ciyi � 1 =) 8L > 0; L � nXi=1 L � xi � ciyi= nXi=1 Lyi � xi � ci= nXi=1 L� yi + yiyi � xi � ci= nXi=1 L� di + yiyi � xi � ci since di = yi� nXi=1 f �L� di + yiyi � � xi � ci : (6)Equation (5) computes processor utilization for the task set T and is a generalization of the EDFfeasibility condition Pni=1 ciyi � 1 for independent tasks with deadlines equal to their period given byLiu & Layland [12].Let the rate-based-execution earliest-deadline-�rst (RBE-EDF) scheduling algorithm be the EDFscheduling algorithm with deadlines assigned using Equation (1). A scheduling algorithm is said tobe optimal if it can schedule a set of tasks such that no task instance misses its deadline.Corollary 4.5. Preemptive RBE-EDF is an optimal scheduling algorithm for an RBE task set.Proof: The proof follows from Lemmas 4.2 and 4.3.Corollary 4.6. Static Priority scheduling cannot be used to schedule RBE task sets preemptively.Proof: Consider the simple RBE task set T = f(x1 = 1; y1 = 4; d1 = 4; c1 = 1); (x2 = 1; y2 =4; d2 = 4; c2 = 1)g. The task set is feasible since P2i=1 xi�ciyi � 1 and di = yi for i = 1; 2. Assumethat, at time 0, eight jobs of each task are released simultaneously. If task T1 has priority over taskT2, then the �rst two jobs of task T2 will miss their deadlines. Likewise, if task T2 has priority overtask T1, then the �rst two jobs of task T1 will miss their deadlines. Thus, no static priority schedulercan be guaranteed to schedule a feasible RBE task set such that no job misses its deadline.4.2 Feasibility under Non-Preemptive SchedulingWe now present a necessary and su�cient condition for evaluating the feasibility of RBE task setsunder non-preemptive, work-conserving scheduling algorithms (i.e., the class of scheduling algorithmsthat schedule non-preemptively without inserting idle time in the schedule). We leave open the problemof deriving necessary and su�cient conditions for determining the feasibility of non-work-conserving,non-preemptive scheduling. 14



Theorem 4.7. Let T = f(x1; y1; d1; c1); : : : (xn; yn; dn; cn)g be a set of RBE tasks sorted in non-decreasing order by d parameter (i.e., for any pair of tasks Ti and Tj, if i > j, then di � dj). T willbe feasible under non-preemptive scheduling if and only if8L > 0; L � nXi=1 f �L� di + yiyi � � xi � ci (7)and 8i; 1 < i � n; 8L; d1 < L < di : L � ci + i�1Xj=1 f �L� 1� dj + yjyj � � xj � cj (8)where f(a) is as de�ned in Lemma 4.1.The proofs of this theorem and the following corollary are contained in the full version of this paper[11]. However, it should be noted that they are straightforward extensions of the proofs of Theorems3.2, 3.4 and Corollary 3.4 in [8] for non-preemptive scheduling of sporadic tasks.Let the non-preemptive rate-based-execution earliest-deadline-�rst (NP-RBE-EDF) scheduling al-gorithm be the non-preemptive EDF scheduling algorithm with deadlines assigned using Equation (1).Corollary 4.8. With respect to the class of non-preemptive work-conserving schedulers, NP-RBE-EDF is an optimal scheduling algorithm for an RBE task set.Corollary 4.9. Static Priority scheduling cannot be used to schedule RBE task sets non-preemptively.Proof: The task set created for the proof of Corollary 4.6 is also feasible under non-preemptivescheduling. However, the same release pattern used in the proof of Corollary 4.6 results in deadlinesbeing missed under any static priority assignment.4.3 Feasibility under Preemptive Scheduling with Shared ResourcesWe now consider the case when tasks perform operations on shared resources. Resources are seriallyreusable and must be accessed in a mutually exclusive manner. To model the access of a set of mshared resources fR1; R2; : : :Rmg, we specify the computation requirement ci of Ti as a set of niphases f(cij ; Cij ; rij)j1 � j � nig where:cij is the minimum computational cost: the minimum amount of processor time required to executethe jth phase of Ti to completion on a dedicated processor.Cij is the maximum computational cost: the maximum amount of processor time required to executethe jth phase of Ti to completion on a dedicated processor.rij is the resource requirement: the resource (if any) that is required during the jth phase of Ti.15



Thus, the execution of each job of task Ti is partitioned into a sequence of ni disjoint phases. Aphase is a contiguous sequence of statements that together require exclusive access to a resource. Ajob may have multiple phases that require the same resource. The resource required by Ti duringthe jth phase of its computation is represented by an integer rij , 0 � rij � m. If rij = k, k 6= 0,then the jth phase of Ti's computation requires no resources. In this case the jth phase of Ti imposesno mutual exclusion constraints on the execution of other tasks. Note that since di�erent tasks mayperform di�erent operations on a resource, it is reasonable to assume that phases of tasks that accessthe same resource have varying computational costs. If a phase of a task requires a resource then thecomputational cost of the phase represents only the cost of using the required resource and not thecost (if any) of acquiring or releasing the resource. A minimum cost of zero indicates that a phase ofa task is optional. A fundamental restriction is that each phase of each task will require access to atmost one resource at a time.We assume that in principle tasks are preemptable at arbitrary points. However, the requirementof exclusive access to resources places two restrictions on the preemption and execution of tasks. Forall task i and k, if rij = rkl and rij ; rkl 6= 0 then (i) the jth phase of a job of Ti may neither preemptthe lth phase of a job of Tk, nor (ii) execute while the lth phase of Tk is preempted.Consider a set of RBE tasks T = fT1; T2; : : : ; Tng, whereTi = (xi; yi; di; f(cij ; Cij ; rij)j1 � j � nig);that share a set of serially reusable, single unit resources fR1; R2; : : : ; Rmg. Let �i represent thedeadline parameter of the \shortest" task that uses resource Ri. That is, �i = min1�j�n(dj jrj = i). Thefollowing theorem establishes necessary and su�cient conditions for feasibility.Theorem 4.10. Let T = fTi = (xi; yi; di; f(cij ; Cij ; rij)j1 � j � nig)j1 � i � ng be a set of RBEtasks sorted in non-decreasing order by d parameter that share a set of serially reusable, single unitresources fR1; R2; : : : ; Rmg. T will be feasible under work-conserving scheduling (i.e., without insertedidle time) if and only if 8L > 0; L � nXi=1 f �L� di + yiyi � � xi �Ei (9)and8i; 1 < i � n; 8k; 1 � k � ni ^ rik 6= 0; 8L; �rik < L < di � Sik :L � Cik + i�1Xj=1 f �L� 1� dj + yjyj � � xj �Ej (10)where: 16



� f(a) is as de�ned in Lemma 4.1,� �rik = min1�j�n(dj j9l; 1� l � nj : rjl = rik),� Ej =Pnjl=1Cjl , and� Sik = (0 if k = 1Pk�1j=1 cij if 1 < k � niThe feasibility conditions are similar to those for non-preemptive scheduling. The parameter Eirepresents the maximum cost of an invocation of task Ti and replaces the ci term in Condition (7) ofTheorem 4.7. Condition (10) now applies to only a resource requesting phase of a job of task Ti ratherthan to the job as a whole. Because of this, the range of L in Condition (10) is more restricted than inthe single phase case of non-preemptive scheduling. The range is more restricted since the kth phaseof a job of task Ti cannot start until all previous phases have terminated, and thus the earliest timephase k can be scheduled is Sik time units after the start of an invocation of Ti. For the kth phase ofa job, the range of intervals of length L in which one must compute the achievable processor demandwill be shorter than in the single phase case by the sum of the minimum costs of phases 1 throughk � 1. Also note that no demand due to phases of Ti other than k appear in Condition (10). In theevent that each task in T consists of only a single phase (i.e. non-preemptive scheduling), Conditions(9) and (10) reduce to the feasibility conditions of Theorem 4.7.The proofs of Theorem 4.10 and the following corollary are contained in the full version of thispaper [11]. However, it should be noted that they are straightforward extensions of the proofs ofTheorems 4.1, 4.3, and 4.4 in [8] for scheduling sporadic tasks that share a set of serially reusable,single unit resources.A generalized EDF scheduling algorithm was introduced in [8] to schedule sporadic tasks thatshare a set of serially reusable, single unit resources fR1; R2; : : : ; Rmg. Let the generalized RBE-EDFscheduling algorithm be the generalized EDF scheduling algorithm of [8] with deadlines assigned usingEquation (1).Corollary 4.11. With respect to the class of work-conserving schedulers, generalized RBE-EDF isan optimal scheduling algorithm for an RBE task set.5 DiscussionThe RBE taskmodel speci�es the real-time execution of tasks such that no more than x deadlines expirein any y time units. It does not specify how the jobs must be scheduled to guarantee that deadlinesare met, just as the periodic and sporadic task models do not specify a scheduling algorithm. In thispaper, we have presented optimal scheduling algorithms, based on EDF scheduling, for scheduling17



preemptively, non-preemptively, and preemptively with shared resources. While we have shown thatno static priority scheduling algorithm can successfully schedule an RBE task set such that no jobmisses its deadline, there may be other dynamic priority scheduling algorithms (besides EDF) thatcan schedule an RBE task set in accordance with the model. We leave open the problem of identifyingother scheduling algorithms that support the semantics of RBE.The RBE task model has (in the past) been compared to other task models and scheduling al-gorithms that incorporate some notion of a rate. We now make our own comparison of the RBE taskmodel to some of these models to (hopefully) clear up confusion and misunderstandings. Speci�callywe compare the RBE task model to proportional share resource allocation [2, 13, 15, 19, 21, 22] andthe Total Bandwidth Server [17, 18].Proportional share resource allocation is usually used to ensure fairness in resource sharing. It can,however, be used in the scheduling of real-time tasks [19]. In proportional share resource allocation, aweight is associated with each task that speci�es the relative share of a resource that the task shouldreceive with respect to other tasks. A share represents a fraction of the resource's capacity that isallocated to a task. The actual fraction of the resource allocated to the task is dependent on thenumber of tasks competing for the resource and their relative weights. For example, if w is the weightassociated with task T and W is the sum of all weights associated with tasks in the task set T , thefraction of the resource allocated to task T is f = wW . Thus, as competition for a resource increases,the fraction of the resource allocated to any one task decreases. This is in contrast to the RBE taskmodel in which each task is guaranteed a �xed share of the CPU (a resource) de�ned by x�cy whend = y, no matter how much competition there is for the CPU (assuming the task set is feasible). Onecan, of course, �x the share of a resource allocated to a task in proportional share resource allocationby varying the task's weight relative to the other task weights [20]. Note that to schedule an RBE taskT with d < y using a proportional share resource allocation, the a share of x�cd must be allocated tothe task, which reserves more resource capacity than is actually needed by the task.Thus, while RBE and proportional share resource allocation both support task execution rates,the systems di�er markedly in the 
exibility allowed in task scheduling. Proportional share resourceallocation allows variable execution rates while RBE de�nes a maximum execution rate (tasks areallowed to execute at a slower rate but not a rate greater than that speci�ed). The relative deadlineof a task executed under proportional share resource allocation is dependent on the resource shareallocated to the task, which is dependent on the task's relative weight. The relative deadline of anRBE task is independent of the task's execution rate; it may be larger or smaller than its y parameter.The Total Bandwidth server (TB) was �rst proposed by Spuri and Buttazzo in [17], and laterextended by Spuri, Buttazzo and Sensini in [18]. The original TB server is allocated a portion of theprocessor utilization, denoted US , to process aperiodic requests. The rest of the processor utilization,18



UP , is allocated to periodic tasks with hard deadlines. Aperiodic requests are scheduled with periodictasks using the EDF scheduling algorithm. When the kth aperiodic request arrives at time rk, it isassigned a deadline dk = max(rk; dk�1) + CkUS where Ck is the worst case execution time of the kthaperiodic request and US is the processor utilization allocated to the TB server. Thus, deadlines areassigned to aperiodic requests based on the rate at which the TB server can serve them, not at therate which they are expected to arrive. Moreover, the aperiodic deadlines are assigned such that thekth requests completes before the k + 1th request will begin executing when they are scheduled withthe EDF algorithm. That is, aperiodic requests are processed in a FCFS manner (relative to otheraperiodic requests) at the rate at which the TB server is able to process them.The TB server only serves aperiodic requests whereas the RBE task model assumes tasks executewith an expected rate. The RBE task model does not directly support aperiodic requests. However,the TB server can be combined with an RBE task set in the same way it was combined with a periodictask set and scheduled non-preemptively using a variation of EDF. It is not immediately clear that thesemantics of a TB server can be preserved if it is combined with an RBE task set that is schedulednon-preemptively or with shared resources.We have shown that static priority schedulers, such as rate monotonic (RM), cannot directlyschedule RBE tasks because more than x jobs of task T may be released simultaneously. A staticpriority scheduler is unable to di�erentiate between \normal" jobs and \early" jobs. Thus, low priorityjobs may miss deadlines while the static priority scheduler executes \early" jobs of high priority tasks.One possible remedy for this problem is to use a periodic (or sporadic) server for each task. The serverfor task T is scheduled with a static priority scheduler, and executes at most x jobs of T during eachinvocation. Thus, \early" jobs cannot execute until the next period of the server. This raises manyscheduling issues that we do not address here since we are primarily interested in dynamic priorityscheduling algorithms that support the natural execution of RBE tasks.6 Summary and ConclusionsWe have presented a new task model for the real-time execution of event-driven tasks in which no apriori characterization of the actual arrival rates of events is known; only the expected arrival rates ofevents is known. We call this new task model rate-based execution (RBE), and it is a generalizationof the common sporadic task model developed by Mok [14].In the RBE model, tasks are expected to execute with an average execution rate of x times everyy time units. We believe this task model more naturally models the actual implementation of event-driven, real-time systems. While RBE has been used to model the execution of applications rangingfrom multimedia computing to digital signal processing [5, 6, 10], this is the �rst formal presentationof the RBE task model. 19



We have identi�ed necessary and su�cient conditions for determining the feasibility of schedul-ing an RBE task set such that no task misses its deadline. We also presented an optimal schedul-ing algorithm, called rate-based-execution earliest-deadline-�rst (RBE-EDF). RBE-EDF is the EDFscheduling algorithm with deadlines assigned using Function Di(j), Equation (1) on 5. By optimal,we mean that if a feasible schedule exists, RBE-EDF will �nd one.We then considered non-preemptive scheduling and preemptive scheduling with shared resources.In both cases, we presented necessary and su�cient feasibility conditions and optimal scheduling al-gorithms with respect to the class of work-conserving scheduling algorithms (i.e., the class of schedulingalgorithms that schedule without inserted idle time). The non-preemptive rate-based-execution earliest-deadline-�rst (NP-RBE-EDF) scheduling algorithm is a non-preemptive EDF scheduling algorithmwith deadlines assigned using Function Di(j). NP-RBE-EDF is an optimal work-conserving schedul-ing algorithm for the non-preemptive execution of RBE tasks. The generalized RBE-EDF schedulingalgorithm is the generalized EDF scheduling algorithm of [8] with deadlines assigned using FunctionDi(j), and it is an optimal work-conserving scheduling algorithm for the preemptive execution of RBEtasks with shared resources. A corollary of our results is that RBE tasks cannot be scheduled withstatic priority schedulers.References[1] Anderson, D.P., Tzou, S.Y., Wahbe, R., Govindan, R., Andrews, M., \Support for Live Di-gital Audio and Video", Proc. of the Tenth International Conference on Distributed ComputingSystems , Paris, France, May 1990, pp. 54-61.[2] Baruah, S., Gehrke, J. E., Plaxton, C. G.., \Fast Scheduling of Periodic Tasks on MultipleResources," Proc. of the 9th International Parallel Processing Symposium, April 1995, pp. 280-288.[3] Baruah, S., Howell, R., Rosier, L., \Algorithms and Complexity Concerning the PreemptivelyScheduling of Periodic, Real-Time Tasks on One Processor," Real-Time Systems Journal , Vol. 2,1990, pp. 301-324.[4] Baruah, S., Mok, A., Rosier, L., \Preemptively Scheduling Hard-Real-Time Sporadic Tasks WithOne Processor," Proc. 11th IEEE Real-Time Systems Symp., Lake Buena Vista, FL, Dec. 1990,pp. 182-190.[5] Goddard, S., Je�ay, K. \Analyzing the Real-Time Properties of a Data
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