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Abstract

We present a task model for adaptive real-time tasks in which a task’s execution rate requirements
are allowed to change at any time. The model, variable rate execution (VRE), is an extension of the
rate-based execution (RBE) model. We relax the constant execution rate assumption of canonical real-
time task models by allowing both the worst case execution time (WCET) and the period to be variable.
The VRE model also supports tasks joining and leaving the system at any time. Another advantage
of the new task model is that the exact execution rate need not be known for soft real-time or non-
realtime applications; instead, an approximate execution rate can be assigned to an application and then
dynamically adjusted during runtime. A schedulability condition for the VRE task model is presented
that can be used as an on-line admission control test for the acceptance of new tasks or rate changes.
Finally, a VRE scheduler was implemented in Linux as a loadable module, and several experiments
demonstrate its correctness and analyze the overhead.

1 Introduction

Quality of Service(QoS) can be viewed as a spectrum of execution rate guarantees: hard real-time tasks

are assigned an execution rate to meet all deadlines; soft real-time tasks are assigned a rate that meets most

deadlines; non-real-time tasks, without any deadline, are assigned a best-effort rate that will not affect the

hard and soft real-time tasks. Most conventional real-time operating systems provide both time-sharing and

static priority scheduling algorithms. The time-sharing algorithms arebest-effort, making no guarantee of

execution rate; the fixed priority schedulers attempt to make fixed execution rate guarantees with anall-or-

nothingapproach, resulting in either success or failure.

In practice, many applications need to change their QoS requirements during runtime. In a multiple-

target, multiple-sensor radar tracking system, the tasks tracking fast-moving targets have tighter time con-

straints than tasks tracking slow-moving targets. In a multi-agent system, the agents might dynamically

negotiate with each other and decide the execution rate for each agent. Multimedia applications are com-

mon applications with dynamic soft QoS requirements. For example, a video decoder decodes 30 frames

per second and it changes its QoS requirements when it degrades its service quality by either reducing the
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resolution or skipping frames. Even with constant service quality, the encoding and decoding time of a

MPEG frame can vary, depending on many factors such as the frame type or frame length [3].

In support of such dynamic QoS requirements, we first introduced thevariable rate execution(VRE)

model in [22], which is essentially an extension of the rate-based execution (RBE) task model [15]. While

[22] and [23] focus on the implementation of variable rate tasks in Linux, this work formally presents the

theoretical model. The VRE task model extends the RBE model to address dynamic QoS requirements

by allowing tasks to execute with variable execution rates and supporting a dynamic task set. It forms a

foundation for feedback control or adaptive applications where task execution rates change during runtime.

In the VRE model, a variable rate task is denoted by a four-tuple(xi(t), yi(t), di(t), ci(t)) where each

parameter is represented as a function of timet. Similar to the RBE model,yi(t) is the interval (or period)

in which xi(t) jobs are expected to be released;di(t) is the relative deadline, which is typically equal to

the periodyi(t); andci(t) is the worst-case execution time (WCET). By relaxing either or both theWCET

andperiod, a task can change the size of its jobs and/or change the release frequency of the jobs. Similar

execution patterns are also supported by therate-based earliest deadline(RBED) scheduler [6], which was

independently and simultaneously developed. The RBED scheduler, however, might delay the acceptance

of new tasks, while the VRE model can immediately accept new tasks by changing pending deadlines (as

described in Section 3.1). Moreover, the VRE model is a more general model than that assumed in [6].

The rest of this paper is organized as follows. Section 2 discusses related work. Section 3 presents the

VRE model. Section 4 presents the theoretical correctness and a schedulability condition. Section 5 presents

our evaluation results of a VRE scheduler implemented in Linux as a loadable module. We conclude with a

summary in Section 6.

2 Related Work

A variable execution rate is not a new idea. It comes with the concept of multi-programming. In conventional

time-sharing systems, tasks actually execute at variable rates, which depend on the total number of tasks in

the system. In Linux, a process receives a time slice in a variable length period, which is the sum of the time

slices of all running processes.

In proportional-share systems, a task essentially runs at a variable execution rate as well, depending on

the sum of all weights. This is why most proportional-share systems have the concept ofvirtual time. In real

time, a task might be running at a variable rate; in virtual time, the task is treated as executing at a constant

rate.

Weighted Fair Queueing (WFQ) [9] (also known as packet-by-packet generalized processor sharing

(GPS)) is a well-known proportional-share scheduling algorithm from the networking literature. The WFQ

scheduler associates a weight to each connection session; all the connection sessions share the router’s

bandwidth in proportion to their weights. The transmission rate of each session depends on the combination



of its weight and the summation of all weights. The virtual timev(t) is defined as follows:

V (t) =
∫ t

0

1∑
j∈A(τ) wj

dτ (1)

wherewj is the weight of taskj andA(τ) is the set of active tasks at timeτ . Thus, virtual time progresses

at a rate inversely proportional to the summation of all weights. That is, the more sessions in the system, the

slower transmission rate each session gets.

Two recent multimedia schedulers are built on WFQ, SMART [33] and BERT [4]. The SMART sched-

uler [33] prioritizes a task by two parameters:priority andbiased virtual finishing time (BVFT). The sched-

uler always chooses the task with the highest priority. When multiple tasks are at the same priority level, the

scheduler tries to satisfy as many BVFTs as possible. BERT [4] is essentially an implementation ofWF 2Q

plus a cycle stealing mechanism. Worst-case Fair Weighted Fair Queuing (WF 2Q) [5] is an extension of

WFQ that prevents a task from getting executed faster than expected in a perfect fair share scheduler. While

WF 2Q provides proportional sharing, the cycle stealing mechanism provides a flexible way for urgent tasks

to meet their deadlines when their demands exceed their shares.

The Earliest Eligible Virtual Deadline First (EEVDF) [41] algorithm is another proportional-share al-

gorithm that employsvirtual time. The EEVDF algorithm puts all aperiodic jobs into the same queue and

assigns a deadline for each job. According to task weightwi, release timeti0 and execution timerk, the

virtual eligible timeve and virtual deadlinevd of a task are computed using equations presented in [41] and

summarized as follows:

ve1 = V (ti0); vdk = vek +
r(k)

wi
; vek+1 = vd(k).

The virtual time in EEVDF is identical to the definition in WFQ, shown in Equation (1).

Although time-sharing and proportional-share systems actually execute tasks at variable rates, they do

not explicitly state the variable execution rate in real time units. Instead, tasks are viewed as running at

a constant virtual rate on a virtual processor whose speed varies. Obviously, without explicit admission

control algorithms neither time-sharing nor proportional-share systems can make any QoS guarantees—if

the number of tasks in the system grew very large, the resulting execution rate for each task would be very

low.

In the context of real-time systems, two canonical task models are theperiodic model[21], where jobs

are released every period, and thesporadic model[28], where jobs are released with a minimum separation

time. Although the two models guarantee temporal correctness, both are too strict for many applications.

Thus, many variations of these models have been developed over the years.

A common technique to extending these models to provide QoS guarantees to non-real-time and soft

real-time applications is to add a server task (e.g., [19, 39, 12, 10, 11, 2]). The server methods, on the one

hand, guarantee a constant execution rate for the server, which partially satisfies the QoS requirements of

non-real-time (aperiodic) requests. On the other hand, these models do not support explicit and dynamic

rate changes. Although some algorithms, such as GRUB (Greedy Reclamation of Unused Bandwidth) [20],



allow bandwidth reclamation, this is more like stealing spare time than adjusting the bandwidth (execution

rate).

There have been many task models introduced over the years that relax the strict assumptions of the

periodic and sporadic task models without adding a “server” task. For example, therate-based execution

(RBE) model [15] is a generalization of the sporadic model that was developed to support the real-time

execution of event-driven tasks in which noa priori characterization of theactualarrival rates of events is

known; only theexpectedarrival rates of events are known. A RBE task is parameterized by a four-tuple

(x, y, d, c). The task is expected to processx events everyy time units, where each event takes no longer

thanc time units and event processing must be completed withind time units of its arrival. Rate is achieved

by deadline assignment. Thejth job of a RBE taskTi, Jij , is assigned a deadline as follows:

Di(j) =

{
tij + di if 1 ≤ j ≤ xi

max(tij + di, Di(j − xi) + yi) if j > xi

(2)

wheretij is the release time of jobJij . The RBE model schedules tasks at average rates. It does not,

however, allow any of the task parameters or the set of tasks to vary at runtime.

TheenhancedRBE model [13] was designed to integrate non-real-time tasks into the RBE model with-

out using a “server” task. In that model, RBE tasks reserve a constant computing bandwidth while all

aperiodic tasks share the remaining computing capacity in proportion to their weight. Since the number of

aperiodic requests is dynamic, changing at runtime, each aperiodic request actually runs at a variable rate.

Several researchers have developed techniques for supporting variable computation times and/or release

patterns (e.g., [26, 27, 42, 43]). However, each of these provides relatively strict bounds on how much

these parameters are allowed to vary, as compared to the VRE model presented here. Researchers have

also proposed methods for reducing task execution rates or computation times in overload conditions (e.g.,

[1, 17, 18, 29, 30, 31, 38]).

The first work to provide explicit increasing and decreasing hard QoS guarantees on a task-by-task basis

appears to be theelastictask model created by Buttazzo, Lipari, and Abeni [8]. In the elastic task model, a

task is parameterized by a five-tuple(C, T0, Tmin, Tmax, e) whereC is the tasks’s WCET,T0 is the nominal

period for the task,Tmin andTmax denote minimum and maximum periods for the task, ande is an elastic

coefficient. The elastic coefficiente “specifies the flexibility of the task to vary its utilization” [8]. In this

case, the utilization is varied by changing the length of the period, which is allowed to “shrink” toTmin or

“stretch” toTmax, depending on the system load. The VRE model presented here also allows the period of

a task to shrink or stretch. In the VRE model, however, no bounds on the length of the period are defined a

priori. Moreover, the VRE model also supports increasing and decreasing the WCET, which is not supported

by the elastic task model.

Other researchers have taken a system-level approach to support adaptive real-time computing (e.g.,

[7, 24, 25, 34, 36, 40, 32, 35, 16, 37]). Most of these systems focus on over-load conditions and use various

combinations of value-based scheduling, mode changes, and/or feedback mechanisms to shed or reduce



load in an attempt to meet the most critical deadlines. While the VRE model is designed to support adaptive

real-time computing systems, the VRE model differs from these systems in that the VRE model does not

rely on any of these techniques to handle over-load.

The work most similar to the VRE model is therate-based earliest deadline(RBED) scheduler presented

by Brandt et al. in [6]. In that work, the authors try to “flatten the scheduling hierarchy” by supporting hard

real-time, soft real-time, and non-real-time tasks with a single scheduler. Their algorithm allows periodic

tasks to dynamically change utilizations and periods. While the RBED scheduler delays the acceptance of

new tasks until some tasks terminate and there is enough bandwidth available, a VRE scheduler releases the

required bandwidth by adjusting existing deadlines. The details are discussed in Section 3.1. The underlying

task model assumed by Brandt et al. in [6] is a generalization of the Liu and Layland periodic task model

[21]. The VRE model is a generalization of the RBE task model, which is a generalization of Mok’s sporadic

task model [28]. The VRE task model reduces to the task model in [6] whenxi(t) = 1, ∀i, t, and jobs are

released with a strictly (variable) periodic pattern rather than a (variable) sporadic pattern.

3 VRE Task Model

In conventional real-time terms, a task is a sequential program that executes repeatedly in response to the

occurrence of events. Each instance of the task is called a job or a task instance. Each job of a task is

assumed to execute no longer than a constant bound called the worst-case execution time (WCET). Classic

real-time task models include theperiodic task model [21], in which jobs are generated everyp time units

for some constantp, and thesporadictask model [28], in which jobs are generated no sooner than every

p time units for some constantp. The rate-based execution(RBE) task model [15] is a generalization of

sporadic tasks that allows early release patterns. It makes no assumptions about the relationships between

the points at which jobs are released for a task; it assumes jobs are generated at a precise average rate but

that the actual arrivals of jobs in time is arbitrary. Thevariable-rate execution(VRE) task model provides

two primary extensions to these models: (i) variable WCET and periods, which may change at any timet,

and (ii) a dynamic task set in which tasks are allowed to enter and leave the system at arbitrary times.

3.1 Variable Rate Execution

In contrast to a RBE task, a VRE task reserves an initial execution rate and then may dynamically adjust its

execution rate by changing either its WECT or its period. If the execution rate of a task does not change,

VRE task execution is identical to RBE task exectuion. Moreover, if a VRE task never generates more than

one job simultaneously and never changes it execution rate, it reduces to a sporadic task.

Following the notation of the RBE model, a VRE task is described by four parameters(xi(t), yi(t), di(t), ci(t)).

Similar to the RBE model,yi(t) is the interval in whichxi(t) jobs are expected to be released;di(t) is the rel-

ative deadline, which is typically equal to the periodyi(t); andci(t) is the WCET. (We assumedi(t) = yi(t)

in this work.) Rather than the constant rate of the RBE model, each parameter is a variable, which may

change during runtime. To effect a rate change, a VRE task can change either its execution time,ci(t), or
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Figure 1: The initial execution rate is(1, 4, 4, 2). At time 4, the execution rate changes to(1, 4, 4, 1), and
the execution rate changes back to(1, 4, 4, 2) at time12.
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Figure 2: The initial execution rate is(1, 4, 4, 1). At time 8, the execution rate changes to(1, 3, 3, 1), and
the execution rate changes back to(1, 4, 4, 1) at time14.

its job release rate,(xi(t), yi(t)). To reflect the ability of a task to change its execution rate, the deadline

assignment function of Equation (2) is extended to Equation (3) as follows.

Di(j) =

(
tij + di(t) if 1 ≤ j ≤ xi(t)

max(tij + di(t), Di(j − xi(t)) + yi(t)) if j > xi(t)
(3)

wheretij is the release time of jobJij .

Figures 1 and 2 are two simple examples that illustrate how the variable rate execution model works.

For simplicity, the rate changes in these examples are made at task deadlines, but this is not required. In

Figure 1, the initial execution rate is(1, 4, 4, 2), and theci(t) parameter is adjusted during runtime. At time

t = 4, the WCET is changed from 2 to 1. Thus, execution rate changes to(1, 4, 4, 1), and the next two

execution intervals each require at most 1 time unit. At timet = 12, the task’sci(t) parameter is changed to

2, and the execution rate changes back to its initial specification:(1, 4, 4, 2). This example might represent a

scenario in which a video player changes its resolution and needs more or less execution time in an interval

of yi(t) time units.

A scenario in which a video player skips frames is shown in Figure 2. In this case, theyi(t) parameter

is adjusted during runtime. The initial execution rate specification is(1, 4, 4, 1), and at timet = 8 the

execution rate changes to(1, 3, 3, 1). The execution rate changes back to(1, 4, 4, 1) at timet = 14.

Adjusting Pending Deadlines. Equation (3) defines the deadline assignment rule for newly released jobs.

However, a task may have pending jobs when its rate changes since “early releases” are allowed. The

simplest approach to handling pending jobs is to keep the rate unchanged until all of a task’s pending jobs

are completed. Thus, the deadlines of the real-time jobs are not modified once they are released. The



RBED scheduler [6] uses this method. Since the utilization is always100 percent in a mixed system if there

exists any best-effort task, the RBED scheduler actually has to delay the acceptance of new tasks until some

running tasks terminate and enough bandwidth is released.

In some cases, however, the new tasks might have tighter time constraints than some running tasks, and

we want to immediately change the execution rates of the low-priority running tasks. In these cases, the

deadlines of a low-priority task’s pending jobs are modified such that demand is bounded and the bandwidth

is released immediately.

As previously stated, we assume in this work thatdi(t) = yi(t), which allows an efficient on-line

admission and rate-change control function. Observe that the fraction of the CPU allocated to any one job

of a VRE taskVi at timet is fi(t) = ci (t)
yi(t)

. Ideally, if eitherci(t) or yi(t) change at some timetx, then each

of the pending deadlines of taskVi can be re-computed by dividing the expected remaining service time

required to complete the pending job by its new fractionfi(tx) and adding this to timetx. Let Di(j) be a

pending deadline andr be the expected remaining service time, which is the amount of service time that

would remain in a perfectly fair system. The new deadline is computed using Equation (4).

D′
i(j) = tx +

r

fi(tx)
(4)

In a perfectly fair system, the remaining service timer is computed as

r = S̄i(tx, Di(j)) =

Z Di(j)

tx

fi(t)dt = (Di(j)− tx) · fi(tx − 1) (5)

whereS̄i(t1, t2) denotes the service time the job of taskVi would receive in a perfectly fair system during

the interval[t1, t2] andfi(tx − 1) is the fraction of the processor that would have been allocated to the job

of Vi in the interval.
By combining Equations (4) and (5), the pending deadline can be rewritten using Equation (6).

D′
i(j) = tx +

S̄i(tx, Di(j))

fi(tx)
= tx +

(Di(j)− tx) · fi(tx − 1)

fi(tx)

= tx + (Di(j)− tx) · fi(tx − 1)

fi(tx)

(6)

Equation (6) actually assumes that the lag of the job is zero. The lag is defined as the difference between

the ideal and actual service times. That is,lag i(tx) = Si(0, tx) − si(0, tx), wheresi(0, tx) is the actual

service time received in the interval. The lag may be zero, strictly negative, or strictly positive. If the

lag is strictly negative, the job is executing ahead of its ideal execution rate. This case never creates a

problem because the rate change function of Equation (6) moves the deadline based on an ideal execution

rate, and simply not executing the job for a period of time equal tolagi(tx)
fi(tx) would eliminate the lag, which

was assumed to be zero.
If the lag is strictly positive, the task is proceeding behind its ideal service time. If a rate change at time

tx results infi(tx − 1) > fi(tx), then the deadline will be postponed, which gives time for the lag to return
to zero as the job’s actual execution rate “catches up” to its ideal rate. The only possible problem arises
whenfi(tx − 1) < fi(tx). In this case, the new deadline is moved to an earlier time, but it must be large
enough to allow the actual service time to “catch up” with the ideal execution rate. Thus, withsi(tx) equal
to the actual service time at timetx, we rewrite Equation (6) as follows:

D′
i(j) = tx + max((Di(j)− tx) · fi(tx − 1)

fi(tx)
, ci(tx − 1)− si(tx)) (7)



There are three parameters that can be used to adjust the rate of a VRE task,ci(t), yi(t), andxi(t).

In the following, we respectively describe the three cases when only one parameter changes at a time.

Simultaneous changes to more than one parameter can be achieved by combining the corresponding rules.

In the special case of simultaneous changes toci(t), andyi(t), the combination of Rules 1 and 2 reduce to

Equation (7).

• Rule 1: ci(t) changes at timetx. The pending deadlines of jobs of taskVi are changed to accom-

modate the change in WCET, as long as the newci(tx) parameter is greater than the amount of time

already consumed. Since, in this case,

fi(tx − 1)
fi(tx)

=
ci (tx−1)
yi(tx)

ci (tx)
yi(tx)

=
ci(tx − 1)

ci(tx)
,

substitutingfi(tx−1)
fi(tx) with ci(tx−1)

ci(tx) in Equation (7), we get the following equation:

D′
i(j) = tx + max((Di(j)− tx) · ci(tx − 1)

ci(tx)
, ci(tx − 1)− si(tx)).

If the newci(tx) parameter is less than or equal to the actual amount of execution time already con-

sumed by the job,ci(tx) ≤ si(tx), the rate change takes place at the end of the current execution

period—or at the next earliest point at which the job’s lag reduces to zero, and the new deadline is

assigned using Equation (3).

• Rule 2: yi(t) changes at timetx. Pending deadlines of the task are adjusted by substitutingfi(tx−1)
fi(tx)

with yi(tx)
yi(tx−1) in Equation (7).

Di(j) = tx + ((Di(j)− tx) · yi(tx)

yi(tx − 1)
, ci(tx − 1)− si(tx)).

• Rule 3: xi(t) changes at timetx. This case is different from the other two since the change in the
xi(t) parameter affects the total fraction of the CPU allocated to the task, but not the fraction of the
CPU allocated to any one job of the task. Let(Di(j), Di(j + 1), Di(j + 2), ..., Di(j + k − 1),
Di(j + k)) be the set of pending deadlines ordered by time. We treat all pending jobs to be released
at timetx. Thus, the pending deadlines are modified as follows:

D′
i(j + m) = tx + yi(tx) · (b m

xi(tx)
c+ 1), 0 ≤ m ≤ k

We show in Section 4 that these deadline adjustments will not affect temporal correctness of the task set.

3.2 Supporting a Dynamic Task Set

As stated previously, the VRE model supports a dynamic task set, allowing tasks either to enter or to leave

the system at any time. When a new VRE taskVnew arrives at timet, the task is tentatively added to the set of



tasksV (t) and the schedulability condition
∑

i∈V (t) fi(t) ≤ 1, which is presented in Section 4, is evaluated.

An affirmative result means that the task is accepted and deadlines are assigned using Equation (3).

Theoretically, a task leaves the system when its lag reaches zero. At this point in time, the fraction of

the processor allocated to that task can be allocated to another task, and the task is removed from the task

set. Usually when a job finishes before its deadline, however, it has negative lag. Thus, if the last job of task

Vi executed forci(t) time units, the fraction of the processor allocated to taskVi cannot be re-allocated until

the deadline of that job is reached.

In an implementation of the task model, there are two simple options for tracking the system utilization

when jobs enter and leave. The first method is to set a timer to expire at the deadline of the last job of a

terminating taskVi. When the timer expires at timetf , the lag has reached zero and the task is removed

from the task set. In practice this simply means subtractingxi(tf ) · fi(tf ) from the total allocated processor

utilization.

Alternatively, when a task finishes with non-zero lag, the deadline of the last job can be inserted in

a queue sorted by non-decreasing finish times. Using this method, the task is not removed from the task

set until its processor utilization is needed by another task. This only happens when the schedulability

condition yields a negative result. At this point, all entries in the queue with finish times less than or equal

the current time are dequeued. For each of these dequeued tasksVi, xi(tf )·fi(tf ) is subtracted from the total

allocated processor utilization. If the schedulability condition still yields a negative result, subsequent jobs

in the queue with the next earliest finish times are tentatively removed from the queue and their processor

utilizations subtracted from the total allocated processor utilization. If there is still insufficient processor

bandwidth, the new task is not allowed to join the system. On the other hand, if this results in sufficient

processor bandwidth being made available, the new task is allowed to join the system, but lag of the jobs

with future finish times must be transferred to the new task. LetQf denote this set of jobs. The simplest

way to transfer the lag of the jobs inQf to the new taskVnew is to set the deadline of the first job ofVnew at

time t is as follows:

Dnew(1) = t + dnew(t)−
∑

i∈Qf

lagi(t)
fi(t)

(8)

Of course, there are many other ways of transferring the negative lag of jobs in the setQf . The advantages

of this approach is its simplicity and the fact that the processor utilization is updated only when necessary to

accept a new task (or an increase in the execution rate of a current task), which reduces overhead that might

occur in a very dynamic task set.

4 Feasibility

This section presents a schedulability condition whendi(t) = yi(t). We first define the processor demand

bound for variable rate tasks. Then, we give a sufficient schedulability condition for the variable rate task set.

We leave open the question of necessary and sufficient conditions since they cannot be computed without

a priori knowledge rate changes, which precludes their use as on-line admission and rate-change controller



functions.

Given a variable rate taskVi = (xi(t), yi(t), yi(t)ci(t), ) and a specific time interval[tx0, txk], assume

that the rate changes at timetx1, tx2, ...txk−1, tx0 < tx1 < tx2 < ... < txk. For the case in which we change

the rate after all pending deadlines are finished, the execution ofVi can be viewed as a sequence of intervals

such that each interval is a RBE task exectuion. According to [15], the least upper bound on the processor

demand in the interval[txj , txj+1] is b txj+1−txj

yi(txj)
c · xi(txj) · ci(txj). Thus, the least upper bound on demand

is a sum of the demand in each of these intervals

k−1∑

j=0

b txj+1 − txj

yi(txj)
c · xi(txj) · ci(txj)

which depends on the actual values oftx1, tx2, ...txk−1.

If the rate change takes effect immediately (as opposed to the end of an execution interval for the task),

the least upper bound on demand is an even more complicated step function that can only be computed in

advance if exact future times of rate changes are known. The following demand bound, however, is easy to

compute and is tight at the deadline of each job.

Lemma 4.1. Let Vi be a variable rate task(xi(t), yi(t), yi(t), ci(t)). If no job ofVi released before time

t0 ≥ 0 requires processor time in the interval[t0, l] to meet a deadline in the interval[t0, l], then

∀l > t0, d̂bf ([t0, l]) =
∫ l

t0

fi(t)dt (9)

is an upper bound on the processor demand in the interval[t0, l] created byVi wherefi(t) is the fraction

function ofVi computed byfi(t) = xi(t)·ci(t)
yi(t)

.

Proof: The proof of this lemma is built upon the RBE task demand bound in [15], and separated into

two parts. First, we show that Equation (9) is an upper bound on the processor demand created by taskVi

when its sharefi(t) never changes in the interval[t0, l]. Second, we show the lemma also holds whenfi(t)

changes at any timetx ∈ [t0, l], which is done by mapping segments of the interval to the first case.

Case 1: Execution rate never changes through the interval[t0, l]. This is a straightforward reduction

from Lemma 4.1 in [15], which states that the tight upper bound on processor demand created by a RBE

task isdbf i(L) = bL−di+yi

yi
cxici. Since we assumedi = yi, let (xi, yi, ci, yi) be the constant execution rate

in the interval andL = l − t0. Based on Lemma 4.1 in [15] and the fraction definition (fi(t) = xi(t)·ci(t)
yi(t)

),

the demand created byVi is

demandi(L) = bL− di + yi

yi
cxici = bL

yi
c · yi · fi

≤ L · fi = (l − t0)fi

=
∫ l

t0

fi(t)dt = d̂bf i([t0, l]).

Thus, Equation (9) is an upper bound on the processor demand in the interval[t0, l] created byVi and the

lemma holds for this case.



Case 2: Execution rate changes at timetx ∈ [t0, l]. Without loss of generality, assumetx is the first

time fi(t) changes in the interval[t0, l]. The remaining portion of this proof will assume thatfi(t) remains

constant in the interval[tx, l]. If fi(t) changes in the interval[tx, l], then this proof can be applied recursively

to that interval. There are two sub-cases to consider: when there is no pending deadlines at timetx, and

when there exist some pending deadlines.

Case 2a: there is no pending deadlines at timetx.

In this case, the execution ofVi in the interval[t0, l] can be treated as two separate portions:[t0, tx] and

[tx, l]. From the result of Case 1, the demand created byVi in the subinterval[t0, tx] is bounded from above

by d̂bf i([t0, tx]) since the rate does not change in the subinterval. Similarly, the demand created byVi in

the subinterval[tx, l] is bounded from above bŷdbf i([tx, l]). Thus, the processor demand created byVi in

the interval[t0, l] is less than or equal to

d̂bf i([t0, tx]) + d̂bf i([tx, l]) =
∫ tx

t0

fi(t)dt +
∫ l

tx

fi(t)dt

=
∫ l

t0

fi(t)dt = d̂bf i([t0, l])

and the lemma holds for this case.

Case 2b: There exist pending deadlines ofVi at timetx.

Let Dp = {Di(j), Di(j + 1), Di(j + 2), ..., Di(j + k)} be the set of all pending deadlines ordered by

time, Dp are modified with the three rules in Section 3 when the execution rate changes. We know the

demand bound function (9) holds before the change. Thus,∀D ∈ Dp, Demand([t0, D]) ≤ ∫ tx
t0

fi(t)dt +

fi(tx − 1) · (D − tx).

Suppose a deadlineD ∈ Dp is changed toD′, we show that
∫ D′
t0

fi(t)dt is still a demand bound for the

change by each rule.

For Rules 1 and 2, the order of the modified deadlines is preserved. Thus, the demand created in the

interval [t0, tx] after the rate change is the same as the demand in the interval[t0, tx] before the rate change.

Before the change, the demandδ is less than or equal to
∫ tx
t0

fi(t)dt + fi(tx − 1) · (D − tx).

Based onRule 1andRule 2, (D′ − tx) · fi(tx) = (D − tx) · fi(tx − 1). Thus,

∫ D′

t0

fi(t)dt =
∫ tx

t0

fi(t)dt + (D′ − tx) · fi(tx) =
∫ tx

t0

fi(t)dt + fi(tx − 1) · (D − tx)

still holds as a demand bound.

Rule 3is even simpler. LetD′
i(j + m) be a modified pending deadline (tx < D′

i(j + m)). We have

Demand([t0, tx]) ≤ ∫ tx
t0

fi(t)dt andDemand([tx, D′
i(j + m)]) ≤ ∫ D′i(j+m)

tx
fi(t)dt by Rule 3. Thus,∫ D′i(j+m)

t0
fi(t)dt still holds as a demand bound.

This completes the proof.



Theorem 4.2. Let the task setV =
⋃∞

t=0 V (t) be a set of variable rate tasks withdi(t) = yi(t), 1 ≤ i ≤ n.

Preemptive EDF will succeed in schedulingV if

∀L > 0, L ≥
∑

j∈V
d̂bf j(L) (10)

Proof: To show the sufficiency of Equation (10), it is shown that the preemptive EDF scheduling algorithm

can schedule all releases of tasks inV without any job missing a deadline if the tasks satisfy Equation (10).

This is shown by contradiction.

Assume thatV satisfies Equation (10) and yet there exists a release of a task inV that misses a deadline

at some point in time whenV is scheduled by the EDF algorithm. Lettd be the earliest point in time at

which a deadline is missed and lett0 be the later of:

• the end of the last interval prior totd in which the processor has been idle (or 0 if the processor has

never been idle), or

• the latest time prior totd at which a task instance with deadline aftertd stops executing prior totd (or

time 0 if such an instance does not execute prior totd).

By the choice oft0, (i) only releases with deadlines less than timetd execute in the interval[t0, td], (ii) any

task instances released beforet0 will have completed executing byt0 or have deadlines aftertd, and(iii) the

processor is fully utilized in[t0, td].

By Lemma 4.1, at most̂dbf i([t0, td]) units of processing time are needed to process requests of variable

rate taskVi in the interval under a deadline driven scheduling algorithm, such as EDF. Thus,

∑

j∈V ([t0,td])

d̂bf j([t0, td])

is an upper bound on the processor demand in the interval[t0, td]. Since the processor is fully used in the

interval[t0, td] and since a deadline is missed at timetd, it follows that

∑

j∈V
d̂bf j(td, t0) ≥ td − t0.

However, this contradicts our assumption thatV satisfies Equation (10).

Hence ifV satisfies Equation (10), then no release of a task inV misses a deadline whenV is scheduled

by a deadline driven algorithm such as EDF. It follows that satisfying Equation (10) is a sufficient condition

for schedulability under preemptive EDF.

Corollary 4.3. Let the task setV =
⋃∞

t=0 V (t) be a set of variable rate tasks withdi(t) = yi(t), 1 ≤ i ≤ n.

Preemptive EDF will succeed in schedulingV if Equation(11) holds wherefi(t) = xi(t)·ci(t)
yi(t)

is the portion

of the CPU capacity allocated to variable rate taskVi at timet.

∀t,
∑

i∈V (t)

fi(t) ≤ 1 (11)



Proof:

∑

i∈V (t)

fi(t) ≤ 1 ⇒t− t0 ≥
∫ t

t0

(
∑

i∈V (t)

fi(t)dt

t− t0 ≥
∑

i∈V (t)

∫ t

t0

fi(t))dt

t− t0 ≥
∑

i∈V (t)

d̂bf i([t0, t]) by Lemma 4.1

Equation (11) looks like the necessary and sufficient condition of EDF in [21], but it is actually different.

The VRE model supports a dynamic task set in which tasks are allowed to release jobs early. This means we

can have intervals of time in which the utilization function is greater than1 adjacent to intervals of time in

which the utilization function less than1, and the task set may still be schedulable. Thus, Equation (11) is

only sufficient, and not necessary. To develop a tighter condition, which is both sufficient and necessary, the

actual times of rate changes must be known a priori. Since we do not make this assumption, it is infeasible

to evaluate such a condition.

Corollary 4.3 can be used as the condition for admission and rate-change control. When a new variable

rate task arrives or an existing variable rate task requests to change its rate, the system will recompute the

sum of the fractions. If the sum is less than or equal to1, accept the request; otherwise, reject the request.

(See Section 3.2 for more details on the use of such a condition for admission and rate-change control.)

5 Evaluation

This section introduces our experimental results and overhead measurements. We first present an experiment

which focused on adjusting the execution rate and correctness. Following that, we discuss the overhead.

The scheduler was implemented as a loadable Linux module on Redhat 8.0 (kernel version 2.4.18). Only

a small modification was made to the Linux kernel. Thus, users can load or unload our scheduler without

reboot. The experiments were done on an IBM Thinkpad T30 with a 2.0G Hz P4 processor and 256M DDR

memory. We set thetime tickto be1ms and recompiled the Linux kernel. When we refer to an execution

rate, we use atick as the time unit. For example, rate(1, 20, 20, 2) means 2 ticks (2ms) every 20 ticks

(20ms).

The first experiment was on adjusting the execution rates. We simulated a multi-agent system, where

three agents negotiate with each other to decide their execution rates during runtime. The three agents did

nothing but execute a null loop and change execution rates at specific times, shown in Table 1. Figure 3 is

the actual execution time of the three agents. It is clear that the actual execution rate changes are consistent

with the assigned rates in Table 1.

We also sampled the deadlines of 180 jobs of the multi-agent task system and their corresponding finish

times, which is shown in Figure 4. All the jobs finished before their deadlines. We can see a gap between



Time 0 19 37
Agent 1 (1,20,20,2) (1,20,20,2) (1,20,20,6)
Agent 2 (1,20,20,10) (1,20,20,2) (1,20,20,6)
Agent 3 (1,20,20,4) (1,20,20,12) (1,20,20,4)

Table 1: Rate adjustment of the three agents.
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Figure 3: The actual execution time of the three agents.

the deadlines and the finish times. Actually, the gap enlarged as time went by. Since the three agents did not

occupy all the processor capacity, 20% of the processor time is reserved for non-real-time tasks, such as the

shell. When we compute the execution rate of the non-real-time tasks, we round off afloat variable to an

integer variable. Thus, the non-real-time tasks run slower than expected, and the VRE tasks run faster than

their assigned rate.
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Figure 4: Deadlines and finish times.

In the Linux kernel, all running processes are put in a list calledrunqueue. The Linux scheduler scans

the entire list and selects the process with the highest priority. Our implementation also follows this pattern

though another implementation might be more efficient. Thus, the overhead shall be a linear function of

the number of running processes. We measured the overhead of our scheduler, and compared it with the



overhead of the original Linux scheduler. The overhead was measured in CPU cycles, which was retrieved

by the “rdtsc” instruction (read timestamp counter). Figure 5 shows that this implementation results in

an at most 2.25% overhead for scheduling and context switching. More importantly, the VRE scheduler

provides assured and dynamic QoS to processes, which the native Linux scheduler cannot provide, with

only a slight increase in overhead. These results are consistent with Brandt et al. in [6] where a slightly

simpler variable rate task model was implemented in Linux, with the change made to the kernel rather that

as a loadable module. See [23] for a more detailed analysis of the implementation and performance of the

VRE scheduler.
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Figure 5: The overhead is a linear function of the number of processes under bother the original Linux
scheduler and our scheduler. The overhead of our scheduler is a little bit higher than the original Linux
scheduler.

6 Conclusion

model for real-time tasks in which execution rate requirements might change during runtime. We called

the new task modelvariable rate execution(VRE). In the VRE model, we relax the assumptions made by

canonical real-time task models by allowing both the worst case execution time (WCET) and the period to be

variable. For soft or non-real-time tasks, an advantage of the new task model is that the exact execution rates

need not be known when the task begins to execute; instead, we can assign an approximate execution rate

to an application and dynamically adjust the rate during runtime. An efficient schedulability condition was

also presented that can be used as an admission and rate-change control function. A scheduler supporting

the VRE task model was implemented in Linux as a loadable module, and several experiments demonstrated

its correctness and analyzed the overhead.
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